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ABSTRACT
Training graph classifiers able to distinguish between healthy brains
and dysfunctional ones, can help identifying substructures associ-
ated to specific cognitive phenotypes. However, the mere predictive
power of the graph classifier is of limited interest to the neuroscien-
tists, which have plenty of tools for the diagnosis of specific mental
disorders. What matters is the interpretation of the model, as it can
provide novel insights and new hypotheses.

In this paper we propose counterfactual graphs as a way to pro-
duce local post-hoc explanations of any black-box graph classifier.
Given a graph and a black-box, a counterfactual is a graph which,
while having high structural similarity with the original graph, is
classified by the black-box in a different class. We propose and em-
pirically compare several strategies for counterfactual graph search.
Our experiments against a white-box classifier with known opti-
mal counterfactual, show that our methods, although heuristic, can
produce counterfactuals very close to the optimal one. Finally, we
show how to use counterfactual graphs to build global explanations
correctly capturing the behaviour of different black-box classifiers
and providing interesting insights for the neuroscientists.
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1 INTRODUCTION
In recent years brain connectomics [35], a field concerned with pro-
viding a network representation of the brain by comprehensively
mapping the neural elements and their connections, has emerged
as an important paradigm promising to help understanding mental

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467154

Patient USM_0050453 is classified as ASD (class 1).
If the connection between Putamen_R and Cerebelum_9_R did
not exist and instead the connection between Parietal_Inf_L and
Cerebelum_Crus2_R existed, then the patient would have been

classified as TD (class 0).

Figure 1: An example of counterfactual graph for a patient
from the ABIDE dataset [7]. The patient is classified by a
black-box (see Appendix A) in class ASD (Autism Spectrum
Disorder), but with just two edge changes could have been
classified as TD (Typically Developed). In gray the edges of
the original graph, in red the edge to be removed and in blue
the one to be added, so to form the counterfactual graph. In
the box, the counterfactual expressed in natural language.

processes and brain diseases [12]. Thanks to the network represen-
tation of the brain, many interesting neuroscience challenges can be
tackled as graph mining problems [6]. A prominent example is that
of classification of brain networks: given two groups of individuals,
a condition group (class 1) and a control group (class 0), where each
individual is represented as a brain network, i.e., a graph defined
over the same set V of vertices corresponding to the brain regions
of interest (ROIs), the goal is to infer a model that, given an unseen
graph defined over the same verticesV , it is able to predict whether
the new individual belongs to class 0 or class 1 [17, 23, 39, 41].

In this setting, building accurate classifiers is important, but
not the main goal. In fact, the mere predictive power is of limited
interest to the neuroscientists, which have plenty of tools for the
diagnosis of specific mental disorders. What matters is the ability of
discovering discriminative substructures that might be associated
to specific cognitive phenotypes or mental dysfunctions [10], so to
provide insights and new hypotheses for the neuroscientists to fur-
ther investigate. Surprisingly, not much attention has been devoted
in the literature to produce explanations for graph classification.

On the one hand, most of the methods proposed for graph clas-
sification are not very transparent and enjoy little interpretability,
as they are based either on kernels [32], embeddings [1, 15, 24], or
deep learning [19, 40, 42]. On the other hand, although providing
post-hoc explanations of a black-box classifier is a very active re-
search area [13, 14], most of the proposed methods focus on tabular
data [22, 26], images [31, 33, 34] or time series [3].

In this paper, we propose graph counterfactuals as a way to pro-
duce local post-hoc explanations of any black-box graph classifier.
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Counterfactuals are borrowed from causal language to create con-
trastive example-based explanations, similar to the following [38]:
“You were denied a loan because your annual income was £30,000. If
your income had been £45,000, you would have been offered a loan."

Intuitively, a counterfactual for a given data point x is another
data point x ′ which is as close as possible to x , yet classified in a
different class. The rationale for finding a counterfactual instance
which is as close as possible to the original example is twofold:
firstly, it ensures that the counterfactual explanation is compact,
thus much easier to communicate and comprehend; secondly, it
guarantees that the produced counterfactual is a realistic example,
being not too far from a real data point.

In the context of brain network classification, we create a coun-
terfactual graph, by changing the links (either adding or removing)
of a given graph. Figure 1 provides an example of such counterfac-
tual graph. Patient USM_0050453 from the ABIDE dataset [7] (more
information in Section 5 and Appendix A) is predicted in class ASD
(Autism Spectrum Disorder, class 1) by a black-box graph classifier.
By just removing an edge and adding another non-existing edge,
we can obtain a new graph, which is very similar to the original
one, but classified differently by the same black-box classifier.
Paper contributions and roadmap. Besides the importance of
explainability, classification of brain networks distinguishes from
other graph classification tasks for other aspects. As discussed by
other authors, e.g., [15, 17], brain networks enjoy node identity
awareness, i.e., the fact that a specific vertex id is unique in a graph
and corresponds to the same brain ROI through all the input net-
works, which are all thus defined over the same vertices V . This is
different from other graph classification tasks and other application
domains (e.g., prediction of functional and structural properties of
molecules in cheminformatics) where vertices can share the same
labels and the vertex identity is not a relevant information.

In this specific context, the roadmap and contributions of this
paper are as follows:
• We define the Counterfactual Graph Search problem (§3).
As the search space of the problem is exponential and we do
not know anything about the black-box classifier, we can not
hope for a polynomial-time exact algorithm.
• We thus propose heuristic-search methods (§4), distinguishing

between two cases: when we do not have any data (oblivious),
or when we have access to a dataset (data-driven).
• Our empirical comparison on different brain network datasets

and with different black-boxes (§5.2) show that both the obliv-
ious and the data-driven approaches can produce good quality
counterfactual graphs, but that the data-driven approach can
do so faster (i.e., with less calls to the black-box classifier).
• Our experiments against a white-box classifier with known

optimal counterfactual (§5.3) show that our heuristic methods
can produce counterfactuals very close to the optimal one.
• We finally show how counterfactual graphs can be used as ba-

sic building blocks to produce LIME-like [26] (SHAP-like [22])
local explanations (§6.1), as well as global explanations (§6.2
and §6.3) correctly capturing the behaviour of different black-
box classifiers and which are meaningful from the neuro-
science standpoint.

2 RELATEDWORK
As discussed in Section 1 not much effort has been devoted to
explainability in graph classification. Explanation methods for node
classification and link prediction have been proposed in [16, 43, 44],
but this is a different problem from the graph classification task in
which the aim is to classify the whole graph and not its nodes.

In the context of brain networks, Yan et al. [41] propose a
deep learning approach for explainable classification, using a node-
grouping layer before the convolutional layer: such node-grouping
layer provides insight in the most predictive brain subnetworks.

Still in the context of brain network classification, Lanciano et
al. [17] propose a method based on contrast subgraph, i.e., a set
of vertices whose induced subgraph is very dense in one class of
graphs and very sparse in the other class. This approach produces
very simple classifiers which are transparent and self-explanatory.

While [17, 41] propose methods that have some explainability by-
design, here we study how to produce local post-hoc explanations of
any black-box graph classifier, by means of graph counterfactuals.

In cheminformatics, Numeroso and Bacciu [4] propose molecule
counterfactuals for explaining deep graph networks for the predic-
tion of functional and structural properties of molecules. Their
proposal is an explanatory agent based on reinforcement learning
which has access to the internal representation of the black-box
and leverages domain knowledge to constrain the generated ex-
planations to be valid molecules. The main difference with our
work is in the type of graph classification assumed: our graphs,
in fact, enjoy node identity awareness [15, 17], i.e., the fact that a
specific vertex id is unique in a graph and corresponds to the same
brain ROI through all the input networks. Conversely, molecules
are small graphs where the vertices are atoms, the same vertex
can thus appear many times in the same graph, and the links are
labeled with the type of bond. Moreover, our approach provides
explanations for any black-box classifier, not only for a specific one;
it does not assume any knowledge of the internals of the black-box,
nor it needs any background knowledge by the domain expert.

3 PRELIMINARIES
Magnetic resonance imaging (MRI) has played a central role in the
development of connectomics, by allowing relatively cost-effective
in vivo assessment of the macro-scale architecture of brain net-
work connectivity. A connectome, or brain network, is created by
linking the brain regions of interest (ROIs), either by observing
anatomic fiber density (structural connectome), or by computing
pairwise correlations between time series of activity associated
to ROIs (functional connectome). The latter approach, known as
fMRI, exploits the link between neural activity and blood flow and
oxygenation, to associate a time series to each ROI. A brain net-
work can then be defined by creating a link between two ROIs that
exhibit co-activation, i.e., strong correlation in their time series.

ROIs are defined by aggregating adjacent voxels, i.e., the most
fine-grain units of the 3-dimensional image which correspond to a
very large number of brain cells (in the order of millions). This is
done as a dimensionality reduction step and it is justified by the fact
that spatially adjacent voxels typically play their role on the same
activities, acting as a unique unit. For this voxel-aggregation task,
named parcellation of the brain, several atlases are well established
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in neuroscience [8, 37]. Finally, as MRI signals are heavily subject
to noise caused by different confounding factors, a plethora of
signal pre-processing strategies (e.g., filtering, signal correction,
thresholding etc.) are typically adopted in the data preparation
pipeline (see Lang et al. [18] for a comprehensive survey).

For the purposes of this paper, we abstract from all the pre-
processing details (except when providing the experimental setting
information needed for repeatability), and just assume that each
brain is given to us as an undirected unweighted simple graph. More
formally we consider a set of verticesV , i.e., the ROIs, as defined by
the selected parcellation atlas.We letV 2 denote the set of all possible
pairs of elements of V , i.e., V 2 = {(u,v)|u,v ∈ V ∧ u , v}. As we
consider only graphs defined over the same set of vertices, in the
rest of this paper each graph is simply identified by its set of edges
E ⊆ V 2. The set of all possible graphs defined over V is then the
powerset of V 2, that we denote as G(V ) = 2V

2
. Given two groups

of such graphs, a condition group (class 1) and a control group
(class 0), a graph classification model can be trained to discriminate
among the two classes, i.e., to predict the class for a new graph
E ∈ G(V ), by using any graph classification method.

Problem statement. We are given a black-box graph classifier,
denoted as a function f : G(V ) → {0, 1}. We assume that we do not
know anything about f and we can only query it as an oracle, i.e.,
giving it a graph in input and getting as output the predicted class.
Given a specific graph E ∈ G(V ), a counterfactual graph is another
graph E ′ ∈ G(V ), such that f (E ′) = 1− f (E). As discussed in Section
1, we are not interested in just any counterfactual instance, but we
want to find a E ′ that is as close as possible to E. As distancemeasure
we adopt a simple edit distance: d(E, E ′) = |E∆E ′ | where ∆ denotes
the symmetric difference of the two sets, i.e., E∆E ′ = (E\E ′)∪(E ′\E).
This is the set of edges that need to be removed and the edges that
need to be added to go from E to E ′.

Problem 1 (Counterfactual Graph Search). Given a black-
box graph classifier f : G(V ) → {0, 1} and a graph E ∈ G(V ), find
a counterfactual graph E∗ ∈ G(V ) such that:

E∗ = argmin
E′∈G(V ):

f (E′)=1−f (E)

d(E, E ′).

As discussed previously, having a counterfactual graph which
is as close as possible to the original graph, allows to produce a
concise explanation, as the edit distance corresponds exactly to the
dimension of the explanation.

Given that the search space has size |G(V )| = 2
n(n−1)

2 where
n = |V |, thus exponential in the number of vertices, and that we
do not know anything about the black-box classifier f , we cannot
hope for a polynomial-time algorithm that solves Problem 1 exactly.
What we can do is heuristically explore the search space, querying
the black-box classifier f as an oracle over new instances E ′ ∈ G(V ).
The number of calls to the oracle f is an important measure when
assessing search strategies, as different black-box classifiers might
have different time requirements to produce the classification for
a new instance E ′. Therefore, in our framework, we will always
generate the closest counterfactual that we can find during a search
with a number of calls to the oracle f , limited by a user-defined
parameter η ∈ N+.

4 COUNTERFACTUAL GRAPH SEARCH
As we can not hope to have a polynomial-time exact algorithm for
Counterfactual Graph Search, we have tried several simple
heuristic-search methods, all having comparable performances. In
the rest of this section we present one of these approaches: a bidi-
rectional local-search heuristic which, while being simple, provides
good performance as we will show in Section 5.

In the first phase, we move away from the original graph E
looking for a first counterfactual graph Ec .

In the second phase, we iteratively try to produce a better coun-
terfactual, by adding or removing one or more edges from a pool
of candidates, i.e., the symmetric difference of the original graph
E and the current best counterfactual Ec . We propose two main
variants of this general heuristic search schema.

Oblivious: the algorithm is only given the starting graph E
and the possibility of querying the black-box.

Data-driven: the algorithm has access to a dataset of brain
networks D, which could be, e.g., the training set used for
building the black-box, a subset or a superset of it.

We next describe in more details our heuristic search approaches.

4.1 Phase 1: Finding the first counterfactual
Oblivious Forward Search. As we have access only to the given
graph E and the black-box, all we can do is iteratively edit E (adding
or removing edges) until we produce a counterfactual graph. The
pseudocode of this procedure, dubbed Oblivious Forward Search
(OFS), is given in Algorithm 1.

More in details, at each step (lines 2 to 8) we select k edges to
be changed: either edges in V 2 \ E to be added to E, or edges in E
to be removed. As the former pool of candidate is typically much
larger than the latter one, in order to avoid biasing the search in
favor of edge additions over removal, before each edit operation we
flip an unbiased coin (rnd() line 6) to decide whether to add (lines
6–7) or remove (line 8) an edge. Then one edge e to be changed
is picked from the corresponding pool of candidates uniformly at
random (pick function). A list L of already used edges is maintained,
to avoid adding and removing the same edge multiple times.

Algorithm 1 Oblivious Forward Search (OFS)

Input: E ∈ G(V ),η ∈ N+,k ∈ N+, black-box f : G(V ) → {0, 1}
Output: Ec ∈ G(V ) such that f (Ec ) = 1 − f (E) or fail
1: i ← 0;E ′ ← E; L← ∅
2: while f (E ′) = f (E) and i < η do
3: i++; j ← 0
4: while j < k do
5: j++
6: if rnd() < 0.5 then e ← pick(1,V 2 \ (E ∪ L));
7: E ′ ← E ′ ∪ {e};L← L ∪ {e};
8: else e ← pick(1, E \ L);E ′ ← E ′ \ {e};L← L ∪ {e};
9: if f (E ′) = 1 − f (E) then return E ′ else fail

The search is called “forward” because it starts from the original
graph E and it moves away from it. In particular, at each step, the
edit distance d(E ′, E) between the current graph E ′ and the original
graph E increases of k edges.
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Data-driven Forward Search. We next consider the case in
which we have access to a database of brain networks D =

{(Ei ,yi )}
n
i=1 s.t. Ei ∈ G(V ),yi ∈ {0, 1}, which could be, e.g., the

publicly available training set used for building the black-box, a sub-
set or a superset of it, or even a different dataset but having the same
structure of the training set, with a condition and a control group for
the same mental disease. In this setting, we can use the distribution
of edges among the two classes to bias the random selection (i.e., the
pick function at lines 6 and 8 of Algorithm 1), to favor edges which
are better at discriminating between the two classes. Specifically, we
define a weighting function w : V 2 → Z that assigns a weight to
each edge based on its occurrences in the two classes as follows. For
each e ∈ V 2 we define D+(e) = {(Ei ,yi ) ∈ D |e ∈ Ei ∧ yi = f (E)}
the set of graphs in the database that contain e and have label
concordant with the classification of the original graph f (E), and
similarly, we define D−(e) = {(Ei ,yi ) ∈ D |e ∈ Ei ∧ yi = 1 − f (E)}
the set of graphs in the database that contain e and have label
discordant with the classification of the original graph.

Then we define:

w(e) =

{
|D+(e)| − |D−(e)| if e ∈ E
|D−(e)| − |D+(e)| if e ∈ V 2 \ E

The idea is that we want to remove edges from E that are strongly
characterizing of the class f (E), so to more easily produce a coun-
terfactual with small edit distance, or alternatively, add to E edges
that are strongly characterizing of the opposite class 1 − f (E).

Therefore, in the setting in which we have access to D, we sub-
stitute pick() at lines 6-8 of Algorithm 1 with a function that picks
edges with probability proportional tomax(ϵ,w(.)), where ϵ is a
very small positive constant, used to avoid null probabilities while
making the edges with negative weights unlikely to be picked. The
resulting method is called Data-driven Forward Search (DFS).

4.2 Phase 2: Finding a better counterfactual
In the second phase, we start from the first counterfactual graph
produced by phase 1, let us denote it E1c , and we go back towards
the original graph E. We do so by randomly picking edges in the
symmetric difference E∆E1c and modifying E1c consequently. The
approach is justified by the key observation that modifying E1c by
adding or removing edges from the symmetric difference with E,
we obtain a graph E ′ which is guaranteed to have a smaller edit
distance from E, i.e., d(E ′, E) < d(E1c , E).
Oblivious Backward Search. Our heuristic search method re-
ported in Algorithm 2, adapts the number of edges k that are
changed in each iteration, so to try to reach the classification border
faster. If in one iteration i , the candidate graph Eic turns out to be a
counterfactual (line 7), we increase k (line 8) as we are not yet at
the classification border, if instead, it is not a counterfactual graph
(meaning that the backward search has crossed the classification
border), we reduce the value of k for the next iteration (line 9).
At every iteration, Ec keeps the current best counterfactual graph,
while Ed keeps the symmetric difference, i.e., the pool from which
to select the edges to add or remove.

In line 5, the function pick(k, Ed ) picks uniformly at random k
edges from the pool of candidate and then add or remove them from
Ec accordingly (line 6) to produce the candidate graph Eic . When

Algorithm 2 Oblivious Backward Search (OBS)

Input: E, E1c ∈ G(V ),η,k ∈ N+, black-box f : G(V ) → {0, 1}
Output: Ec ∈ G(V ) such that f (Ec ) = 1 − f (E)
1: Ec ← E1c ; i ← 0;
2: Ed ← E∆Ec
3: while i < η and |Ed | > 0 do
4: i++; k ← min(k, |Ed |);
5: Ekd ← pick(k, Ed )

6: Eic ← (Ec ∪ (E
k
d \ Ec )) \ (E

k
d ∩ Ec )

7: if f (Eic ) = 1 − f (E) then
8: k++; Ec ← Eic ;Ed ← E∆Ec
9: else if k > 1 then k- -
10: else Ed ← Ed \ E

k
d ;

11: return Ec

k reaches the value of 1, we stop decreasing k and start removing
the edges that have been already tested from the pool of candidate
edges Ed : as we are trying edges one by one, it does not make sense
to try them multiple times. Eventually, when Ed is emptied, the
algorithm terminates (line 3). The other termination condition is
when the algorithm has reached the maximum allowed number η
of calls to the black-box.
Data-drivenBackward Search.Akey part of the second phase of
counterfactual graph search is the selection of the edges to change
at each iteration, which, in the oblivious case, is implemented by a
uniform random selection (function pick(k, Ed ), in line 6 of Algo-
rithm 2). In the case in which we have access to a database of brain
networks D = {(Ei ,yi )}ni=1, similarly to what done for DFS, we
can use the distribution of edges among the two classes to bias the
random selection, favoring edges which are better at discriminating
between the two classes. In this case we define the weight as:

w(e) =

{
|D+(e)| − |D−(e)| if e ∈ E \ Ec
|D−(e)| − |D+(e)| if e ∈ Ec \ E

where D+(e) and D−(e) are defined as in §4.1. By substituting the
function pick(k, Ed ), in line 5 of Algorithm 2 with a function that
picks edges from Ed with probability proportional tomax(ϵ,w(.)),
where ϵ is a very small positive constant, we obtain the method
called Data-driven Backward Search (DBS).

Algorithm 3 Baseline: Dataset Search (DS)

Input: E ∈ G(V ), black-box f : G(V ) → {0, 1},
dataset D = {(Ei ,yi )}ni=1 s.t. Ei ∈ G(V ),yi ∈ {0, 1}

Output: Ec ∈ G(V ) such that f (Ec ) = 1 − f (E) or fail
1: Ec ← ∅;δ ← |V 2 |
2: for all (Ei ,yi ) ∈ D s.t. yi = 1 − f (E) do
3: if d(E, Ei ) < δ then
4: if f (Ei ) = 1 − f (E) then
5: Ec ← Ei ;δ ← d(E, Ei )
6: if Ec , ∅ then return Ec else fail

4.3 A simple baseline
When we have access to the dataset D we can also consider a
baseline that simply searches in D for the counterfactual graph
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with the minimum edit distance from the original graph E. This
baseline, called Dataset Search (DS) and described in Algorithm 3,
is interesting because it answers the question of finding the best
counterfactual graph among the real networks available.

As we have access to the real labels of the graphs in D, we avoid
checking those graphs which have the same class label as E (line
2). For the other ones, we first check the edit distance from E, and
only if it is smaller than the current best one δ (line 3), we call the
black-box (line 4). If the graph is in the counterfactual class and
it is correctly classified so by the black-box, then it becomes the
current best counterfactual graph (line 5).

5 ASSESSMENT ON BRAIN NETWORKS
In this section we assess the performance of the counterfactual
graph search methods introduced in Section 4.

5.1 Experiment setting
Human-brain datasets. Our experiments are performed on two
publicly-available datasets. The first dataset, about Autism Spec-
trum Disorder (ASD), is taken from the Autism Brain Imagine Data
Exchange (ABIDE)1 [7]. In particular, we focus on the portion of
dataset containing children below 9 years of age [17]. These are
49 individuals in the condition group, labeled as Autism Spectrum
Disorder (ASD) and 52 individuals in the control group, labeled
as Typically Developed (TD). The second dataset, about Attention
Deficit Hyperactivity Disorder (ADHD), is taken from the USC Mul-
timodal Connectivity Database (USCD)2 [5], in particular from the
ADHD200_CC200 study. This contains 190 individuals in the con-
dition group, labeled as ADHD and 330 individuals in the control
group, labeled as TD. Both datasets study brain functional connec-
tivity by means of functional magnetic resonance imaging (fMRI),
that allows to measure the statistical association between ROIs, as
reviewed in §3. For the parcellation of the brain we use the AAL
[37] atlas for the ASD dataset (|V | = 116) and the Craddock 200
(CC200) [8] for the ADHD dataset (|V | = 190). The pre-processing
needed to go from the time series to the correlation matrices is
performed in accordance with the literature.3

The final data-preparation step is to go from correlation matrices
to networks. In accordance with large portion of the literature, e.g.,
[17, 21, 29], we transform a correlation matrix C = {ci j } into an
adjacency matrix A = {ai , j } by setting ai j = 1 when ci j is larger
than a given threshold, and setting ai j = 0 otherwise. The threshold
is selected for both datasets as the 90th percentile of the distribution
of the correlation matrix values.
Black-box classifiers. Our method is totally agnostic of the black-
box classifier under analysis: it just sees the black-box as a function
f : G(V ) → {0, 1}, i.e., an oracle that can be queried with a graph
and which gives back a label in {0, 1}. As such the specific black-box
we use is not so important in our empirical assessment. Neverthe-
less, for variety sake, we use 4 different black-box classifiers for
our brain network context: Contrast Subgraphs [17], Graph2Vec
[24], Sub2Vec [1], and Autoencoders [15]. These methods are very
1http://fcon_1000.projects.nitrc.org/indi/abide/
2http://umcd.humanconnectomeproject.org/umcd/default/browse_studies
3See http://preprocessed-connectomes-project.org/abide/dparsf.html for ASD dataset
and https://ccraddock.github.io/cluster_roi/atlases.html for ADHD dataset.
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Figure 2: Cumulative distribution of d(E, Ec ) between the in-
put graph E and its counterfactual Ec , on the ASD dataset
using Contrast Subgraphs + SVM as black-box. One experi-
ment (average over 5 runs) for each graph in the dataset.

diverse and cover a wide spectrum of complexity for the explana-
tion task. Each of these methods (the details about their parameters
settings are provided in Appendix) produces a vector for each graph
in the training set. Then a k-nearest neighbors (KNN) or a Support
Vector Machine (SVM) is adopted to produce the final classification.

5.2 Methods assessment
We first assess the counterfactual graph search algorithms w.r.t. (1)
the quality of the counterfactual produced, measured in terms of
edit distance from the original graph, and (2) the number of calls to
the black-box. We run an experiment for each graph in the training
set. Each experiment is run 5 times and we report average results
over the 5 runs. For each phase of the counterfactual graph search,
we allow a maximum number of calls to the black-box η = 2000.
We set k = 5 in all experiments.

Figure 2 reports the cumulative distribution of the edit distance
between the input graph and its counterfactual, on the ASD dataset
using as black-box Contrast Subgraphs + SVM. The left plot re-
ports the distribution after the first phase and includes the baseline
Dataset Search (DS). We can observe that, as expected, the data-
driven approach DFS is much more effective than the oblivious
OFS in finding the first counterfactual. In 80% of the cases, the edit
distance of the first counterfactual is below 400, while the average
counterfactual distance in the dataset is approximately 1000.

However, after phase 2, the difference in quality between the
data-driven approach and the oblivious one get much smaller, indi-
cating that both approaches converge very close to the best possible
counterfactual graph. A large difference between the oblivious and
the data-driven case is instead observable in the number of calls to
the black-box, which is reported in Figure 3.

From this preliminary assessment, we conclude that: (1) both
oblivious and data-driven approaches produce similar results in
term of quality, but the data-driven case converges to a good coun-
terfactual graph faster (with less calls to the black-box); (2) the
counterfactual graph produced by the proposed methods is much
better in quality than what we could find by searching among the
real graphs in the dataset.

In Table 1 we report the same statistics for all the black-boxes and
on both datasets, using only the oblivious counterfactual search
approach (OFS+OBS). We can observe that, when dealing with
black-boxes that explicitly keep in consideration the node identity
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Figure 3: Cumulative distribution of the number of calls to
the black-box (same setting as Figure 2).

awareness property of brain networks (i.e.,Contrast Subgraphs [17]
andAutoencoders [15]), we typically get counterfactual graphs with
smaller edit distance than the other two models. It is worth men-
tioning that in average, the best counterfactuals that one can obtain
by using real examples in the dataset (i.e., by means of DS baseline),
have edit distance from their original graphs of approximately 1000
in the ASD dataset and 2250 in the ADHD dataset.

While there is no shared consensus on how to evaluate post-
hoc explanations, when counterfactuals come into play we argue
that the smaller the edit distance the better the explanation. When
counterfactuals are systematically closer to the original data points,
the black-boxes are easier to interpret. We can use the minimum
edit distance as a measure to select among different classification
methods, in domain such as brain networks in which post-hoc
explainability is a selection criterion as important as the accuracy.

5.3 Assessment against a white-box
Since, in general, it is not possible to compute the optimal coun-
terfactual exactly, our methods are heuristic in nature. It is thus
interesting to compare our counterfactual solution with the optimal
counterfactual, in a setting in which an optimal counterfactual can
be identified.

We achieve this by means of a very simple white-box, i.e., a
classifier for which we can see the inner logic. In particular, we
train a linear classifier built on a 2-dimensional embedding. This
gives us a cartesian (x,y)-plane as the one in Figure 4, in which it
is possible to identify the optimal counterfactual geometrically. In
fact, if we consider the original graph E as a point (xo,yo ) on the
(x,y)-plane and the classifier f as a line rf : y = mx + c , we can
obtain the optimal counterfactual graph E∗c as the point (xc ,yc ) as
follows:

(1) Generate the line rp perpendicular to the classifier line rf and
passing through (xo,yo ), with equationy = − 1

m (x−xo )+yo ;
(2) get the point (xc ,yc ) obtained by the intersection of rp with

rf , with the following coordinates xc =
(xo+myo−mc)

m2+1 and

yc =
m(xo+myo−mc)

m2+1 + c .

The 2-dimensional embedding we use in Figure 4 is obtained
by means of the Contrast Subgraphs method [17], on the ASD
dataset. By applying this method we extract a contrast subgraph
ASD_TD, i.e., a set of vertices whose induced subgraph is very dense
among ASD individuals and very sparse among TD individuals, and
similarly, another contrast subgraph TD_ASD, i.e., a set of vertices
whose induced subgraph is very dense among TD individuals and

Table 1: Counterfactual graph search statistics on for all the
black-boxes and on both datasets, using only the oblivious
counter-factual search approach (OFS+OBS). Same experi-
mental settings as before: One experiment (average over 5
runs) for each graph in the dataset, η = 2000maximum calls
to the black-box for each phase of the counterfactual search.
We report the 10th, 25th, 50th, 75th, and 90th percentiles.

ASD: Edit Distance ASD: Calls to Oracle
10-p 25-p 50-p 75-p 90-p 10-p 25-p 50-p 75-p 90-p

Cont. Sub. 2 5.4 9 15.2 19.8 100 119.2 157.4 214.6 276.2
Sub2Vec 4 47.5 134 285 476 110.5 175.5 299.5 492 617.5

Graph2Vec 1.5 6.8 33.5 119 207.4 112.2 131 181.6 346.3 445
Autoenc. 1.6 2.4 3.8 6 9.2 82.2 101 141 209.4 275.4

ADHD: Edit Distance ADHD: Calls to Oracle
10-p 25-p 50-p 75-p 90-p 10-p 25-p 50-p 75-p 90-p

Cont. Sub. 9 20.6 43.8 70 100.2 173.2 249.2 406 578.2 764.7
Sub2Vec 8.8 56.2 185.3 367.2 742.8 283.88 474.5 780.56 1807.1 2000

Graph2Vec 1 2.2 49.3 166 411.6 135 156.6 324.4 547 1293.2
Autoenc. 1 1.8 5 15.4 25.1 129 137.8 172.5 273.8 367.5

Figure 4: Real setting (ASD dataset): using Contrast Sub-
graphs to produce a 2-dimensional embedding on which we
learn a linear classifier (green line) by means of SVM. For
each individual E (dot) we produce one counterfactual Ec
(star) using OFS+OBS with η = 2000 and k = 5. On the right-
hand side we show a zooming on the classification border
where we can appreciate how close the produced counter-
factuals are to the optimal ones E∗c (cyan triangles).

very sparse among ASD individuals. Then for each graph in the
dataset, we compute the two dimensions: these are the number of
edges in the subgraph induced by the contrast subgraph ASD_TD
(y-axis), and the number of edges in the subgraph induced by the
contrast subgraph TD_ASD (x-axis). Over this embedding, we use
a linear Support Vector Machine (SVM) to build the white-box
classifier, represented by the green line in Figure 4 (which has an
accuracy of 0.78 on the training set). Hence we can reconstruct
the optimal solution geometrically and measure the error of the
counterfactual graph produced (i.e, its distance from the optimal).

As measure of error of the counterfactual search method, we
use the average edit distance between the optimal counterfactual
graphs E∗c and the estimated counterfactual graph Ec for all the
graphs in the dataset D. In the setting reported in Figure 4 (i.e.,
ASD dataset, Contrast Subgraphs + SVM classifier), the average
edit distance d(E∗c , Ec ) between the optimal counterfactual graphs
E∗c and the estimated counterfactual graph Ec is 1.83.
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Input Counterfactual Search Explanation

Figure 5: Schematization of the three different types of ex-
planations we can produce by means of graph counterfactu-
als: Contrastive case-based explanations against counterfac-
tuals (first row), LIME-like (SHAP-like) local explanations
(second row), and global explanations (third row).

6 LOCAL AND GLOBAL EXPLAINABILITY
In this section, to showcase the versatility and usefulness of our
proposal, we show how counterfactual graphs can be used as basic
building blocks to produce various type of explanations. In particu-
lar, we consider three different types of explanations, as summarized
in Figure 5:

Contrastive case-based explanations against counterfactuals:
this is the direct presentation of a counterfactual graph as a local
post-hoc explanation, as done in the example in Figure 1 in §1.

LIME-like (SHAP-like) explanations: LIME [26] and SHAP [22]
are prominent examples of general explanation methods for clas-
sifiers (on tabular data), that explain the prediction for a given
example by ranking the input features by their importance in
the prediction. We can obtain a similar type of explanation by
producing, for a given graph, many counterfactual graphs and
collecting statistics about the edges that appear more frequently.

Global explanations: finally, by producing counterfactual graphs
for many input examples and collecting statistics we can produce
meaningful global explanations of any black-box graph classifier.

In the rest of this section we will elaborate further on the latter two
points providing concrete examples on our brain network datasets.

6.1 LIME-like (SHAP-like) local explanations
Given a counterfactual graph Ec of a graph E, the explanation
provided by the counterfactual graph is the symmetric difference
E∆Ec = (E \ Ec ) ∪ (Ec \ E), i.e., the set of edges Ec− = E \ Ec to be
removed from E, and the set of edges Ec+ = Ec \ E to be added to E,
so to transform the original graph E in its counterfactual graph Ec .
From this perspective, edges in Ec− are edges whose presence in E is
important to explain the classification f (E). Similarly, edges in Ec+
are edges whose absence from E is important to explain f (E).

As for a graph E its counterfactual is not unique, we can produce
many counterfactual graphs (say 1000) and collect statistics about

Figure 6: Visualization of LIME-like (SHAP-like) local expla-
nation for the individual MaxMun_d_0051353 from the ASD
dataset, which is classified in the autism class by the classi-
fier of Figure 4. In the bar-plots on the right-hand side, we
represents the top-6 edges to be added (blue bar) and the top-
6 edges to be removed (red bard). These edges are also repre-
sented on the brain network (on the left), using the same col-
ors, and with a thickness proportional to their importance.

the number of times edges appear in Ec− or in Ec+. This statistic has a
direct interpretation as importance of the edges in explaining f (E).

In Figure 6 we provide an example of visualization of this local
LIME-like (SHAP-like) explanation for a given individual which is
classified in the ASD class. We can see that, among the edges whose
absence is important in explaining the classification of this specific
patient, there aremany edges in the frontal lobe region, while among
the edges whose presence is important for this classification, there
are many in the deep grey matter. These observation are consistent
with some neuroscience literature, e.g., [27].

6.2 Global explanations: edge-level aggregation
Similarly to what done above, we can aggregate the counterfac-
tual graphs produced for many input graphs of both classes, so
to produce statistics usable as a global explanation of the whole
behaviour of a given black-box classifier. Given a dataset of brain
networks D = {E1, . . . , En } all defined over the same set of ROIs
V , similarly to what done previously in §6.1, we can create one or
more counterfactuals for each Ei ∈ D, then collect statistics about
the occurrences of edges in the symmetric differences between
the graphs and their counterfactuals. More formally, for each edge
e ∈ V 2 we can define 4 counters:
• C+0 (e) = |{(E, Ec )| f (E) = 0∧e ∈ Ec+}|, i.e., the number of pairs
(original graph, counterfactual graph), such that the fact that
e < E seems to be important to explain f (E) = 0;
• C−0 (e) = |{(E, Ec )| f (E) = 0∧e ∈ Ec−}|; i.e., the number of pairs
(original graph, counterfactual graph), such that the fact that
e ∈ E seems to be important to explain f (E) = 0;

and similarly C+1 (e) and C
−
1 (e) for class 1. Once we have collected

these statistics we can combine or plot them in several ways to
provide meaningful global explanations. In Figure 7 we present one
such possible visualizations by means of heatmaps, aggregating
ROIs in coarser-grain brain regions as provided by the AAL [37]
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Figure 7: Heatmaps representing global explanations for three different black-box classifiers on the ASD dataset, obtained by
aggregating edges importance at the level of coarser-grain brain regions.

parcellation atlas, for three different black-box classifiers. In partic-
ular, assuming that ASD is class 1 and TD is class 0, in the heatmaps
marked ASD (top) we report in the upper-triangle (blue) the aggre-
gation of countersC+0 (e) and in the lower-triangle (red) the counters
C−1 (e). In other terms, both in the blue part that in the red part, the
darker cells are those whose edges presence is important for the
ASD class. For the way the 4 counters are defined, we expect to see
a high level of symmetry in these heatmaps, as this is indeed the
case in all 6 heatmaps in Figure 7.

A bird-eye view of the heatmaps highlights the fact that, although
trained on the same training set with the same class labels, the three
models have a very different inner logic, as unveiled by occurrences
of the edges in the counterfactual explanations.

In the case of the Contrast Subgraphs model, we can appreciate
the relevance of deep grey matter for the ASD class, consistently
with the example in Figure 6 and with neuroscience literature [27].
Paretal lobe, temporal lobe and frontal lobe are instead the most
important regions for the classification in the TD class. In fact, in
the latter, the researchers found that the connectivity of Fusiform
Gyrus, that is in the temporal lobe, captures the risk of develop-
ing autism as early as 1 year of age and provides evidence that
abnormal fusiform gyrus connectivity increases with age [25, 30].
Also in the Autoencoders model, the frontal lobe region is the most
important to explain the classification. Finally, the heatmaps for
the classifier based on Graph2Vec highlight the relevance of the
cerebellum, whose role in cognitive impairments in ASD has been
observed in a plethora of studies, e.g., [2, 9, 20].

6.3 Global explanations: ROI-level aggregation
Finally, global explanations can also be produced in terms of im-
portance of the ROIs for the classification, where the importance
of a vertex can be computed by aggregating the same 4 counters
defined in §6.2 (i.e., C+0 , C

−
0 , C

+
1 , and C

−
1 ), for all its incident edges.

Contrast Subgraphs

ROI

TD-

ASD+

ASD-

TD+

xxxx x x x xx x x x xx xx xx xx x

xxxx x x x xx x x x xx xx xx xx x

x xx xx xxx xx x xxxxx x x x

x xx xx xxx xx x xxxxx x x x

1 116

Autoencoders

ROI

TD-

ASD+

ASD-

TD+

1 116

Figure 8: Global explanation based on ROIs’ importance:
Contrast Subgraphs black-box (top) and Autoencoders
black-box (bottom) on the ASD dataset (same setting as in
Figure 7). On x-axis the 116 ROIs of the AAL atlas ordered
by id, and on the y-axis the aggregation of the 4 counters
defined in §6.2 for all the edges incident on a given ROI.

In Figure 8 we provide two examples of explanations based on
ROIs’ importance.
The final “litmus test”. As we have a way to measure the impor-
tance of each single vertex in a black-box classifier, we can use the
same idea we used in §5.3: i.e., to apply our counterfactual graphs
framework to explain a “white-box” – a classifier of which we know,
as a sort of ground truth, the inner logic – and check whether the
most important vertices turn out to be the expected ones.

Therefore, we consider again the model based on Contrast Sub-
graphs on the ASD dataset. We recall that, by applying the method
in [17], we extract a contrast subgraph ASD_TD, i.e., a set of vertices
whose induced subgraph is very dense among ASD individuals and
very sparse among TD individuals, and similarly, another contrast
subgraph TD_ASD, i.e., a set of vertices whose induced subgraph
is very dense among TD individuals and very sparse among ASD
individuals. Then each graph in the dataset is mapped to two dimen-
sions: the number of edges in the subgraph induced by each of the
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contrast subgraphs. Essentially the classification model is entirely
defined by two sets of vertices and the classification hyperplane.

In Figure 8 (top) we mark with red crosses the ROIs belonging to
the TD_ASD contrast subgraph on the first two rows, and the ROIs
forming the ASD_TD contrast subgraph on the third and fourth
rows. The red crosses fall exactly on the darker cells of the heatmap:
the global explanation built on counterfactual graphs is capturing
exactly the (known and simple) logic of the classifier.

7 CONCLUSIONS AND FUTUREWORK
This paper introduces counterfactual graphs as a way to provide
explanations of any black-box graph classifier, in the setting of
graphs with node identity awareness, such is the case with brain
networks. Counterfactual graphs can be used as basic building
blocks to produce various type of explanations: they can be used
directly as contrastive case-based explanations, they can be aggre-
gated to provide LIME-like (SHAP-like) local explanations, as well
as to produce global explanations.

We define the Counterfactual Graph Search problem and
propose heuristic-search methods for it, distinguishing between
two cases: when we do not have any data (oblivious), or when we
have access to a dataset (data-driven). Our empirical assessment on
different brain network datasets confirms that our methods produce
good counterfactual graphs and that counterfactual graphs are a
useful tool for explainability of brain network classification.

The language of explanations adopted in this paper is the most
fine-grained possible: the edges whose addition or removal are
important for a graph classification. In our future work, we plan
to consider counterfactual graphs built over a richer vocabulary,
including graph properties and higher-order structures, such as,
e.g., motifs. On-going collaboration with neuroscientists is aimed
at validating the usability of counterfactual graphs as a tool for
explorative differential case-based reasoning for the domain expert.
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A REPRODUCIBILITY
Our Python code and the notebooks of our experiments are available
at: https://github.com/carlo-abrate/CounterfactualGraphs.

The main pipeline of our experiments (Section 5) is as follows:
Input: The input of the experiments is a dataset of labeled

networks D = {(Ei ,yi )}ni=1 s.t. Ei ∈ G(V ),yi ∈ {0, 1}.
Embedding training: We use multiple embedding tech-

niques, whose main parameters are discussed in the rest
of this Appendix.

Classifier training and testing: The black-box oracle func-
tion f is built by training a classifier on the embeddings.
In particular, we tested support-vector machine (SVM), k-
nearest neighbors (KNN), and Random Forest on each com-
bination of embeddings parameters setting, using a 5-fold
cross validation. Finally, we selected the best dimension of
the embedding and the classification algorithm based on
accuracy. In the paper we presented results based on KNN
in combination with all the embedding methods, with the
exception of Contrast Subgraphs where we use SVM.

As discussed in Section 4, counterfactual search methods iter-
atively call the oracle function for new candidate counterfactual
graphs. The oracle function is composed of the embedding and the
classifier part, at each call the candidate counterfactual graph is
considered by the embedding as a new and unseen data. Some trans-
ductive methods do not naturally generalize to unseen data, due to
non-determinism. However, for both Graph2Vec and Sub2Vec we
force the determinism as explained in
https://github.com/RaRe-Technologies/gensim/issues/447.

We next report the parameters settings used in the paper.
Contrast Subgraphs [17]. The code can be found at https://github.
com/tlancian/contrast-subgraph. We use the parameter α = 0.025
to generate the contrast subgraphs for ASD dataset and α = 0.01
for the ADHD dataset. The accuracy is 0.77 and 0.69 for ABIDE and
USCB datasets.
Graph2Vec[24]. The code can be found at https://github.com/
benedekrozemberczki/graph2vec. The main parameters used in the
experiments of Table 1 for both ASD and ADHD datasets, are as
follows:
• node_deдree = 2;
• workers = 1;
• epochs = 100;
• min_count = 5;
• learninд_rate = 0.025;
• down_samplinд = 0.0001;
• vector space dim = 50 for both the datasets.

The accuracy is 0.66 and 0.62 for ABIDE and USCB datasets.

Sub2Vec [1]. The code can be found at https://goo.gl/Ef4q8g. The
main parameters used in the experiments of Table 1 for both ASD
and ADHD datasets, are as follows:
• type = Neiдhborhood ;
• walk_lenдth = 100000;
• model = DBON ;
• iteration = 50;
• vector space dim = 50 for both the datasets.

The accuracy is 0.65 and 0.64 for ABIDE and USCB datasets.
Autoencoders [15]. The code can be found at https://github.

com/leoguti85/GraphEmbs. The main parameters used in the exper-
iments of Table 1 for both ASD and ADHD datasets, are as follows:
• noise = 0.05;
• nb_epoch = 150;
• batch_size = 128;
• lr = 0.001;
• vector space dim = [200, 400] for ASD and ADHD respec-
tively.

The accuracy is 0.68 and 0.63 for ABIDE and USCB datasets.
We finally summarize report the main parameters and settings

used to generate the figures of the paper:
Fig. 1 Dataset: ASD; Patient: USM_0050453; Classifier:

Contrast Subgraphs with SVM; Counterfactual Search:
OFS+OBS with k = 5, η = 2000.

Fig. 2 and 3 Dataset: ASD; Classifier: Contrast Subgraphs
with SVM; Counterfactual Search: DS, OFS+OBS and
DFS+DBS, with k = 5, η = 2000.

Fig. 4 Dataset: ASD; Classifier: Contrast Subgraphs with
SVM; Counterfactual Search OFS+OBS, with k = 5, η =
2000. Patients in the zoomed section are: UM_1_0050366,
Stanford_0051164,UCLA_1_0051226.

Fig. 6 Dataset: ASD; Patient: MaxMun_d_0051353; Classifier:
Contrast Subgraphs with SVM; Counterfactual Search:
OFS+OBS with k = 5, η = 2000.

Fig. 7, 8 Dataset: ASD; Classifier: Contrast Subgraphs with
SVM, Autoencoders, Graph2Vec with KNN; Counterfactual
Search: OFS+OBS, with k = 5, η = 2000.
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