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The coronavirus disease 2019 (COVID-19) pandemic is 
straining public health systems worldwide, and major 
non-pharmaceutical interventions have been implemented to 
slow its spread1–4. During the initial phase of the outbreak, dis-
semination of severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) was primarily determined by human mobility 
from Wuhan, China5,6. Yet empirical evidence on the effect of 
key geographic factors on local epidemic transmission is lack-
ing7. In this study, we analyzed highly resolved spatial vari-
ables in cities, together with case count data, to investigate 
the role of climate, urbanization and variation in interven-
tions. We show that the degree to which cases of COVID-19 
are compressed into a short period of time (peakedness of 
the epidemic) is strongly shaped by population aggregation 
and heterogeneity, such that epidemics in crowded cities are 
more spread over time, and crowded cities have larger total 
attack rates than less populated cities. Observed differ-
ences in the peakedness of epidemics are consistent with a 
meta-population model of COVID-19 that explicitly accounts 
for spatial hierarchies. We paired our estimates with glob-
ally comprehensive data on human mobility and predict that 
crowded cities worldwide could experience more prolonged 
epidemics.

Predicting the epidemiology of the COVID-19 pandemic is 
a priority for guiding epidemic responses around the world. China 
has undergone its first epidemic wave, and, remarkably, cities across 
the country are now reporting few or no locally acquired cases8. 
Analyses have indicated that the spread of COVID-19 from Hubei 
to the rest of China was driven primarily by human mobility from 
Wuhan6,9, and that the stringent measures to restrict human move-
ment and public gatherings within and among cities in China 
were associated with bringing local epidemics under control5. Key 
uncertainties remain as to which geographic factors drive the local 
transmission dynamics of COVID-19, and initial analysis suggests a 
limited role of climate in determining epidemic growth10.

Spatial heterogeneity in infectious disease transmission can be 
influenced by local differences in population or human movements, 
such that high local population densities might catalyze the spread 
of new pathogens due to higher contact rates with susceptible 

individuals11,12. For respiratory pathogens, the temporal clustering 
of cases in an epidemic (that is, the shortest period during which 
most cases are observed) varies with increased indoor crowding 
and socio-economic and climatic factors13–18. The temporal con-
centration of cases is minimized when incidence is spread evenly 
across time and increases as incidence becomes more concentrated 
in particular days, as has been observed for influenza13. In any given 
location, a higher temporal concentration of cases might require a 
larger surge capacity in the public health system19, especially for an 
emerging respiratory pathogen such as COVID-19 (ref. 20).

Results
Spatial population structure predicts the shape of epidemics 
of COVID-19. China and Italy provide detailed epidemiological 
time series for COVID-19 (refs. 2,21,22) across a wide range of geo-
graphic contexts; hence, the outbreaks in these countries provide an 
opportunity to evaluate the role of local factors in shaping epidemic 
behavior. We used daily epidemiological data from Chinese cities23,24 
and Italian provinces, climate and population data and the response 
to local interventions as measured by human mobility data from 
Baidu25 and the COVID-19 Aggregated Mobility Research Dataset 
(https://www.google.com/covid19/mobility/) to identify drivers of 
transmission, with a focus on how the temporal clustering of cases 
differs between prefectures in China and provinces in Italy. A sum-
mary of the main findings, limitations and policy implications of 
our study is shown in Table 1.

We used daily incidence data of confirmed COVID-19 cases 
aggregated at the prefectural level (n = 293) in China (Fig. 1a) and 
at the province level (n = 108) in Italy. Prefectures and provinces are 
administrative units that typically have one urban center (Fig. 1b). 
We aggregated daily individual-level data collected from official 
government reports22. Epidemiological data in each prefecture were 
truncated to exclude dates before the first and after the last day of 
reported cases during the first epidemic. Cases reported after March 
1, 2020, that were imported from outside China were excluded from 
the analysis. All epidemiological data from Hubei Province were 
excluded because of the lack of prefecture-level epidemiological 
data and issues with consistent reporting before January 20, 2020. 
The shape of epidemic curves varied among prefectures, with some 
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showing a rapid rise and decline in reported cases and others show-
ing more prolonged epidemics (Fig. 1a and Extended Data Fig. 1).

To characterize the temporal clustering of cases for each pre-
fecture and province, we calculated the Shannon diversity index 
of the distribution of incident cases13. We defined the incidence 
distribution pij for a given city to be the proportion of COVID-19 
cases during the first epidemic wave j that occurred on day i. The 
Shannon index of incidence for a given prefecture and year is given 

by vj ¼ �P
i
pij log pij

 �1

I

. Because vj is a function of the disease 
incidence curve in each location, rather than of absolute incidence 
values, it is less sensitive to varying reporting rates among cities. 
The Shannon index is maximal when all cases occur on the same 
day and minimal when each day of the epidemic has the same num-
ber of incident cases (for example, ‘flat’ epidemic curves). It is highly 
correlated with alternative measures of epidemic peakedness, such 
as the proportion of cases that occur at the peak ± 1 d (Extended 
Data Fig. 2). The total attack rate of reported COVID-19 cases in 
each prefecture is strongly negatively correlated with the Shannon 
index in China (Fig. 1c); hence, less peaked epidemics have a larger 
total attack rate (Pearson’s r = −0.67, 95% confidence interval (CI), 
−0.73 to −0.59, P < 0.01; for Italy, R2 = 0.33, P < 0.01). We hypoth-
esize that this variation among cities in total attack rate and the tem-
poral clustering of cases is the result of the spatial organization of 
human populations.

To test this hypothesis, we used Lloyd’s index of mean crowd-
ing13,26, treating the population count of each spatial grid cell as 
an individual unit (Fig. 1). The term ‘mean crowding’ used here 
is a specific geographic metric that summarizes both population 
density and how density is distributed across a prefecture (that is, 
patchiness; Fig. 1). Higher values of Lloyd’s index suggest a spa-
tially aggregated population structure. For example, Xi’an has high  
values of crowding, whereas Bozhou has a similar population  
density but a population that is more evenly distributed across the 
prefecture (Fig. 1b). We performed log-linear regression model-
ing to determine the association between the temporal cluster-
ing of cases with socio-economic and environmental variables, 
including reductions in population flows during the outbreak  
period (Methods).

We found that the temporal clustering of cases was significantly 
negatively correlated with the mean number of contacts (P < 0.01) 
but positively correlated with mean population density (P < 0.01) 
and varies widely across China and Italy (Fig. 2 and Supplementary 
Table 1). This observation contrasts with the expectations of simple 
and classical epidemiological models, which predict higher peaked-
ness in crowded areas due to the increased availability of susceptible 
individuals27,28. The spatial scale at which this relationship is best 
explained was 10 × 10 km, but results were statistically significant 

at all spatial scales between 1 and 50 km2 (Extended Data Fig. 3;  
P < 0.01). Mean specific humidity and population mobility remained 
significantly negatively correlated with epidemic peakedness when 
included in a multivariate model with crowding (Supplementary 
Table 1; all P < 0.01).

Using weekly human mobility data, we found that within-city 
human mobility during the outbreak was correlated with the tem-
poral clustering of cases—that is, prefectures that have larger reduc-
tions in mobility also have lower epidemic peakedness (Extended 
Data Fig. 4 and Supplementary Table 1; P < 0.01). When we com-
bined mobility reduction in a model with crowding and humidity, 
we found that these variables each remained significant predic-
tors of the temporal clustering of cases (Extended Data Table 1;  
P < 0.01). These results suggest that, although measures to reduce 
mobility can successfully lead to a flattening of the epidemic curve, 
population crowding is an independent contributor to the shape of 
epidemics in these two countries.

Our multivariate model can explain a large fraction of the varia-
tion in epidemic peakedness among Chinese cities and Italian prov-
inces, and sensitivity analyses confirm the robustness of our results 
to potential noise in location-specific incidence distributions (R2 = 
0.638; Extended Data Fig. 2, Supplementary Table 1 and Extended 
Data Fig. 5). To evaluate the out-of-sample performance of our 
model, we 1) performed n-fold cross validation at the prefecture 
level in China (Spearman’s ρ = 0.61; 95% bootstrap CI, 0.52–0.68;  
P < 0.01); 2) used the fitted model in China to estimate peak  
intensity at the corresponding administrative level 2 locations—that 
is, province level, in Italy (Spearman’s ρ = 0.57; 95% bootstrap CI,  
0.41–0.69; P < 0.01); and 3) performed n-fold cross validation at the 
province level in Italy (Spearman’s ρ = 0.65; 95% bootstrap CI. 0.52–0.76;  
P < 0.01). These results suggest that the model is robust to both  
within- and between-country out-of-sample testing (Extended  
Data Fig. 6).

To evaluate the potential effect of the temporal clustering of 
cases on the peak attack rate and total attack rate, we performed 
a simple linear regression (Supplementary Table 2). For locations 
that have a single peak, the attack rate at the peak is highest in two 
settings: 1) in crowded locations with high population size (prefec-
tures that also experience high total attack rates); and 2) in loca-
tions that have lower population and lower crowding and, therefore, 
high temporal clustering of cases (Extended Data Fig. 7). Other 
prefectures that have low population and low crowding sometimes 
experience very short outbreaks with a small peak attack rate, sug-
gesting local stochastic extinction possibly due to limited mixing 
between populations. We hypothesize that the observation that high 
peak attack rates can sometimes be found in low crowding areas is 
related to rare super-spreading events as observed in Bergamo, Italy, 
or Mulhouse, France.

Table 1 | Policy summary

Background There are obvious differences in the geographic distribution of COVID-19 cases within and among countries. We hypothesize that 
some of these differences are due to spatial variability in population crowding. Using detailed case count data from COVID-19 
among cities in China and Italy, we fit multiple regression models to explain variability in the shape of epidemics among them.

Main findings and 
limitations

We found that cities with higher crowding have longer epidemics and higher attack rates after the first epidemic wave. Using 
a meta-population model that splits cities into neighborhood subunits is consistent with these findings, suggesting that the 
hierarchical structure and organization of cities are influential in defining their epidemics. We predict that comparatively rural areas 
might experience more peaked epidemics. As with all modeling studies, further data generated during the epidemic might change 
our parameter estimates, and large-scale serological data would help verify our findings. Further, it will be important to evaluate 
whether cities that have greater peak incidence might be more prone to strained healthcare systems.

Policy implications Our results have implications for assessing the drivers of transmission of SARS-CoV-2. Spatial factors, such as crowding and 
population density, might elevate the risk of sustained (longer) outbreaks, even after the implementation of lockdowns. Cities 
that are less crowded and have lower attack rates might be more susceptible to experiencing future outbreaks if SARS-CoV-2 is 
successfully re-introduced.
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Fig. 1 | Maps of crowding in prefectures in China. a, Examples of epidemic curves that are normalized to show the percentage of cases across the whole 
epidemic that occur at each given day. Beijing and Shanghai (red) have less peaked epidemics than Wenzhou and Zhuhai. b, Examples of prefectures in 
China with different levels of crowding and population size. The color scale illustrates the estimated number of inhabitants per grid cell (1 km × 1 km).  
c, Relationship between the Shannon index of the incidence curve and the final attack rate for prefectures in China.
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population in each city. b, Map of epidemic peakedness in China at the prefectural level. Blue and green colors indicate lower peakedness; red and yellow 
colors indicate higher peakedness. Gray prefectures had either no reported cases or were not included in analyses due to potential inconsistencies in 
reporting of early cases (Hubei Province).
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Simulation of COVID-19 epidemics in hierarchically structured 
populations. We hypothesize that the mechanism underlying our 
central observation—that more crowded cities experience less 
peaked outbreaks—is that crowding enables sustained transmission 
among households and through a city’s population, leading inci-
dence to be widely distributed through time. To explore this pro-
posed mechanism, we simulated stochastic epidemic dynamics in 
two types of populations. Simple, well-mixed transmission models 
in which contact rates are high in crowded regions were not consis-
tent with our findings, because they predict that crowded regions 
would have more temporally clustered outbreaks. To capture real-
istic contact patterns, we created hierarchically structured popula-
tions29 in which individuals had high rates of contact within their 
social units (which are defined broadly and could represent house-
holds, care homes, hospitals, prisons, etc); lower rates with indi-
viduals from other units but within the same neighborhoods; and 
relatively rare contact with other individuals in other neighborhoods 
within the same prefecture (Fig. 3a). These assumptions are consis-
tent with reports that most onward transmission after lockdowns 
were implemented occurred in households or in other close-contact 

situations2,30. In this scenario, less crowded prefectures often had 
more peaked and shorter outbreaks that were isolated to specific 
neighborhoods, whereas more crowded prefectures could sustain 
drawn-out outbreaks of larger final size, which jumped among the 
more highly connected neighborhoods (Fig. 3b,c). Further, if the 
reproduction number of COVID-19 is over-dispersed31–33, then 
crowding could enable local outbreaks to spread more widely due to 
the availability of contacts34.

We also simulated outbreak dynamics under extensive social dis-
tancing measures, as observed in Chinese prefectures (75% reduc-
tion in contact rates35,36). If social distancing reduces non-household 
contacts by the same relative amount in all locations, there will be 
more contacts remaining in crowded areas, because baseline contact 
rates are higher. Consequently, outbreaks in crowded regions could 
be larger and take longer to end after intervention (Fig. 3d, Fig. 1c 
and Extended Data Fig. 1).

Using the fitted model from China paired with globally compre-
hensive covariates, we extrapolated our results to cities across the 
world (Fig. 4). Human mobility data from Baidu were not avail-
able for locations outside of China. Therefore, we used aggregated 
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Fig. 3 | Mechanisms generating less peaked epidemics in crowded populations. a, Schematic of a hierarchically structured population model consisting of 
households and ‘neighborhoods’ within a prefecture. Transmission is more likely among contacts connected at lower spatial levels. Crowded populations 
have a greater number of contacts outside the household, and interventions reduce the number of these connections in both populations (pink dotted 
lines). b, c, Simulated outbreak dynamics in the absence of interventions in crowded versus sparse populations. For the networks in b, blue nodes are 
individuals who were eventually infected by the end of the outbreak. In c, thin blue lines show individual realizations of the model, the average shown 
by the thick gray line. d, Simulated outbreak dynamics in the presence of strong social distancing measures in crowded versus sparse populations. The 
intervention was implemented at day 15 (vertical dotted line) and led to a 75% reduction in contacts, similar to observed changes in contact rates in 
China35,36. Mean values of median log epidemic peakedness (Shannon index) are −2.3 for low crowding and −2.8 for high crowding.
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human mobility data from Google’s COVID Mobility Research 
Dataset (Methods) to capture relative differences in human mobility  
through time. At the global scale, cities in yellow are predicted to 
have concentrated and peaked epidemics, whereas cities in blue are 
predicted to have more prolonged outbreaks (Fig. 4b; a full list is 
provided in the Supplementary Information). In general, the epi-
demics in coastal cities were less peaked and were larger and more 
prolonged, which could be attributable to high levels of population 
crowding in coastal cities. These predictions rely on fitted relation-
ships of the first epidemic curves from Chinese and Italian cities 
and, therefore, should be interpreted very cautiously when general-
izing to other settings.

Discussion
Our findings confirm previous work on the peakedness of epidemics 
transmission for influenza in cities13. Our work provides empirical 
support for the role of spatial organization in determining infectious 
disease dynamics29,37 and, specifically, spatial variability in transmis-
sion parameters38. Furthermore, with lower total incidence in small 
cities compared to larger cities, the risk of resurgence could be ele-
vated owing to lower population immunity after the first wave of the 
epidemic. Higher seroprevalence for COVID-19 in urban areas39 pro-
vides initial data to support these findings; however, there remains 
an urgent need to expand serological data collection and provide a 

full picture of attack rates across cities worldwide40. Even though 
our model does not account for over-dispersion in COVID-19  
transmission, there is a theoretical link between the reproduc-
tion number in heterogeneous environments and Lloyd’s crowd-
ing index of aggregation41, such that the reproduction number 
increases with higher aggregation34. We report that, in dense cities, 
reductions in mobility tend to be larger, which potentially elevates 
the effectiveness of non-pharmaceutical interventions in dense cit-
ies42. However, assessing the effect of within-city connectivity and 
its spatial heterogeneity on disease dynamics will be critical to fur-
ther our understanding of how COVID-19 spreads in urban areas. 
We found that there is an association between climatic factors and 
the peakedness of epidemics, but particular caution will need to be 
applied in interpreting these relationships outside the two studied 
countries (Italy and China). More work is needed to provide causal 
evidence for the effect of climatic factors on transmission dynam-
ics of COVID-19 during the pandemic and post-pandemic phases10.

Currently, non-pharmaceutical interventions are the primary 
control strategy for COVID-19. As a result, public health mea-
sures are often focused on ‘flattening the curve’ to lower the risk 
of essential services running out of capacity. We show that spa-
tial context, especially crowding, are important factors for assess-
ing the shape of epidemic curves. Therefore, it will be critical to 
view non-pharmaceutical interventions through the perspective of 
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crowding—that is, how does an intervention reduce the circle of 
contacts of an average individual—in cities across the world.
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Methods
Epidemiological data. No officially reported line list was available for cases in 
China. We used a standardized protocol43 to extract individual-level data from 
December 1, 2019, to March 30, 2020. Sources were mainly official reports from 
provincial, municipal or national health governments. Data included basic 
demographics (age and sex), travel histories and key dates (dates of onset of 
symptoms, hospitalization and confirmation). Data were entered by a team of 
data curators on a rolling basis, and technical validation and geo-positioning 
protocols were applied continuously to ensure validity. A detailed description of 
the methodology is available22. Lastly, total numbers were matched with officially 
reported data from China and other government reports. Daily case counts from 
Italian provinces (n = 107) were extracted from the Presidenza del Consiglio 
dei Ministri Dipartimento della Protezione Civile (https://github.com/pcm-dpc/
COVID-19).

Estimating epidemic peakedness. Epidemic peakedness was estimated for each 
prefecture by calculating the inverse Shannon entropy of the distribution of 
COVID-19 cases. Inverse Shannon entropy was used to fit time series of other 
respiratory infections (influenza)13. The inverse Shannon entropy of incidence for 
a given prefecture in 2020 is then given by vj ¼ �

P
i pij log pij

� �1

I
. Because vj is a 

function of incidence distribution in each location rather than raw incidence, it is 
invariant under differences in overall reporting rates between cities or attack rates. 
We then assessed how peakedness v / P

j vj
I

 varied across geographic areas in 
China. As an alternative measure of temporal clustering of cases, we estimated the 
proportion of cases at the peak ± 1 d (Extended Data Fig. 2).

Proxies for COVID-19 interventions using within-city human mobility data 
from China. Estimates of within-city reductions of human mobility between the 
period before and after the lockdown was implemented on January 23, 2020, were 
extracted from Lai et al.36. Daily measures of human mobility were extracted from 
the Baidu Qianxi web platform to estimate the proportion of daily movement 
within prefectures in China. Relative mobility volume was available from January 
2, 2020, to January 25, 2020. For each city, change in relative mobility was defined 
by mi=mil(lockdown)/mib(baseline), where mi is defined as mobility in prefecture 
i. Baidu’s mapping service is estimated to have a 30% market share in China, and 
more data can be found5,6.

Data on drivers of transmission of COVID-19. Prefecture-specific population 
counts and densities were derived from the 2020 Gridded Population of The 
World, a modeled continuous surface of population estimated from national census 
data and the United Nations World Population Prospectus44. Population counts are 
defined at a 30-arc-second resolution (approximately 1 km × 1 km at the equator) 
and extracted within administrative 2 level cartographic boundaries defined by 

the National Bureau of Statistics of China. Lloyd’s mean crowding, 
P

i
qi�1ð Þqi½ P
i
qi

I

, was 

estimated for each prefecture, where qi represents the population count of each 
non-zero pixel within a prefecture’s boundary and the resulting value estimates an 
individual’s mean number of expected neighbors13,45. When fitting the models, we 
consider the numerator 

P
i qi � 1ð Þqi

 

I
, which we refer to as ‘contacts’, and the 

denominator 
P

i qi
I

 (that is, population size) as separate predictors. We note that a 
negative slope for ‘contacts’ and a positive slope for ‘population’ support a negative 
coefficient for Lloyd’s mean crowding.

Daily temperature (°F), relative humidity (%) and atmospheric pressure (Pa) 
at the centroid of each prefecture was provided by The Dark Sky Company via the 
Dark Sky API and aggregated across a variety of data sources. Specific humidity (kg/
kg) was then calculated using the R package humidity16. Meteorological variables 
for each prefecture were then averaged across the entirety of the study period.

Statistical analysis. We normalized the values of epidemic peakedness between 0 
and 1 and, for all non-zero values, fit a generalized linear model of the form

log Yj
� �

 β0 þ β1log Cj
� �

þ β2log hj
� �

þ β3log Pj
� �

þ β4log fj
� �

þ β5log tj
� �

where, for each prefecture j, Y is the scaled inverse Shannon entropy measure 
of epidemic peakedness derived from the COVID-19 time series; C is the mean 
number of contacts26,46; h is the mean specific humidity over the reporting period in 
kg/kg; P is the estimated population density; f is the relative change in population 
flows within each prefecture; and t is daily mean temperature.

Projecting epidemic peakedness in cities around the world. We selected 310 urban 
centers from the European Commission Global Human Settlement Urban Centre 
Database and their included cartographic boundaries47. To ensure global coverage, 
up to the five most populous cities in each country were selected from the 1,000 
most populous urban centers recorded in the database. Population count, crowding 
and meteorological variables were then estimated following identical procedures 
used to calculate these variables in the Chinese prefectures. Weather measurements 
were averaged over the 2-month period starting on February 1, 2020.

The parameters from the model of epidemic peakedness predicted by humidity, 
crowding and population size (Supplementary Table 1, model 6) were used to 

estimate relative peakedness in the 310 urban centers. A full list of predicted 
epidemic peakedness values can be found in Supplementary Table 3.

Global human mobility data. We used the Google COVID-19 Aggregated 
Mobility Research Dataset, which contains anonymized relative mobility flows 
aggregated over users who have turned on the Location History setting, which 
is off by default. This is similar to the data used to show how busy certain types 
of places are in Google Maps, helping identify when a local business tends to be 
the most crowded. The mobility flux is aggregated per week, between pairs of 
approximately 5-km2 cells worldwide, and for the purpose of this study aggregated 
for 310 cities worldwide. We calculated both mobility within each city’s shapefile 
and mobility coming into each city. For each city, change in relative mobility was 
defined by mi = mil(April)/mib(December), where mi is defined as mobility in city i.

To produce this data set, machine learning was applied to log data to 
automatically segment it into semantic trips48. To provide strong privacy 
guarantees, all trips were anonymized and aggregated using a differentially 
private mechanism49 to aggregate flows over time (https://policies.google.com/
technologies/anonymization). This research is done on the resulting heavily 
aggregated and differentially private data. No individual user data were ever 
manually inspected; only heavily aggregated flows of large populations were 
handled.

All anonymized trips were processed in aggregate to extract their origin and 
destination location and time. For example, if users traveled from location a to 
location b within time interval t, the corresponding cell (a, b, t) in the tensor would 
be n ± err, where err is Laplacian noise. The automated Laplace mechanism adds 
random noise drawn from a zero-mean Laplace distribution and yields  
(𝜖, δ)-differential privacy guarantee of 𝜖 = 0.66 and δ = 2.1 × 10−29. The parameter 
𝜖 controls the noise intensity in terms of its variance, whereas δ represents the 
deviation from pure 𝜖-privacy. The closer they are to zero, the stronger the privacy 
guarantees. Each user contributes, at most, one increment to each partition. If 
they go from a region a to another region b multiple times in the same week, they 
contribute only once to the aggregation count.

These results should be interpreted in light of several important limitations. 
First, the Google mobility data are limited to smartphone users who have opted 
in to Google’s Location History feature, which is off by default. These data 
might not be representative of the population as whole, and, furthermore, their 
representativeness might vary by location. Importantly, these limited data are 
viewed only through the lens of differential privacy algorithms, specifically 
designed to protect user anonymity and obscure fine detail. Moreover, comparisons 
across, rather than within, locations are descriptive only because these regions can 
differ in substantial ways.

Simulating epidemic dynamics. We simulated a simple stochastic SIR model 
of infection spread on weighted networks created to represent hierarchically 
structured populations. Individuals were first assigned to households using 
the distribution of household sizes in China (data from the United Nations 
Population Division; mean, 3.4 individuals). Households were then assigned 
to ‘neighborhoods’ of ~100 individuals, and all neighborhood members were 
connected with a lower weight. A randomly chosen 10% of individuals were 
given ‘external’ connections to individuals outside the neighborhood. The total 
population size was n = 1,000. Simulations were run for 300 d, and averages 
were taken over 20 iterations. The SIR model used a per-contact transmission 
rate of 𝛽 = 0.15 per day and recovery rate  𝛾 = 0.1 per day. For the simulations 
without interventions, the weights were wHH = 1, wNH = 0.01 and wEX = 0.001 for 
the crowded prefecture and wEX = 0.0001 for the less crowded prefecture. For the 
simulations with interventions, the household and neighborhood weights were the 
same, but we used wEX = 0.01 for the crowded prefecture and wEX = 0.001 for the 
‘sparse’ prefecture. The intervention reduced the weight of all connections outside 
the household by 75%.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We collated epidemiological data from publicly available data sources (news 
articles, press releases and published reports from public health agencies) that are 
described in full in ref. 22. Epidemiological and spatial data used in this study are 
available via Github (https://github.com/Emergent-Epidemics/COVID_crowding). 
The Google COVID-19 Aggregated Mobility Research Dataset used for this study 
is available with permission from Google. Code and data are also available at 
https://zenodo.org/record/4056578#.X3IFF5NKiek.

Code availability
The code associated with the data analysis and statistics is available from https://
github.com/Emergent-Epidemics/COVID_crowding. The simulation code is 
available from https://github.com/alsnhll/SIRNestedNetwork. Code and data are 
also available at https://zenodo.org/record/4056578#.X3IFF5NKiek.
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Extended Data Fig. 1 | Proportion of daily cases in prefectures in China. a, shows the ten flattest epidemics and b, shows the most peaked epidemics.  
Red and blue curves indicate the average across these prefectures.
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Extended Data Fig. 2 | Left panels: Proportion of cases at the peak (± 1 day) vs. inverse Shannon entropy for prefectures in China (n = 262) and regions in 
Italy (n = 107). Right panels: Proportion of days in the epidemic curve that had cases above the 50th percentile, normalized by the largest reported number 
of cases versus inverse Shannon entropy for prefectures in China (n = 262) and regions in Italy (n = 107).
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Extended Data Fig. 3 | Epidemic peakedness is well explained by covariates at spatial scales from 1 – 50 km in China a, and Italy b.
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Extended Data Fig. 4 | Relationship between population density and reduction in mobility in cities in China. Each dot represents one city in China.  
Data on human mobility are extracted from Baidu Inc. and are available from Lai et al. 202036.
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Extended Data Fig. 5 | Crowding and the temporal clustering of transmission of COVID-19 in Italy. a, negative association between log10 of epidemic 
peakedness, as measured by Shannon’s diversity index (Methods), and log population crowding, as measure by Lloyd’s mean crowding (Methods).  
The point sizes indicate the size of the population in each city, b, Map of epidemic peakedness in Italy at the provincal level. Blue and green colours 
indicate lower peakedness and red and yellow colours higher peakedness. Grey prefectures had either no or very limited amount of reported cases. Values 
were rescaled so that Shannon index in each province = (Shannon index—min(Shannon index)/(max(Shannon index)—min(Shannon index)).
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Extended Data Fig. 6 | Out-of-sample prediction (n-fold cross validation) over all prefectures in China a, b, and all provinces in Italy c, d. In-sample 
prediction in China (R2 = 0.32) compares well to out-of-sample predictions (R2 = 0.28). In-sample prediction in Italy (R2 = 0.38) compares well to out of 
sample predictions (R2 = 0.32).
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Extended Data Fig. 7 | Total attack rate, peak attack rate, inverse Shannon entropy and population sizes for: a, shows prefectures in China with low 
peakedness and high variance (as measured by the variance in the first difference of the time series of daily new cases). These prefects have high 
population and high crowding. b, shows prefectures in China with high intensity and high variance. c, shows prefectures in China that have low peakedness 
and low variance. d, shows prefectures in China that have high peakedness and low variance.
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