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ABSTRACT
Estimating the spreading potential of nodes in a social network is an
important problem which finds application in a variety of different
contexts, ranging from viral marketing to spread of viruses and
rumor blocking. Several studies have exploited both mesoscale
structures and local centrality measures in order to estimate the
spreading potential of nodes. To this end, one known result in the
literature establishes a correlation between the spreading potential
of a node and its coreness: i.e., in a core-decompostion of a network,
nodes in higher cores have a stronger influence potential on the
rest of the network. In this paper we show that the above result
does not hold in general under common settings of propagation
models with submodular activation function on directed networks,
as those ones used in the influence maximization (IM) problem.

Motivated by this finding, we extensively explore where the
set of influential nodes extracted by state-of-the-art IM methods
are located in a network w.r.t. different notions of graph decom-
position. Our analysis on real-world networks provides evidence
that, regardless of the particular IM method, the best spreaders
are not always located within the inner-most subgraphs defined
according to commonly used graph-decomposition methods. We
identify the main reasons that explain this behavior, which can
be ascribed to the inability of classic decomposition methods in
incorporating higher-order degree of nodes. By contrast, we find
that a distance-based generalization of the core-decomposition for
directed networks can profitably be exploited to actually restrict
the location of candidate solutions for IM to a single, well-defined
portion of a network graph.

CCS CONCEPTS
•Mathematics of computing→Graph theory; • Information
systems →Web searching and information discovery.
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1 INTRODUCTION
Measuring and understanding the spread of “contagion” has at-
tracted tremendous attention as a universal phenomenon that is
extensively studied in physical, biological, and social networks.
Exemplary application domains are related to social influence, dif-
fusion of information, misinformation or rumors, spread of viruses
etc. In this context, a key problem is the identification of the most
effective spreaders in a social network. In order to estimate the
spreading potential of nodes in a social network, several heuristics
have been studied: centrality measures, such as degree or PageR-
ank, or mesoscale-structure-based properties of nodes, such as core
decomposition. One important study by Kitsak et al. [19] showed
that the influential spreaders are those located in the inner-most
core of the network, in contrast to the fact that high-degree or
high-betweenness nodes could have little effect on the extent of a
spreading process. Since then, several studies have been proposed
to improve the discriminating ability (i.e., monotonic ranking of
spreaders) of the core decomposition (e.g., [2, 15, 23]). In this line
of research, the network is assumed to be undirected, and the em-
pirical findings on the spreading process refer to standard epidemic
models (e.g., SIR or SIS).

An alternative line of research corresponds to the widely studied
influence maximization (IM) [18] problem: given a directed network,
a (stochastic) diffusionmodel, and a budget on the number s of seeds
(i.e., early-adopters or initial influencers), IM asks to find a s-sized
seed-set S that maximizes the influence spread over the network,
i.e., the expected number of nodes that are activated, starting from
S , at the end of the diffusion process. The main distinction between
finding a good seed-set and estimating the spreading potential
of nodes in isolation, is that the former problem requires to take
into account the cumulative effect of the influence spread. In fact,
different nodes may exert influence on largely overlapping portions
of the network, so that their cumulative spread would be wrongly
estimated by just considering the sum of their spreading potential.

Besides the difference in the network (directed vs. undirected)
and in the diffusion models, the difference between these two lines
of research is better explained by the next example.

Example 1.1. Let us consider the example graph in Fig. 1. Suppose
we are required to select one seed of the propagation process (i.e.,
s = 1). It can be noted that node v1 has a strategic location as it can
reach all nodes in the graph. This is clearly an ideal situation for an
IM which, depending on the setting of influence probabilities (here
omitted for simplicity) and the diffusion model adopted, will likely
select v1 as seed. By contrast, most of the centrality measures will
fail at capturing the spreading ability of that node in the network. In
fact, none among out-degree, directed closeness and betweenness, and
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Figure 1: Core decomposition over a directed network. Cores
are determined according to the nodes’ out-degree.

PageRank is able to rank v1 at the top. Also, considering the outcomes
of out-degree-based core decomposition of the example graph, any
node in the inner-most core (i.e., core with k = 3), would be preferred
as seed to any other node with lower core-index, including v1, despite
no nodes in the inner-most core can propagate outwards, thus they
cannot be an optimal choice for an IM solution.

Motivated by the above observations, we aim at producing an
extensive analysis of where the set of influential nodes extracted
by state-of-the-art IM methods are located in a network w.r.t. dif-
ferent notions of graph decomposition. More specifically, we want
to understand whether decomposition algorithms can support the
identification of subnetworks where nodes have a good influence-
spreading potential collectively, rather than as independent indi-
viduals. In this regard, our study reveals that a major limitation of
classic decomposition algorithms in predicting the influence ability
of nodes, is that they are traditionally based on first- or second-
order node-degree information, and this may represent a myopic
view on the topological properties that would make a node a good
spreader. We raise the following research questions:

• In which cores do state-of-the-art algorithms for IM select their
seeds in a directed network (e.g., an online social network built
upon following relation)?

• How are the seed locations sensitive to any particular graph-
decomposition notion?

• What are the internal/external connectivity characteristics
that a portion of the network should have to support the most
influence potential of their nodes?

• What are the main limitations that may lead a graph decompo-
sition method to fail at determining the regions more densely
populated of influential nodes?

Contributions. In this paper we address the research questions
above in a systematic way, through the following main steps. We
first review a selection of representative notions of graph decompo-
sition, and adapt their extraction methods in order to enable their
applicability to directed networks in influence spread estimation
tasks. We then empirically assess the effectiveness of those algo-
rithms when it comes to detecting good spreaders, both as a group
of users and individual ones, on a selection of real-world online
social networks of different sizes and topological properties.

We evaluate IM algorithms in terms of their respective seed-
selection strategies, i.e., how they identify the seeds w.r.t. the con-
sidered graph-decomposition methods. Moreover, since allocating

seeds inside the inner subnetworks may not be the best choice for
IM, we investigate the reasons underlying this contingency.

Finally, we provide evidence that a major limitation that prevents
classic decomposition algorithms to find the most influential spread-
ers, is their inability to incorporate higher-order degree of nodes.
Our analysis shows that distance-based generalization of core decom-
position [9] provides a more informative characterization of how
important nodes are in terms of their reachability, thus providing
an effective approach to the identification of good spreaders.

2 BACKGROUND AND RELATEDWORK
We present related literature in the analysis of information propaga-
tion and influencemaximization, aswell as the graph-decomposition
methods that we will use in this paper.

Influence propagation. The analysis of social contagion, i.e., the
spread of new practices, beliefs, technologies and products through
a population, driven by social influence, is a very central theme in
social sciences, and it has also attracted a lot of interest in the data
science community [6]. Such phenomenon develops in two main
subjects: the structure of the network and the actions or commu-
nications of the users over the network. Researchers have studied
the role played by the network topology [33] and by several of its
macroscopic characteristics, such as the level of homophily [34]
and the modular structure of the network [4, 25], as well as node-
level characteristics, such as their centrality, or their capacity of
spanning structural holes, thus bridging communities and facilitat-
ing, or blocking, the spread of information. Other researchers have
considered the social network and the log of past user-activities
jointly, and studied important problems such as learning the pa-
rameters of the propagation model, i.e., the strength of influence
along each edge [16, 28], or how to distinguish real social influence
from “homophily” [1, 8, 12, 13]. Finally, a wide literature exists on
the analysis of social influence in specific domains: for instance,
studying person-to-person recommendation for purchasing books
and videos [20, 22], telecommunications services [17], or studying
information cascades driven by social influence in Twitter [3, 27].

Fueled by the seminal work by Kempe et al. [18], most of the
attention has been devoted to exploiting social influence for “word-
of-mouth” driven viral marketing applications: this is the case of the
stochastic optimization problem known as influence maximization
(IM). Given a social network, where each edge (u,v) is associated
with a weight (or probability) pu,v representing the strength of
influence that u exerts over v , IM requires to select the set of initial
users that maximizes the expected spread, i.e., number of users in the
social network that gets “infected", according to an assumed under-
lying diffusion model. IM is NP-hard under most standard diffusion
models, such as Independent Cascade (IC) and Linear Threshold (LT)
models, however, the simple greedy algorithm provides (1−1/e) ap-
proximation guarantee, provided that the diffusion model is mono-
tone and submodular (like in the cases of IC and LT). Since the
expected spread cannot efficiently be evaluated exactly, most of the
effort have been devoted to address this scalability issue by reducing
the number of needed Monte Carlo estimations [21]. Alternatively,
proxy-based methods have been developed to avoid running Monte
Carlo simulations, by estimating the influence spread of the seed
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set through a reduced diffusion context; although, without ensuring
theoretical approximation guarantee.

A significant study that overcomes the efficiency bottleneck of
the simulation based methods, while preserving the theoretical
approximation guarantee, is proposed in [10], which introduces the
Reverse Influence Sampling (RIS) framework for IM. The key idea is
that the expected spread can be estimated by taking into account a
number of pre-computed sketches, i.e., realizations drawn from the
distribution induced by influence graph according to the diffusion
model. This breakthrough result paved the way for a variety of
sketch-based algorithms. Tang et al. in [31] are the first to design a
practically efficient solution, TIM/TIM+, whose improvement over
RIS consists in keeping the same theoretical complexity as [10]
with significantly fewer sketches, bounded by the influence of the
unknown optimal set (OPT). More recent RIS-based IMM [30] and
SSA [26] algorithms share the common motif of estimating OPT
with a fewer number of sketches. IMM improves over TIM/TIM+
through a martingale analysis, while SSA takes an orthogonal per-
spective, as the number of sketches needed by the algorithm is
determined at runtime via an iterative approach. The TIM/TIM+,
IMM, and SSA methods will be used in our evaluation (§4–6).

Graph decomposition. Cores in a graph were first studied in [29]
for characterizing tightly-knit groups in social networks. Since then,
core decomposition has been used as a tool for several applications
related to the understanding of mesoscale structural characteristics
of a network, but also to capture the centrality or influential status
of nodes. Among its advantages, core decomposition for an input
graph is unique, and hence well-defined, and it can be computed
efficiently in linear time w.r.t. the number of edges in the graph.

As mentioned in the Introduction, [19] is one of the earliest
studies exploring relations between the spread of influence in undi-
rected networks and core decomposition. The study shows that,
under the SIR epidemic model, nodes with the best spreading po-
tential are likely not those with the highest degree or betweenness
centrality, but are in the most internal core of the network.

Following the lead of [19], in [24] a similar analysis is carried
out in terms of truss decomposition [32]. Nodes selected within
internal regions of a network according to the truss decomposition,
tend to produce infections that are significantly more viral in the
early steps of propagation as opposed to the one obtained started
from the most internal cores, though this advantage becomes less
evident as the propagation approaches to its termination.

The k-peak decomposition proposed in [15] aims to find robust
decomposition when a network has distinct and independent re-
gions of different edges density. Following the same setting as [19],
it is shown that when the initial spreaders are chosen among those
with the highest k-peak number, the size of the information cascade
may be up to 50% greater than the size based on k-core decomposi-
tion. In [2], the coreness centrality is defined on top of the classic
core decomposition, by aggregating the core-index of all neighbors
of a given node. Again under the SIR model and for undirected and
unweighted networks, this method has shown to produce better
rankings than those based on k-core decomposition.

A recent study [9] extends the k-core decomposition to account
for a neighbor-distance threshold h. Differently from [2], the pro-
posed notion of (k,h)-core redefines the coreness property based

on a higher-order degree of nodes, i.e., the core-index of a node is
function of the number of nodes reachable up to a given distance h.

The notion of k-core decomposition was also extended to prob-
abilistic graphs [7]. The (k,η)-core is defined as a subgraph such
that each of its nodes has at least degree k with confidence at least
η. Notably, in an IM evaluation scenario, where the edge proba-
bilities are assumed to be influence propagation probabilities, the
greedy algorithm could in principle exploit the computation of
(k,η)-cores in order to locate the seeds in the inner most η-cores.
Another bivariate-core notion is proposed in [14], where the (k, l)-
D-core is defined to account for nodes with in-degree at least k and
out-degree at least l . The significance of this approach was mainly
assessed over collaboration networks where, unlike social influence-
driven networks, both the inward and outward connectivities of
nodes might be explicitly parametrized.

3 DECOMPOSITION OF DIRECTED GRAPHS
In this section, we present the graph decomposition methods exam-
ined in our study. One notable point is that, since these methods are
originally conceived for undirected networks (cf. §2), we first need to
revise their definitions in order to make these methods amenable
to support an IM task, which requires a directed network as input
context of influence propagation. Also, our choice of decomposition
methods was guided by two main factors: (i) they are able to scale to
large networks; (ii) they can be meaningfully extended to directed
networks; and (iii) they are representatives of the most widely used
decomposition strategies and variants.

Let G = ⟨V ,E⟩ be a directed graph, with set of nodes V and set
of edges E ⊆ V × V . Given any subset S ⊂ V , we denote with
G[S] = ⟨S,E[S]⟩ the subgraph of G induced by S , where E[S] =
{(u,v) | (u,v) ∈ E ∧ u,v ∈ S}. Also, for each v ∈ V , deдinG (v), resp.
deдoutG (v), denote the in-degree, resp. out-degree, of v in G.

k-Core decomposition. Given k ≥ 0, the k-core of a directed
graph G = ⟨V ,E⟩ is the maximal subgraph (denoted as Gk−core )
corresponding to G[Ck ] = ⟨Ck ,E[Ck ]⟩ such that each node v ∈ Ck
has out-degree at least k , i.e., deдoutG[Ck ]

(v) ≥ k . The degeneracy of
the graph, hereinafter denoted as KC (G), is the highest value of k
s.t. Ck , ∅. The core associated with the graph degeneracy is also
called the inner most core. The core-index, or coreness, of a node v is
the largest k such that v ∈ Ck and v < Ck+1.

It is easy to show that the well-known O(|E |) algorithm in [5]
can straightforwardly be adapted to a directed network: nodes are
ordered by increasing out-degree, then nodes u with lowest out-
degree are iteratively removed from the graph and each incoming
neighbor of u decreases its out-degree, and the process continues
until no node remains. The core-index of a node is the out-degree
at the moment of its removal.

k-Peak decomposition. It is conceived on top of k-core decompo-
sition, based on the notion of k-contour. Given a graph G = ⟨V ,E⟩,
with degeneracy K=KC (G), a k-contour (k ≥ 0) is the maximal sub-
graph recursively defined as the k-core of the graphG \

⋃K
j=k+1G j

for all k < K , whereG j is the j-contour, and the same as the k-core
of G for k = K . The peak-number of a node is the value k such
that the node belongs to the k-contour. The peak-degeneracy of the
graph, hereinafter denoted as KP (G), is the highest value of k s.t.

186



WebSci ’20, July 6–10, 2020, Southampton, United Kingdom A. Caliò, A. Tagarelli, and F. Bonchi

there is a non-empty k-contour; it is straightforward to note that
KP (G) =KC (G), for any graph G.

The k-peak decomposition algorithm assigns each node to ex-
actly one contour. Unlike core decomposition, k-peak decomposi-
tion does not account for connections starting from outer cores (i.e.,
lower k cores) towards inner cores of the network. To compute the
k-peak decomposition, we iteratively apply our core-decomposition
algorithm for directed networks, over the subgraph obtained by
removing all the nodes belonging to the inner most core and as-
signing those nodes the peak number equal to the value of the
degeneracy before the removal.
k-Truss decomposition. In our setting, given any three nodes
u,v,w , a triangle △uvw is defined as a directed cycle between those
nodes. The support sup(e,G) of an edge e = (u,v) ∈ E in G is
defined as |△uvw : △uvw ∈ △G |, where △G denotes the set of all
triangles in the network. The k-truss ofG (k ≥ 2), denoted byTk , is
the largest subgraph of G such that ∀e ∈ ETk , sup(e,Tk ) ≥ (k − 2).
The truss-index of an edge is the largest k-truss it belongs to.

Once the support of each edge is computed, we apply the algo-
rithm proposed in [32] to obtain the decomposition. However, since
the k-truss decomposition is defined with respect to the edges of
the graph, we eventually assign a score to each node that is equal
to the average truss-index of the node’s outgoing edges. Also, we
denote with KT (G) the highest of the node truss-indexes.
Neighbor-coreness aggregation. Adapting from [2], each node
v is assigned with a neighbor-coreness score given by Cnc (v) =∑
u ∈N out (v) c(u), where c(u) denotes the core-index assigned to

node u and N out (v) is the set of v’s out-neighbors. We also denote
with KNC (G) the maximum neighbor-coreness score.

The algorithm for computing this score function extends the one
used for directed k-core: once computed the core-indexes, we apply
the function Cnc (·) to account for the out-neighbors’ contribution,
for every node in the network.
Distance-based generalization of core decomposition. Given
v ∈ V , a subset S ⊆ V , and a neighbor-distance threshold h > 0,
the h-neighborhood of v w.r.t. the subgraph G[S] is NG[S ](v,h) =
{u ∈ S |u , v ∧ dG[S ](v,u) ≤ h}, where dG[S ](v,u) denotes the
shortest path distance from v to u in the subgraph of G induced
by S . The h-outdegree of a node w.r.t. S is defined as deдhG[S ] =

|NG[S ](v,h)|. Given k ≥ 0, a (k,h)-core represents the maximal
subgraph G[Ck ] = (Ck ,E[Ck ]) such that every node v ∈ Ck has
h-outdegree at least k , i.e., deдhG[Ck ]

(v) ≥ k . Also, for any given h,
the distance-generalized degeneracy, KDGC

h (G), is the maximum k
such that Ck , ∅.

To compute the (h,k)-cores, we adapted Algorithm 1 in [9] by
specializing the notion of h-neighborhood for out-neighbors.

Example 3.1. Let us consider again the example shown in Fig. 1, to
check whether the various graph-decomposition algorithms are able
to assignv1 with the highest score. We have already observed that this
is not the case when using the k-core decomposition (cf. Example 1.1).
Similar outcome holds also for thek-peak decomposition— two distinct
contours are found, with v1 having peak-number 0 along with nodes
v2, . . . ,v6, and the remaining nodes with peak-number 3 — the k-
truss decomposition and the neighbor-coreness aggregation method —
which assign the highest score to nodes v7, . . . ,v11. By contrast, the

Table 1: Summary of evaluation network data.

network #nodes #edges avg. avg. dens. diam. #sources #sinks
in-deg. path len.

DBLP - DB 317K 1M 3.31 7.89 1 05e−5 31 127K 12K
Epinions - Ep 116K 722K 6.2 4.79 5 3e−5 16 28K 43K
Nethept - Net 15K 62K 4.1 5.83 2.7e−4 5 0 0
Twitter - Tw 21K 227K 10.38 6.28 4.7e−4 32 3K 3K

Instagram - Ig 17K 617K 35.25 4.24 2e−3 15 0 0
FriendFeed - FF 493K 19M 38.85 3.82 7.8e−5 32 42K 292K

distance generalized core decomposition is able to detect, for h = 2,
three cores, where the inner-most one does contain node v1 (along
with v7, . . . ,v11).

4 EVALUATION METHODOLOGY
We used 6 real-world online social network datasets, whose prop-
erties are summarized in Table 1. Our choice of these network
data is justified as they can be regarded as benchmarks in IM or
graph-decomposition studies. In particular, Epinions, DBLP, Nethept
networks were used in the original works proposing the three IM
methods under examination (i.e., TIM/TIM+, IMM, and SSA); the
Twitter dataset was used in [7] to assess the significance of uncer-
tain graph decomposition for IM; Instagram and FriendFeed were
studied in [11] for targeted IM in a user engagement context.

We considered the two most commonly used diffusion models
in IM, namely Independent Cascade (IC) and Linear Theshold (LT)
models [18]. Due to space limits, the results presented in the remain-
der of this paper are only based on IC. The experimental results
using LT — which can be found in the Supplemental Material avail-
able online — are consistent with the findings for IC, reported in
this paper.

IC considers each node can be activated by each of its incoming
neighbors independently. Based on the influence probabilities pu,v
for each edge (u,v), and given a seed set S at time step 0, any
diffusion instance of the IC model unfolds in discrete steps. Each
active node u at step t will attempt to activate, with probability
pu,v each of its outgoing neighbors v that is inactive at step t-1.
Note that u has only one chance to activate its outgoing neighbors.
If the attempt is successful,v becomes active at step t +1, otherwise
v stays inactive. The diffusion instance terminates when no more
nodes can be activated. For specifying the influence probability
of the edges we adopt a widely-used strategy: each edge (u,v) is
associated with a probability 1/deдin (v), where deдin (v) is the
number of in-neighbors of v .

The main goal of the experimental evaluation is to characterize
the coreness of those nodes considered to have a strong spreading
potential. More specifically, we want to investigate the capability of
each graph-decomposition algorithm to locate the most influential
nodes within its inner-most regions.

Results are organized into two main sections: first, we focus on
thosemethods that rely only on first-order node-degree information
(§5), thenwe evaluate the impact of the adoption of a distance-aware
generalization of the core-decomposition (§6).

5 DEGREE-BASED CORES
We investigate where the most influential nodes selected by state-of-
the-art IM algorithms — TIM/TIM+ [31], IMM [30], and SSA [26] (cf.
§2) — are located in the networkw.r.t. different graph-decomposition
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Figure 2: Normalized core-index (k/KC (G)) of the first 200
seeds computed by (a,d)TIM+, (b,e) IMM, and (c,f) SSA, under
the IC model.

methods (§5.1). Prompted by the results obtained in this early step
of evaluation, we will delve into the features that could be used
as proxies for identifying a “good” subnetwork for locating IM-
(near)optimal influential spreaders (§5.2).

5.1 Seed selection order
To begin with, we analyzed the selection order of seeds discovered
by each IM method, under the IC model, in relation to their core
index as produced by the classic core decomposition.

Figure 2 reports on the y-axis the normalized core index (i.e., the
core index of the node divided by the degeneracy of graph) for the
first 200 seeds — computed by TIM+, IMM, and SSA, respectively
— ordered on the x-axis according to their selection order, i.e., the
iteration corresponding to the insertion of a node into the seed
set. For this analysis, we report only results corresponding to two
datasets; nonetheless, these results are representative of a general
scenario encompassing all remaining networks. We refer the reader
to the Supplemental Material associated with this paper.

One remark that stands out is that the three IM methods exhibit
a very consistent behavior, which seems to depend mostly on the
network. This is not really surprising, since all such algorithms
share the state-of-the-art RIS-based approach in their algorithmic
scheme (cf. §2). While on dataset DB most of the seeds, with few
notable exceptions among the first seeds, are in peripheral cores
(the majority of the seeds have core-index between the 5-th and
25-th percentiles), for FF the situation is slightly different: many
seeds are selected in high cores, although a good portion of seeds
are identified in lower cores. What is common to both datasets
(and to the others not reported in Fig. 2) is that, as hinted by the
regression line in each plot, as the selection progresses the various
IM methods are more likely to identify the seeds among those with
lower core index, i.e., in the periphery of the network. This can be
explained with the fact that our evaluation methods work under
the IC and LT diffusion models, whose activation functions are
monotone and submodular: after the earlier stages of seed selection,
the IM methods would start exploring the periphery of the network,
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Figure 3: From top to bottom, normalized core-index
(k/KC (G)), peak-number (k/KP (G)), neighbor-coreness
(k/KNC (G)), and truss-index (k/KT (G)) of the first 200 seeds
computed by TIM+, under the IC model.

since therein it will likely reside the nodes whose marginal gain is
potentially less affected by the earliest selections.

This is in contrast with the findings in [19, 24], according to
which the most influential nodes should reside in the inner-most
core of the network. This difference is due to the fact that those
works consider a SIR propagation model, whereas we use IC/LT,
and on the fact that they focus on the spreading potential of nodes
in isolation, while our analysis considers the cumulative expected
spread of the seed set of the IM problem.

Results drawn from the previous analysis were confirmed by
analogous evaluation extended to the other graph decomposition
methods and networks. As shown in Fig. 3, in most networks (e.g.,
Tw, Ep, Net), the majority of the seeds are located in subnetworks
that correspond to mid/low values of each particular decompo-
sition method. One exception is represented by Ig, where most
seeds are located in the inner subnetworks, provided that k-core or
k-peak decomposition is used. Among the various decomposition
techniques, it can be noted that neighbor-coreness provides high-
variance, hence poorly meaningful results for our analysis. This is
explained since neighbor-coreness was originally conceived as a
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proxy solution for ranking nodes w.r.t. their individual influence,
rather than for achieving coarser-grain graph-decompositions; this
also prompted us to ignore it in the remainder of our study. Another
interesting remark regards thek-truss decomposition. In fact, identi-
fying the seeds within the inner-most subnetworks induced by this
method appears to be a disadvantageous choice for our purposes,
as most of the seeds are located within the outer subnetworks (i.e.,
those containing nodes with lower truss-index values).

The above results, coupled with the ones discussed in the pre-
vious section (§5.1), provide evidence that allocating seeds in the
inner-most regions of a network may turn out to be a poorly effec-
tive strategy for IM. This contingency may be ascribed to the fact
that concentrating the selection of nodes within the same subnet-
work induced by a graph-decomposition technique, would prevent
us to exploit the submodularity of the activation function of the IM
methods. Intuitively, it may happen that the propagation remains
trapped inside the densest regions of a network, and consequently
it will not be able to involve other parts of the network; this par-
ticularly holds for the k-truss decomposition, which considers the
number of triangles a particular node is involved in.

Notably, our findings totally fit the LT model as well. Due to
space limitations of this paper, results corresponding to LT can be
found in the online-available Supplemental Material.

5.2 Characterization of the Cores/Contours
Based on the results obtained so far, we can recognize two main
groups in the evaluation data: the one corresponding to FF and
Ig, and the other one including all the remaining networks, where
influential spreaders were found to be located in the “outer” portions
of the network, as opposed to the former group.

Hereinafter, we restrict our attention to the k-core and k-peak
decomposition, since they turned out to be the most promising and
reliable ones to support our next analysis aiming at understanding
how to estimate the nodes’ influence-spread potential. Thus, we
will devote our attention to two main aspects: (i) how nodes are
distributed within the different cores/contours of the network, and
(ii) how the cores/contours are connected to each other.

Core/Contour distribution. Figure 4 shows how nodes are dis-
tributed over the different cores of the network. If we compare
these results in light of the previous findings (§5.1), we observe
that a lower skewness in the distribution would correspond to the
identification of seeds within the inner cores. In fact, the distribu-
tions for FF and Ig, exhibit a much lower skewness (i.e., 3.2 and 2.3,
resp.) as compared to the one corresponding to the other networks,
however with the exception of Tw. Albeit the skewness could serve
as a moderately good indicator of how effective it will be to allo-
cate seeds within the inner cores of a network, we need to further
investigate the characteristics of the cores.

As regards the k-peak decomposition (results shown in the
online-available Supplemental Material), we observe it tends to
favor skewer distributions than the core-decomposition ones. In
particular, although KC (G) =KP (G), the number of distinct con-
tours in the evaluation networks is found to be consistently smaller
than the number of distinct cores in the network. This implies that
the k-peak decomposition may provide a coarser view on a network
structure, where most nodes are concentrated in the subnetworks
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Figure 4: Distribution of nodes over the cores of the network.
Each plot shows, for every core-index k (x-axis), the num-
ber of nodes with core-index at most k on the rightmost y-
axis, and the cumulative distribution of core-index on the
leftmost y-axis. Also, the skewness of the distribution is re-
ported inside each plot.

with lower peak number, thus hindering the ability of this technique
to discriminate the influence-spread potential of nodes.
Core/Contour connectivity. Here we focus on the connectivity
from a core/contour perspective. More specifically, we categorized
edges into two separate classes, namely: outward edges, if the
source node has a core-index/peak-number equal to or greater than
the target node, and inward edges otherwise.

Figure 5 shows the fraction of edge-set that belongs to each of the
two classes, based on core-indexes of their sources — very similar be-
haviors were also found in results corresponding to peak-numbers
(shown in the online-available Supplemental Material). We recog-
nize three types of characteristics in the inward percentage-bars,
as the normalized core-index increases: (i) a roughly decreasing
trend, for FF and Ig, (ii) a roughly constant trend, for DB, and (iii)
a roughly bimodal decreasing trend, for the remaining networks.
For the former group, while the inward percentage remains much
higher than the outward one until mid-high regimes in the x-axis,
this gap tends to become small for the highest cores, showing that
nodes in the inner-most core (i.e., rightmost side of a plot) also have
a good connectivity towards the periphery of the network. Quite
differently from FF and Ig, Ep and Tw show a roughly bimodal de-
creasing behavior, which appears to have a break-point around half
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Figure 5: Percentage of inward and outward edges vs. nor-
malized core-index k/KC (G). The i-th percentage bar (i =
1..9) corresponds to edges such that the source node has nor-
malized core-index in (xi ,xi+1], upon a segmentation of the
x-axis values into ten intervals (x1,x2], . . . , (x9,x10].

of the degeneracy. Notably, this corresponds to the core where most
of the seeds are actually found according to the results discussed
earlier in this section (§5.1). However, while the second decreasing
trend ends up with a 60% inward edges for the first and second
inner-most cores in Ep, a further interesting scenario occurs in Tw.
Here, the nodes within the inner-most core are mostly connected to
each other, since a considerably high fraction of edges (above 80%)
are inward. In DB, the inward edges are the large majority, regard-
less of the core-indexes of their nodes, which might be ascribed to
a relatively high percentage of source nodes.
Pairwise core distances.We consider here a more robust measure
than the inward/outward property of edges, which accounts for the
difference of core-index values of two linked nodes. Given any edge
(u,v), we define the pairwise normalized core distance asdist(u,v) =
(ku − kv )/K

C (G), with ku and kv the core-index assigned to u and
v , respectively. Upon this, for each node u we compute the average
normalized core distance over its out-neighbors. A positive value
means that u is mostly connected with nodes belonging to outer
cores, and the greater the value, the more u’s out-neighbors can be
considered as peripheral w.r.t. the u’s location.

Figure 6 shows the boxplot distributions of average normalized
core distance w.r.t. the normalized core-index values. The analysis
of such plots allows us to integrate and enrich the results observed
in Fig. 5. Considering first Ig and FF, where most of the seeds
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Figure 6: Distribution of the node’s average normalized core
distance vs. normalized core-index k/KC (G). For each core-
index k , the corresponding boxplot represents the distribu-
tion of the average normalized core distances computed for
each node having core-index k .

have the maximum core-index (§Figs. 2–3), we observe a clearly
increasing trend of the nodes’ average normalized core distance.
With corresponding boxplot median around 0.5, nodes within the
highest core-index show to be well connected with nodes located
in mid-level outer cores. A different situation is observed on Tw,
Ep, and DB, where the maximum average normalized core distance
mostly remains below 0.4, 0.3, and 0.1, respectively. Remarkably, in
Ep (Fig. 6(c)), where most seeds have mid/low core-index (§Fig. 3),
we observe again a breakpoint in the distribution around half of
the degeneracy, where the peak of average normalized core occurs,
while the second increasing trend almost remains below positive
values in the y-axis, with the inner-most boxplot having very low
median (around 0.1). Also, on DB (Fig. 6(d)), the values of range
of each boxplot (always below 0.1) indicate that the edges tend
to connect nodes that have very close core-index, which is also
consistent with the fact that nearly all seeds are not located within
the inner-most core (§Fig. 3).

5.3 Discussion
In this first stage of evaluation, we have learned that searching
for influential spreaders within the inner subnetworks (based on
any particular decomposition method) does not ensure to find the
best seeds for an IM problem. Indeed, it should not be surprising
that topological properties of the networks take a crucial role in
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Figure 7: Linear regression of the normalized distance-
generalized core-index (k/KDGC

h (G)) of the first 200 seeds
computed by TIM+, under the IC model.

determining whether or not nodes in the inner-most cores have the
best influence-spreading potential. In fact, Ig and FF, where most of
the seeds were found in the inner-most core, are also the networks
that exhibit a significantly higher average in-degree and a network
density that is slightly higher than the other networks (§Table 1).
The remaining networks, where seeds were mostly identified out-
side the inner-most cores, show a substantially sparser structure,
as indicated by their values of average path length, density, and
diameter.

We also found out that, when nodes in the inner subnetworks
are mostly connected with each other rather than towards nodes in
outer subnetworks, IM methods tend to select seeds among the set
of nodes that couple a mid/low core-index with good connectivity
towards the inner subnetworks. We conjecture that a major limi-
tation of the decomposition methods considered so far, relies on
their inability to leverage higher-order degree of nodes. The next
stage of evaluation is conceived around this argument.

6 HIGHER-ORDER CORES
This section is dedicated to the evaluation of the only existing
decomposition algorithm based on higher-order degree, i.e., (k,h)-
core decomposition.

Results are organized into three parts. In the first part, we repli-
cate the same setting adopted in the early step of the previous
evaluation (cf. §5), in order to assess the relation of (k,h)-core de-
composition with the outcomes of an IM algorithm (§6.1). Next, we
assess the sensitivity of the decomposition w.r.t. the value of the
neighbor-distance threshold h (§6.2). Finally, we also investigate
the individual influential-spreading potential of nodes, and put this
in relation with the decomposition outcomes (§6.4).

Please note that we shall focus our analysis on those networks
where, by using all the previously analyzed graph-decomposition

Table 2: Maximum (k,h)-core-index (leftmost) and number
of distinct (k,h)-cores (rightmost), for varying h.

h = 1 h = 2 h = 3
DB 113 / 47 343 / 234 2135 / 1957
Ep 85 / 85 909 / 902 5357 / 5053
Net 31 / 13 69 / 69 389 / 384
Tw 24 / 24 270 / 270 1349 / 1250

methods, the seeds were mostly identified outside the respective
inner-most cores.

6.1 Seed selection order
Analogously to the analysis presented in the first phase of Stage 1
(cf. §5.1), we first investigated the relations between the (k,h)-core-
index values and the selection order of the discovered seeds.

Looking at the plots in Fig. 7, it stands out that a significant
fraction of seeds is now found to be located in the inner-most (k,h)-
core(s). This is particularly evident in Ep and DB, where all top-200
seeds (i.e., not only the early-selected ones corresponding to a small
budget s) are in the inner-most core or immediately outer one, with
h ∈ {2, 3} and h = 3, respectively. A further important finding is
that while regression lines tend to rise up for higher h, with major
gain from h = 1 (i.e., equivalent to core decomposition) to h = 2,
this trend is not monotone in general. Indeed, it may happen that
an overly high value of h (typically higher than 4) could lead to
decreased performance, even worse than the corresponding core
decomposition (as observed for Tw, where the regression line for
h = 5 lays on about 0.25).

6.2 Sensitivity to h
Here we delve into the characteristics of the (k,h)-cores detected by
differently settingh. In particular, wewant to understand hownodes
are distributed within the different (k,h)-cores of the network, by
varying h.

First, as reported in Table 2, we observe that the number of cores
and the maximum core-index grow significantly as h increases —
recall that h = 1 corresponds to the classic k-core decomposition
— which suggests how the (k,h)-core decomposition can enable a
fine-grain micro/mesoscale structure analysis.

In Fig. 8, we observe that, whenh > 1, the number of nodes in the
subnetworks with lower (k,h)-core-index is significantly smaller
than for h = 1. This is clearly due since nodes tend to be more
connected to each other ash increases. More interestingly, the inner-
most generalized cores (i.e., tail of the distributions) are consistently
more populated than for h = 1. Nonetheless, as displayed in the
insets of Fig. 8 for all networks, the inner-most generalized core
covers a fraction of the whole node-set that is relatively small, yet
meaningful for a seed-set selection task.

6.3 Discussion
We have unveiled that the best-influential spreaders can actually be
located within one or very few inner-most core(s) of a network pro-
vided that a higher-order graph-decomposition method is used. The
neighbor-distance threshold (i.e., h) plays a key role in the decom-
position, since too large values of the parameter may in principle
lead, at the cost of increased computational overhead, to few cores
covering most nodes in the network, thus reducing the benefits of
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Figure 8: Fraction of nodes per normalized distance-
generalized core-index k/KDGC

h (G), for varying h. Insets
zoom in the tail of each distribution, showing the exact num-
ber of nodes in the last quartile of k/KDGC

h (G).

solving the identification of seeds within a small subnetwork; this
would mostly happen when the chosen h approaches the average
path length of the network, therefore more nodes fall into the same
cores. However, in practice, h ∈ {2, 4} turned out to be the most
effective choice to concentrate the identification of a relatively large
seed-set within the inner-most generalized core. As one rule-of-
thumb, a proper setting h is the one leading to observe the tail in
the distribution of generalized core-index as corresponding to a
fraction of nodes comparable with the budget for the seed-set to
be discovered. Nonetheless, it emerges an interesting opportunity
for a theoretical investigation of relations between h and structural
characteristics of the network, which we leave as future work.

6.4 Individual influence-spreading ability
The above findings prompted us to further investigate whether the
nodes assigned to the inner-most core by the distance-generalized
core decomposition have also individual spreading ability. More
specifically, we want to determine the nodes’ individual influential-
spreading potential, i.e., the spread of each node as a singleton seed-
set, estimated through Monte Carlo simulation with 10 000 runs.

Figure 9 shows that a high (h,k)-core-index is in general a more
reliable indicator of the influence a node can individually produce.
In fact, in many cases, nodes having higher (h,k)-core-index ex-
hibit higher influence potential. By contrast, such nodes are not
necessarily those with the highest core-index according to k-core
decomposition. Also, it should be noted the inner cores detected by
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Figure 9: Average spread of nodes w.r.t. selected combina-
tions of k-core-index (y-axis) and (h,k)-core-index for a par-
ticular choice ofh (x-axis). The expected spread of each node
is computed by considering the node as a singleton seed-set.
Darker colors correspond to higher normalized spread.

k-core decomposition (h = 1) are very different from the ones cor-
responding to higher values of h. In fact, many nodes with low/mid
core-index turn out to have a very high (h,k)-core-index.

To sum up, for an appropriate value of h, nodes in the inner-
most cores are always the ones having the highest influential-spread
potential, either as singletons and as groups (§6.1). This outstanding
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result clearly highlights the opportunity of exploiting a distance-
aware core decomposition for effectively solving top-influencer
identification problems that, while not being necessarily under the
IM framework, would avoid trapping into an under/over estimation
of cumulative spread of a set of nodes that is a typical of any top-s
search centrality-based heuristic approach.

7 CONCLUSIONS
In this paper we assessed for the first time the opportunity of lever-
aging on graph-decomposition methods to simplify the problem of
identification of the most influential spreaders in directed network,
under an influence maximization framework. We initially found out
that the correlation between the influential spreading power and
the indexing of nodes according to several graph-decomposition
methods, is weaker than expected, as we demonstrated that state-
of-the-art IM algorithms do not generally locate their seeds in the
inner-most regions of a network, especially in networks with a
sparse structure. We showed that one major flaw of any of the clas-
sic decomposition algorithm is related to the inability of integrating
a notion of higher-order degree into the decomposition scheme. By
contrast, we found out that leveraging on a distance-generalized
core decomposition enables the desired outcome of detecting the
most influential spreaders in the inner-most generalized-core por-
tion of the network.

This work opens several paths of further investigation. Our em-
pirical assessment of the relation between influence spread and
different notions of graph-decomposition paves the way to the op-
portunity of embedding advanced, distance-based generalized de-
composition methods in an IM-based influence analysis framework,
with the purpose of narrowing the search space of the best seeds
only to specific portions of the network, without even estimating
in advance the influence probabilities. A related research direction
concerns the challenge of understanding what are the theoretical
properties underlying the relations between the neighbor-distance
threshold h in the generalized core decomposition method, and the
structural characteristics of the input network, in order to deter-
mine the minimum value of h that implies the detection of the most
influential nodes within the inner-most generalized core.
Supplemental material: source codes, preprocessed data used in
the evaluation, as well as additional experimental results can be
found at: http://people.dimes.unical.it/andreatagarelli/ cores4im/ .
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