
Control Frequency Adaptation via Action Persistence
in Batch Reinforcement Learning

Alberto Maria Metelli 1 Flavio Mazzolini 1 Lorenzo Bisi 1 2 Luca Sabbioni 1 2 Marcello Restelli 1 2

Abstract
The choice of the control frequency of a system
has a relevant impact on the ability of reinforce-
ment learning algorithms to learn a highly per-
forming policy. In this paper, we introduce the
notion of action persistence that consists in the
repetition of an action for a fixed number of de-
cision steps, having the effect of modifying the
control frequency. We start analyzing how ac-
tion persistence affects the performance of the
optimal policy, and then we present a novel algo-
rithm, Persistent Fitted Q-Iteration (PFQI), that
extends FQI, with the goal of learning the opti-
mal value function at a given persistence. After
having provided a theoretical study of PFQI and
a heuristic approach to identify the optimal per-
sistence, we present an experimental campaign
on benchmark domains to show the advantages of
action persistence and proving the effectiveness
of our persistence selection method.

1. Introduction
In recent years, Reinforcement Learning (RL, Sutton &
Barto, 2018) has proven to be a successful approach to ad-
dress complex control tasks: from robotic locomotion (e.g.,
Peters & Schaal, 2008; Kober & Peters, 2014; Haarnoja
et al., 2019; Kilinc et al., 2019) to continuous system con-
trol (e.g., Schulman et al., 2015; Lillicrap et al., 2016; Schul-
man et al., 2017). These classes of problems are usually
formalized in the framework of the discrete–time Markov
Decision Processes (MDP, Puterman, 2014), assuming that
the control signal is issued at discrete time instants. How-
ever, many relevant real–world problems are more natu-
rally defined in the continuous–time domain (Luenberger,
1979). Even though a branch of literature has studied RL in

1Politecnico di Milano, Milan, Italy. 2Institute for Scientific
Interchange Foundation, Turin, Italy. Correspondence to: Alberto
Maria Metelli <albertomaria.metelli@polimi.it>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

continuous–time MDPs (Bradtke & Duff, 1994; Munos &
Bourgine, 1997; Doya, 2000), the majority of the research
has focused on the discrete–time formulation, which appears
to be a necessary, but effective, approximation.

Intuitively, increasing the control frequency of the system
offers the agent more control opportunities, possibly lead-
ing to improved performance as the agent has access to
a larger policy space. This might wrongly suggest that
we should control the system with the highest frequency
possible, within its physical limits. However, in the RL
framework, the environment dynamics is unknown, thus,
a too fine discretization could result in the opposite effect,
making the problem harder to solve. Indeed, any RL algo-
rithm needs samples to figure out (implicitly or explicitly)
how the environment evolves as an effect of the agent’s ac-
tions. When increasing the control frequency, the advantage
of individual actions becomes infinitesimal, making them
almost indistinguishable for standard value-based RL ap-
proaches (Tallec et al., 2019). As a consequence, the sample
complexity increases. Instead, low frequencies allow the en-
vironment to evolve longer, making the effect of individual
actions more easily detectable. Furthermore, in the presence
of a system characterized by a “slowly evolving” dynamics,
the gain obtained by increasing the control frequency might
become negligible. Finally, in robotics, lower frequencies
help to overcome some partial observability issues, like
action execution delays (Kober & Peters, 2014).

Therefore, we experience a fundamental trade–off in the
control frequency choice that involves the policy space
(larger at high frequency) and the sample complexity
(smaller at low frequency). Thus, it seems natural to wonder:
“what is the optimal control frequency?” An answer to this
question can disregard neither the task we are facing nor
the learning algorithm we intend to employ. Indeed, the
performance loss we experience by reducing the control fre-
quency depends strictly on the properties of the system and,
thus, of the task. Similarly, the dependence of the sample
complexity on the control frequency is related to how the
learning algorithm will employ the collected samples.

In this paper, we analyze and exploit this trade–off in the
context of batch RL (Lange et al., 2012), with the goal of
enhancing the learning process and achieving higher perfor-

mailto:albertomaria.metelli@polimi.it

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

mance. We assume to have access to a discrete–time MDP
M∆t0 , called base MDP, which is obtained from the time
discretization of a continuous–time MDP with fixed base
control time step ∆t0, or equivalently, a control frequency
equal to f0“

1
∆t0

. In this setting, we want to select a suitable
control time step ∆t that is an integer multiple of the base
time step ∆t0, i.e., ∆t“k∆t0 with kPNě1.1 Any choice
of k generates an MDP Mk∆t0 obtained from the base one
M∆t0 by altering the transition model so that each action
is repeated for k times. For this reason, we refer to k as
the action persistence, i.e., the number of decision epochs
in which an action is kept fixed. It is possible to appreci-
ate the same effect in the base MDP M∆t0 by executing
a (non-Markovian and non-stationary) policy that persists
every action for k time steps. The idea of repeating actions
has been previously employed, although heuristically, with
deep RL architectures (Lakshminarayanan et al., 2017).

The contributions of this paper are theoretical, algorithmic,
and experimental. We first prove that action persistence
(with a fixed k) can be represented by a suitable modifi-
cation of the Bellman operators, which preserves the con-
traction property and, consequently, allows deriving the
corresponding value functions (Section 3). Since increasing
the duration of the control time step k∆t0 has the effect of
degrading the performance of the optimal policy, we derive
an algorithm–independent bound for the difference between
the optimal value functions of MDPs M∆t0 and Mk∆t0 ,
which holds under Lipschitz conditions. The result confirms
the intuition that the performance loss is strictly related to
how fast the environment evolves as an effect of the actions
(Section 4). Then, we apply the notion of action persistence
in the batch RL scenario, proposing and analyzing an ex-
tension of Fitted Q-Iteration (FQI, Ernst et al., 2005). The
resulting algorithm, Persistent Fitted Q-Iteration (PFQI)
takes as input a target persistence k and estimates the corre-
sponding optimal value function, assuming to have access
to a dataset of samples collected in the base MDP M∆t0

(Section 5). Once we estimate the value function for a set
of candidate persistences KĂNě1, we aim at selecting the
one that yields the best performing greedy policy. Thus,
we introduce a persistence selection heuristic able to ap-
proximate the optimal persistence, without requiring further
interactions with the environment (Section 6). After having
revised the literature (Section 7), we present an experimental
evaluation on benchmark domains, to confirm our theoreti-
cal findings and evaluate our persistence selection method
(Section 8). We conclude by discussing some open ques-

1We are considering the near–continuous setting. This is al-
most w.l.o.g. compared to the continuous time since the discretiza-
tion time step ∆t0 can be chosen to be arbitrarily small. Typically,
a lower bound on ∆t0 is imposed by the physical limitations of the
system. Thus, we restrict the search of ∆t from the continuous set
Rą0 to the discrete set tk∆t0 ,kPNě1u. Moreover, considering
an already discretized MDP simplifies the mathematical treatment.

tions related to action persistence (Section 9). The proofs
of all the results can be found in Appendix A. The code is
available at github.com/albertometelli/pfqi.

2. Preliminaries
In this section, we introduce the notation and the basic
notions that we will employ in the remainder of the paper.

Mathematical Background Let X be a set with a σ-
algebra σX , we denote with PpX q the set of all proba-
bility measures and with BpX q the set of all bounded mea-
surable functions over pX ,σX q. If xPX , we denote with
δx the Dirac measure defined on x. Given a probability
measure ρPPpX q and a measurable function f PBpX q,
we abbreviate ρf“

ş

X fpxqρpdxq (i.e., we use ρ as an op-
erator). Moreover, we define the Lppρq-norm of f as
}f}

p
p,ρ“

ş

X |fpxq|
pρpdxq for pě1, whereas the L8-norm is

defined as }f}8“supxPX fpxq. Let D“txiuni“1ĎX we de-
fine the Lppρq empirical norm as }f}pp,D“

1
n

řn
i“1 |fpxiq|

p.

Markov Decision Processes A discrete-time Markov De-
cision Process (MDP, Puterman, 2014) is a 5-tuple M“

pS,A,P,R,γq, where S is a measurable set of states, A is
a measurable set of actions, P :SˆAÑPpSq is the tran-
sition kernel that for each state-action pair ps,aqPSˆA
provides the probability distribution P p¨|s,aq of the next
state, R:SˆAÑPpRq is the reward distribution Rp¨|s,aq
for performing action aPA in state sPS, whose expected
value is denoted by rps,aq“

ş

RxRpdx|s,aq and uniformly
bounded by Rmaxă`8, and γPr0,1q is the discount factor.

A policy π“pπtqtPN is a sequence of functions πt :HtÑ

PpAq mapping a history Ht“pS0,A0,...,St´1,At´1,Stq
of length tPN to a probability distribution over A, where
Ht“pSˆAqtˆS. If πt depends only on the last visited
state St then it is called Markovian, i.e., πt :SÑPpAq.
Moreover, if πt does not depend on explicitly t it is
stationary, in this case we remove the subscript t. We
denote with Π the set of Markovian stationary policies.
A policy πPΠ induces a (state-action) transition kernel
Pπ :SˆAÑPpSˆAq, defined for any measurable set
BĎSˆA as (Farahmand, 2011):

pPπqpB|s,aq“
ż

S
P pds1|s,aq

ż

A
πpda1|s1qδps1,a1qpBq. (1)

The action-value function, or Q-function, of a policy πPΠ
is the expected discounted sum of the rewards obtained
by performing action a in state s and following policy π
thereafter Qπps,aq“E

“
ř`8

t“0γ
tRt|S0“s,A0“a

‰

, where
Rt„Rp¨|St,Atq, St`1„P p¨|St,Atq, and At`1„πp¨|St`1q

for all tPN. The value function is the expectation of the
Q-function over the actions: V πpsq“

ş

Aπpda|sqQ
πps,aq.

Given a distribution ρPPpSq, we define the expected re-
turn as Jρ,πpsq“

ş

S ρpdsqV
πpsq. The optimal Q-function is

https://github.com/albertometelli/pfqi

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

given by: Q˚ps,aq“supπPΠQ
πps,aq for all ps,aqPSˆA.

A policy π is greedy w.r.t. a function f PBpSˆAq if it plays
only greedy actions, i.e., πp¨|sqPP pargmaxaPAfps,aqq.
An optimal policy π˚PΠ is any policy greedy w.r.t. Q˚.

Given a policy πPΠ, the Bellman Expectation Operator Tπ :
BpSˆAqÑBpSˆAq and the Bellman Optimal Operator
T˚ :BpSˆAqÑBpSˆAq are defined for a bounded mea-
surable function f PBpSˆAq and ps,aqPSˆA as (Bert-
sekas & Shreve, 2004):
pTπfqps,aq“rps,aq`pPπfqps,aq,

pT˚fqps,aq“rps,aq`γ

ż

S
P pds1|s,aqmax

a1PA
fps1,a1q.

Both Tπ and T˚ are γ-contractions in L8-norm and, con-
sequently, they have a unique fixed point, that are the
Q-function of policy π (TπQπ“Qπ) and the optimal Q-
function (T˚Q˚“Q˚) respectively.

Lipschitz MDPs Let pX ,dX q and pY,dYq be two metric
spaces, a function f :XÑY is called Lf -Lipschitz continu-
ous (Lf -LC), where Lfě0, if for all x,x1PX we have:

dYpfpxq,fpx
1qqďLfdX px,x

1q. (2)

Moreover, we define the Lipschitz semi-norm as }f}L“
supx,x1PX :x‰x1

dYpfpxq,fpx
1
qq

dX px,x1q
. For real functions we employ

Euclidean distance dYpy,y1q“}y´y1}2, while for probabil-
ity distributions we use the Kantorovich (L1-Wasserstein)
metric defined for µ,νPPpZq as (Villani, 2008):

dYpµ,νq“W1pµ,νq“ sup
f :}f}Lď1

ˇ

ˇ

ˇ

ˇ

ż

Z
fpzqpµ´νqpdzq

ˇ

ˇ

ˇ

ˇ

. (3)

We now introduce the notions of Lipschitz MDP and Lips-
chitz policy that we will employ in the following (Rachelson
& Lagoudakis, 2010; Pirotta et al., 2015).

Assumption 2.1 (Lipschitz MDP). Let M be an MDP. M
is called pLP ,Lrq-LC if for all ps,aq,ps,aqPSˆA:

W1pP p¨|s,aq,P p¨|s,aqqďLP dSˆApps,aq,ps,aqq,

|rps,aq´rps,aq|ďLrdSˆApps,aq,ps,aqq.

Assumption 2.2 (Lipschitz Policy). Let πPΠ be a Marko-
vian stationary policy. π is called Lπ-LC if for all s,sPS:

W1pπp¨|sq,πp¨|sqqďLπdS ps,sq.

3. Persisting Actions in MDPs
By the phrase “executing a policy π at persistence k”, with
kPNě1, we mean the following type of agent-environment
interaction. At decision step t“0, the agent selects an action
according to its policyA0„πp¨|S0q. ActionA0 is kept fixed,
or persisted, for the subsequent k´1 decision steps, i.e.,
actions A1,...,Ak´1 are all equal to A0. Then, at decision
step t“k, the agent queries again the policy Ak„πp¨|Skq
and persists action Ak for the subsequent k´1 decision
steps and so on. In other words, the agent employs its policy

only at decision steps t that are integer multiples of the
persistence k (t mod k“0). Clearly, the usual execution of
π corresponds to persistence 1.

3.1. Duality of Action Persistence

Unsurprisingly, the execution of a Markovian stationary
policy π at persistence ką1 produces a behavior that, in
general, cannot be represented by executing any Marko-
vian stationary policy at persistence 1. Indeed, at any deci-
sion step t, such a policy needs to remember which action
was taken at the previous decision step t´1 (thus it is non-
Markovian with memory 1) and has to understand whether
to select a new action based on t (so it is non-stationary).
Definition 3.1 (k-persistent policy). Let πPΠ be a Marko-
vian stationary policy. For any kPNě1, the k-persistent
policy induced by π is a non–Markovian non–stationary
policy, defined for any measurable set BĎA and tPN as:

πt,kpB|Htq“

#

πpB|Stq if t mod k“0

δAt´1
pBq otherwise

. (4)

Moreover, we denote with Πk“tpπt,kqtPN :πPΠu the set of
the k-persistent policies.

Clearly, for k“1 we recover policy π as we always satisfy
the condition t mod k“0 i.e., π“πt,1 for all tPN. We refer
to this interpretation of action persistence as policy view.

A different perspective towards action persistence consists
in looking at the effect of the original policy π in a suitably
modified MDP. To this purpose, we introduce the (state-
action) persistent transition probability kernel P δ :SˆAÑ
PpSˆAq defined for any measurable set BĎSˆA as:

pP δqpB|s,aq“
ż

S
P pds1|s,aqδps1,aqpBq. (5)

The crucial difference between Pπ and P δ is that the former
samples the action a1 to be executed in the next state s1

according to π, whereas the latter replicates in state s1 action
a. We are now ready to define the k-persistent MDP.
Definition 3.2 (k-persistent MDP). Let M be an MDP.
For any kPNě1, the k-persistent MDP is the following
MDP Mk“

`

S,A,Pk,Rk,γk
˘

, where Pk and Rk are the
k-persistent transition model and reward distribution re-
spectively, defined for any measurable sets BĎS , CĎR
and state-action pair ps,aqPSˆA as:

PkpB|s,aq“
`

pP δqk´1P
˘

pB|s,aq, (6)

RkpC|s,aq“
k´1
ÿ

i“0

γi
`

pP δqiR
˘

pC|s,aq, (7)

and rkps,aq“
ş

RxRkpdx|s,aq“
řk´1
i“0 γ

i
`

pP δqir
˘

ps,aq is

the expected reward, uniformly bounded by Rmax
1´γk

1´γ .

The k-persistent transition model Pk keeps action a fixed
for k´1 steps while making the state evolve according to P .

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

S0 S1 S2 Sk−1 Sk Sk+1

A0∼π(·|S0) A1∼π(·|S1) Ak−1∼π(·|Sk−1) Ak∼π(·|Sk)

S0 S1 S2 Sk−1 Sk Sk+1

A0∼π(·|S0) [A1=A0] [Ak−1=A0] Ak∼π(·|Sk)

A0 is persisted Ak is persisted

Figure 1. Agent-environment interaction without (top) and with (bottom) action persistence, highlighting duality. The transition generated
by the k-persistent MDP Mk is the cyan dashed arrow, while the actions played by the k-persistent policy are inside the cyan rectangle.

Similarly, the k-persistent reward Rk provides the cumula-
tive discounted reward over k steps in which a is persisted.
We define the transition kernel Pπk , analogously to Pπ, as
in Equation (1). Clearly, for k“1 we recover the base MDP,
i.e., M“M1.2 Therefore, executing policy π in Mk at per-
sistence 1 is equivalent to executing policy π at persistence
k in the original MDP M. We refer to this interpretation of
persistence as environment view (Figure 1). Thus, solving
the base MDP M in the space of k-persistent policies Πk

(Definition 3.1), thanks to this duality, is equivalent to solv-
ing the k-persistent MDP Mk (Definition 3.2) in the space
of Markovian stationary policies Π.

It is worth noting that the persistence kPNě1 can be seen as
an environmental parameter (affecting P , R, and γ), which
can be externally configured with the goal to improve the
learning process for the agent. In this sense, the MDP Mk

can be seen as a Configurable Markov Decision Process
with parameter kPNě1 (Metelli et al., 2018; 2019).

Furthermore, a persistence of k induces a k-persistent MDP
Mk with smaller discount factor γk. Therefore, the effec-
tive horizon in Mk is 1

1´γk
ă 1

1´γ . Interestingly, the end
effect of persisting actions is similar to reducing the plan-
ning horizon, by explicitly reducing the discount factor of
the task (Petrik & Scherrer, 2008; Jiang et al., 2016) or set-
ting a maximum trajectory length (Farahmand et al., 2016).

3.2. Persistent Bellman Operators

When executing policy π at persistence k in the base MDP
M, we can evaluate its performance starting from any state-
action pair ps,aqPSˆA, inducing a Q-function that we
denote with Qπk and call k-persistent action-value function
of π. Thanks to duality, Qπk is also the action-value function
of policy π when executed in the k-persistent MDP Mk.
Therefore, Qπk is the fixed point of the Bellman Expecta-
tion Operator of Mk, i.e., the operator defined for any f P
BpSˆAq as pTπk fqps,aq“rkps,aq`γ

kpPπk fqps,aq, that
we call k-persistent Bellman Expectation Operator. Sim-
ilarly, again thanks to duality, the optimal Q-function in
the space of k-persistent policies Πk, denoted by Q˚k and

2If M is the base MDP M∆t0 , the k–persistent MDP Mk

corresponds to Mk∆t0 . We remove the subscript ∆t0 for brevity.

called k-persistent optimal action-value function, corre-
sponds to the optimal Q-function of the k-persistent MDP,
i.e., Q˚kps,aq“supπPΠQ

π
k ps,aq for all ps,aqPSˆA. As a

consequence, Q˚k is the fixed point of the Bellman Optimal
Operator of Mk, defined for f PBpSˆAq as pT˚k fqps,aq“
rkps,aq`γ

k
ş

SPkpds
1|s,aqmaxa1PAfps1,a1q, that we call

k-persistent Bellman Optimal Operator. Clearly, both Tπk
and T˚k are γk-contractions in L8-norm.

We now prove that the k-persistent Bellman operators are
obtained as composition of the base operators Tπ and T˚.

Theorem 3.1. Let M be an MDP, kPNě1 and Mk be the k-
persistent MDP. Let πPΠ be a Markovian stationary policy.
Then, Tπk and T˚k can be expressed as:

Tπk “
`

T δ
˘k´1

Tπ and T˚k “
`

T δ
˘k´1

T˚, (8)

where T δ :BpSˆAqÑBpSˆAq is the Bellman Persistent
Operator, defined for f PBpSˆAq and ps,aqPSˆA:

`

T δf
˘

ps,aq“rps,aq`γ
`

P δf
˘

ps,aq. (9)

The fixed point equations for the k-persistent Q-functions
become: Qπk“

`

T δ
˘k´1

TπQπk and Q˚k“
`

T δ
˘k´1

T˚Q˚k .

4. Bounding the Performance Loss
Learning in the space of k-persistent policies Πk can only
lower the performance of the optimal policy, i.e.,Q˚ps,aqě
Q˚kps,aq for kPNě1. The goal of this section is to bound
}Q˚´Q˚k}p,ρ as a function of the persistence kPNě1. To
this purpose, we focus on }Qπ´Qπk}p,ρ for a fixed policy
πPΠ, since denoting with π˚ an optimal policy of M and
with π˚k an optimal policy of Mk, we have that:

Q˚´Q˚k“Q
π˚´Q

π˚k
k ďQπ

˚

´Qπ
˚

k ,

since Qπ
˚
k

k ps,aqěQ
π˚

k ps,aq. We start with the following
result which makes no assumption about the structure of the
MDP and then we particularize it for the Lipschitz MDPs.

Theorem 4.1. Let M be an MDP and πPΠ be a Marko-
vian stationary policy. Let Qk“t

`

T δ
˘k´2´l

TπQπk : lP
t0,...,k´2uu and for all ps,aqPSˆA let us define:

dπQkps,aq“ sup
fPQk

ˇ

ˇ

ˇ

ˇ

ż

S

ż

A

`

Pπpds1,da1|s,aq´P δpds1,da1|s,aq
˘

fps1,a1q

ˇ

ˇ

ˇ

ˇ

.

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

Then, for any ρPPpSˆAq, pě1, and kPNě1, it holds that:

}Qπ´Qπk}p,ρď
γp1´γk´1q

p1´γqp1´γkq

›

›dπQk
›

›

p,ηρ,πk
,

where ηρ,πk PPpSˆAq is a probability measure defined for
any measurable set BĎSˆA as:

ηρ,πk pBq“ p1´γqp1´γ
kq

γp1´γk´1q

ÿ

iPN
i mod k‰0

γi
´

ρpPπq
i´1

¯

pBq.

The bound shows that the Q-function difference depends on
the discrepancy dπQk between the transition-kernel Pπ and
the corresponding persistent version P δ , which is a form of
integral probability metric (Müller, 1997), defined in terms
of the set Qk. This term is averaged with the distribution
ηρ,πk , which encodes the (discounted) probability of visiting
a state-action pair, ignoring the visitations made at decision
steps i that are multiple of the persistence k. Indeed, in those
steps, we play policy π regardless of whether persistence
is used.3 The dependence on k is represented in the term
1´γk´1

1´γk
. When kÑ1 this term displays a linear growth in

k, being asymptotic to pk´1qlog 1
γ , and, clearly, vanishes

for k“1. Instead, when kÑ8 this term tends to 1.

If no structure on the MDP/policy is enforced, the dissim-
ilarity term dπQk may become large enough to make the
bound vacuous, i.e., larger than γRmax

1´γ , even for k“2 (see
Appendix B.1). Intuitively, since the persistence will exe-
cute old actions in new states, we need to guarantee that the
environment state changes slowly w.r.t. to time and the pol-
icy must play similar actions in similar states. This means
that if an action is good in a state, it will also be almost
good for states encountered in the near future. Although the
condition on π is directly enforced by Assumption 2.2, we
need a new notion of regularity over time for the MDP.

Assumption 4.1. Let M be an MDP. M is LT –Time-
Lipschitz Continuous (LT –TLC) if for all ps,aqPSˆA:

W1pP p¨|s,aq,δsqďLT . (10)

This assumption requires that the Kantorovich distance be-
tween the distribution of the next state s1 and the determin-
istic distribution centered in the current state s is bounded
by LT , i.e., the system does not evolve “too fast” (see Ap-
pendix B.3). We can now state the following result.

Theorem 4.2. Let M be an MDP and πPΠ be a Marko-
vian stationary policy. Under Assumptions 2.1, 2.2,
and 4.1, if γmaxtLP`1,LP p1`Lπquă1 and if ρps,aq“
ρSpsqπpa|sq with ρSPPpSq, then for any kPNě1:

›

›dπQk
›

›

p,ηρ,πk
ďLQk rpLπ`1qLT`σps.

where σpp“supsPS
ş

A
ş

AdApa,a
1q
p
πpda|sqπpda1|sq, and

3ηρ,πk resambles the γ-discounted state-action distribution (Sut-
ton et al., 1999a), but ignoring the decision steps multiple of k.

LQk“
Lr

1´γmaxtLP`1,LP p1`Lπqu
.

Thus, the dissimilarity dπQk between Pπ and P δ can be
bounded with four terms. i) LQk is (an upper-bound of) the
Lipschitz constant of the functions in the set Qk. Indeed, un-
der Assumptions 2.1 and 2.2 we can reduce the dissimilatity
term to the Kantorivich distance (Lemma A.5):

dπQkps,aqďLQkW1

`

Pπp¨|s,aq,P δp¨|s,aq
˘

.

ii) pLπ`1q accounts for the Lipschitz continuity of the pol-
icy, i.e., policies that prescribe similar actions in similar
states have a small value of this quantity. iii) LT represents
the speed at which the environment state evolves over time.
iv) σp denotes the average distance (in Lp-norm) between
two actions prescribed by the policy in the same state. This
term is zero for deterministic policies and can be related to
the maximum policy variance (Lemma A.6). A more de-
tailed discussion on the conditions requested in Theorem 4.2
is reported in Appendix B.4.

5. Persistent Fitted Q-Iteration
In this section, we introduce an extension of Fitted Q-
Iteration (FQI, Ernst et al., 2005) that employs the notion of
persistence.4 Persisted Fitted Q-Iteration (PFQI(k)) takes
as input a target persistence kPNě1 and its goal is to ap-
proximate the k-persistent optimal action-value functionQ˚k .
Starting from an initial estimate Qp0q, at each iteration we
compute the next estimateQpj`1q by performing an approxi-
mate application of k-persistent Bellman optimal operator to
the previous estimate Qpjq, i.e., Qpj`1q«T˚k Q

pjq. In prac-
tice, we have two sources of approximation in this process:
i) the representation of the Q-function; ii) the estimation of
the k-persistent Bellman optimal operator. (i) comes from
the necessity of using functional space FĂBpSˆAq to
represent Qpjq when dealing with continuous state spaces.
(ii) derives from the approximate computation of T˚k which
needs to be estimated from samples.

Clearly, with samples collected in the k-persistent MDP
Mk, the process described above reduces to the standard
FQI. However, our algorithm needs to be able to estimate
Q˚k for different values of k, using the same dataset of
samples collected in the base MDP M (at persistence
1).5 For this purpose, we can exploit the decomposition
T˚k “pT

δqk´1T˚ of Theorem 3.1 to reduce a single applica-
tion of T˚k to a sequence of k applications of the 1-persistent
operators. Specifically, at each iteration j with j mod k“0,
given the current estimate Qpjq, we need to perform (in this
order) a single application of T˚ followed by k´1 applica-

4From now on, we assume that |A|ă`8.
5In real–world cases, we might be unable to interact with the

physical system to collect samples for any persistence k of interest.

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

Algorithm 1 Persistent Fitted Q-Iteration PFQI(k).
Input: k persistence, J number of iterations (J mod k“0),
Qp0q initial action-value function, F functional space, D“
tpSi,Ai,S

1
i,Riqu

n
i“1 batch samples

Output: greedy policy πpJq

for j“0,...,J´1 do
if j mod k“0 then
Y
pjq
i “ pT˚QpjqpSi,Aiq, i“1,...,n

else
Y
pjq
i “ pT δQpjqpSi,Aiq, i“1,...,n

end if

Qpj`1q
ParginffPF

›

›f´Y pjq
›

›

2

2,D

end for
πpJqpsqPargmaxaPAQ

pJq
ps,aq, @sPS

Phase 1

Phase 2

Phase 3

tions of T δ , leading to the sequence of approximations:

Qpj`1q«

#

T˚Qpjq if j mod k“0

T δQpjq otherwise
. (11)

In order to estimate the Bellman operators, we have ac-
cess to a dataset D“tpSi,Ai,S1i,Riquni“1 collected in the
base MDP M, where pSi,Aiq„ν, S1i„P p¨|Si,Aiq, Ri„
Rp¨|Si,Aiq, and νPPpSˆAq is a sampling distribution.
We employ D to compute the empirical Bellman opera-
tors (Farahmand, 2011) defined for f PBpSˆAq as:

p pT˚fqpSi,Aiq“Ri`γmaxaPAfpS
1
i,aq i“1,...,n

p pT δfqpSi,Aiq“Ri`γfpS
1
i,Aiq i“1,...,n.

These operators are unbiased conditioned to D (Farah-
mand, 2011): Erp pT˚fqpSi,Aiq|Si,Ais“pT˚fqpSi,Aiq
and Erp pT δfqpSi,Aiq|Si,Ais“pT δfqpSi,Aiq.

The pseudocode of PFQI(k) is summarized in Algorithm 1.
At each iteration j“0,...J´1, we first compute the target
values Y pjq by applying the empirical Bellman operators,
pT˚ or pT δ, on the current estimate Qpjq (Phase 1). Then,
we project the target Y pjq onto the functional space F by
solving the least squares problem (Phase 2):

Qpj`1qParginf
fPF

›

›

›
f´Y pjq

›

›

›

2

2,D
“

1

n

n
ÿ

i“1

ˇ

ˇ

ˇ
fpSi,Aiq´Y

pjq
i

ˇ

ˇ

ˇ

2

.

Finally, we compute the approximation of the optimal policy
πpJq, i.e., the greedy policy w.r.t. QpJq (Phase 3).

5.1. Theoretical Analysis

In this section, we present the computational complexity
analysis and the study of the error propagation in PFQI(k).

Computational Complexity The computational complex-
ity of PFQI(k) decreases monotonically with the persistence
k. Whenever applying pT δ, we need a single evaluation of
Qpjq, while |A| evaluations are needed for pT˚ due to the
max over A. Thus, the overall complexity of J iterations of

PFQI(k) with n samples, disregarding the cost of regression
and assuming that a single evaluation of Qpjq takes constant
time, is given by OpJnp1`p|A|´1q{kqq (Proposition A.1).

Error Propagation We now consider the error propagation
in PFQI(k). Given the sequence of Q-functions estimates
pQpjqqJj“0ĂF produced by PFQI(k), we define the approx-
imation error at each iteration j“0,...,J´1 as:

εpjq“

#

T˚Qpjq´Qpj`1q if j mod k“0

T δQpjq´Qpj`1q otherwise
. (12)

The goal of this analysis is to bound the distance between
the k–persistent optimal Q-function Q˚k and the Q-function
Qπ

pJq

k of the greedy policy πpJq w.r.t.QpJq, after J iterations
of PFQI(k). The following result extends Theorem 3.4
of Farahmand (2011) to account for action persistence.

Theorem 5.1 (Error Propagation for PFQI(k)). Let pě1,
kPNě1, JPNě1 with J mod k“0 and ρPPpSˆAq. Then
for any sequence pQpjqqJj“0ĂF uniformly bounded by
Qmaxď

Rmax

1´γ , the corresponding pεpjqqJ´1
j“0 defined in Equa-

tion (12) and for any rPr0,1s and qPr1,`8s it holds that:
›

›

›
Q˚k´Q

πpJq

k

›

›

›

p,ρ
ď

2γk

p1´γqp1´γkq

„

2

1´γ
γ
J
pRmax

`C
1
2p

VI,ρ,νpJ,r,qqE
1
2p pεp0q,...,εpJ´1q;r,qq

.

The expression of CVI,ρ,νpJ ;r,qq and Ep¨;r,qq can be found
in Appendix A.3.

We immediately observe that for k“1 we recover Theo-
rem 3.4 of Farahmand (2011). The term CVI,ρ,νpJ ;r,qq is
defined in terms of suitable concentrability coefficients (Def-
inition A.1) and encodes the distribution shift between the
sampling distribution ν and the one induced by the greedy
policy sequence pπpjqqJj“0 encountered along the execution
of PFQI(k). Ep¨;r,qq incorporates the approximation errors
pεpjqqJ´1

j“0 . In principle, it is hard to compare the values
of these terms for different persistences k since both the
greedy policies and the regression problems are different.
Nevertheless, it is worth noting that the multiplicative term
γk

1´γk
decreases in kPNě1. Thus, other things being equal,

the bound value decreases when increasing the persistence.

Thus, the trade-off in the choice of control frequency, which
motivates action persistence, can now be stated more for-
mally. We aim at finding the persistence kPNě1 that, for
a fixed J , allows learning a policy πpJq whose Q-function
Qπ

pJq

k is the closest to Q˚. Consider the decomposition:
›

›

›
Q˚´Qπ

pJq

k

›

›

›

p,ρ
ď}Q˚´Q˚k}p,ρ`

›

›

›
Q˚k´Q

πpJq

k

›

›

›

p,ρ
.

The term }Q˚´Q˚k}p,ρ accounts for the performance degra-
dation due to action persistence: it is algorithm–independent,
and it increases in k (Theorem 4.1). Instead, the second term
}Q˚k´Q

πpJq

k }p,ρ decreases with k and depends on the algo-

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

Algorithm 2 Heuristic Persistence Selection.
Input: batch samples D“tpSi0,Ai0,...,SiHi´1,A

i
Hi´1,S

i
Hi
qu
m
i“1,

set of persistences K, set of Q-function tQk :kPKu, regressor Reg
Output: approximately optimal persistence
rk

for kPK do
pJρk“

1
m

řm
i“1VkpS

i
0q

Use the Reg to get an estimate rQk of T˚k Qk
›

› rQk´Qk
›

›

1,D“
1

řm
i“1

Hi

řm
i“1

řHi´1
t“0 | rQkpS

i
t,A

i
tq´QkpS

i
t,A

i
tq|

end for
rkPargmaxkPKBk“

pJρk´
1

1´γk

›

› rQk´Qk
›

›

1,D .

rithm (Theorem 5.1). Unfortunately, optimizing their sum
is hard since the individual bounds contain terms that are
not known in general (e.g., Lipschitz constants, εpjq). The
next section proposes heuristics to overcome this problem.

6. Persistence Selection
In this section, we discuss how to select a persistence k
in a set KĂNě1 of candidate persistences, when we are
given a set of estimated Q-functions: tQk :kPKu.6 Each
Qk induces a greedy policy πk. Our goal is to find the
persistence kPK such that πk has the maximum expected
return in the corresponding k–persistent MDP Mk:

k˚Pargmax
kPK

Jρ,πkk , ρPPpSq. (13)

In principle, we could execute πk in Mk to get an estimate
of Jρ,πkk and employ it to select the persistence k. However,
in the batch setting, further interactions with the environ-
ment might be not allowed. On the other hand, directly using
the estimated Q-function Qk is inappropriate, since we need
to take into account how well Qk approximates Qπkk . This
trade–off is encoded in the following result, which makes
use of the expected Bellman residual.
Lemma 6.1. Let QPBpSˆAq and π be a greedy policy
w.r.t. Q. Let Jρ“

ş

ρpdsqV psq, with V psq“maxaPAQps,aq
for all sPS. Then, for any kPNě1, it holds that:

Jρ,πk ěJρ´
1

1´γk
}T˚k Q´Q}1,ηρ,π , (14)

where ηρ,π“p1´γkqρπ
`

Id´γkPπk
˘´1

, is the γ-
discounted stationary distribution induced by policy
π and distribution ρ in MDP Mk.

To get a usable bound, we need to make some simplifi-
cations. First, we assume that D„ν is composed of m
trajectories, i.e., D“tpSi0,Ai0,...,SiHi´1,A

i
Hi´1,S

i
Hi
qumi“1,

where Hi is the trajectory length and the initial states are
sampled as Si0„ρ. In this way, Jρ can be estimated from
samples as pJρ“ 1

m

řm
i“1V pS

i
0q. Second, since we are un-

able to compute expectations over ηρ,π, we replace it with

6For instance, the Qk can be obtained by executing PFQI(k)
with different persistences kPK.

the sampling distribution ν.7 Lastly, estimating the expected
Bellman residual is problematic since its empirical version
is biased (Antos et al., 2008). Thus, we resort to an ap-
proach similar to (Farahmand & Szepesvári, 2011), assum-
ing to have a regressor Reg able to output an approximation
rQk of T˚k Q. In this way, we replace }T˚k Q´Q}1,ν with

} rQk´Q}1,D (details in Appendix C). In practice, we set
Q“QpJq and we obtain rQk running PFQI(k) for k addi-
tional iterations, setting rQk“Q

pJ`kq. Thus, the procedure
(Algorithm 2) reduces to optimizing the index:

rkPargmax
kPK

Bk“ pJρk´
1

1´γk

›

›

›

rQk´Qk

›

›

›

1,D
. (15)

7. Related Works
In this section, we revise the works connected to persistence,
focusing on continuous–time RL and temporal abstractions.

Continuous–time RL Among the first attempts to extend
value–based RL to the continuous–time domain there is
advantage updating (Bradtke & Duff, 1994), in which Q-
learning (Watkins, 1989) is modified to account for infinites-
imal control timesteps. Instead of storing the Q-function,
the advantage function Aps,aq“Qps,aq´V psq is recorder.
The continuous time is addressed in Baird (1994) by means
of the semi-Markov decision processes (Howard, 1963) for
finite–state problems. The optimal control literature has
extensively studied the solution of the Hamilton-Jacobi-
Bellman equation, i.e., the continuous–time counterpart of
the Bellman equation, when assuming the knowledge of
the environment (Bertsekas, 2005; Fleming & Soner, 2006).
The model–free case has been tackled by resorting to time
(and space) discretizations (Peterson, 1993), with also con-
vergence guarantees (Munos, 1997; Munos & Bourgine,
1997), and coped with function approximation (Dayan &
Singh, 1995; Doya, 2000). More recently, the sensitivity
of deep RL algorithm to the time discretization has been
analyzed in Tallec et al. (2019), proposing an adaptation of
advantage updating to deal with small time scales, that can
be employed with deep architectures.

Temporal Abstractions The notion of action persistence
can be seen as a form of temporal abstraction (Sutton
et al., 1999b; Precup, 2001). Temporally extended actions
have been extensively used in the hierarchical RL litera-
ture to model different time resolutions (Singh, 1992a;b),
subgoals (Dietterich, 1998), and combined with the actor–
critic architectures (Bacon et al., 2017). Persisting an action
is a particular instance of a semi-Markov option, always
lasting k steps. According to the flat option representa-
tion (Precup, 2001), we have as initiation set I“S the set
of all states, as internal policy the policy that plays deter-

7This introduces a bias that is negligible if }ηρ,π{ν}
8
«1 (de-

tails in Appendix C.1).

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

Table 1. Results of PFQI in different environments and persistences. For each persistence k, we report the sample mean and the standard
deviation of the estimated return of the last policy pJ

ρ,πk
k . For each environment, the persistence with highest average performance and the

ones not statistically significantly different from that one (Welch’s t-test with pă0.05) are in bold. The last column reports the mean and
the standard deviation of the performance loss δ between the optimal persistence and the one selected by the index Bk (Equation (15)).

Environment Expected return at persistence k (pJρ,πkk , mean˘ std) Performance loss
k“1 k“2 k“4 k“8 k“16 k“32 k“64 (δ mean˘ std)

Cartpole 169.9˘5.8 176.5˘5.0 239.5˘4.4 10.0˘0.0 9.8˘0.0 9.8˘0.0 9.8˘0.0 0.0˘0.0
MountainCar ´111.1˘1.5 ´103.6˘1.6 ´97.2˘2.0 ´93.6˘2.1 ´94.4˘1.8 ´92.4˘1.5 ´136.7˘0.9 1.88˘0.85
LunarLander ´165.8˘50.4 ´12.8˘4.7 1.2˘3.6 2.0˘3.4 ´44.1˘6.9 ´122.8˘10.5 ´121.2˘8.6 2.12˘4.21
Pendulum ´116.7˘16.7 ´113.1˘16.3 ´153.8˘23.0 ´283.1˘18.0 ´338.9˘16.3 ´364.3˘22.1 ´377.2˘21.7 3.52˘0.0
Acrobot ´89.2˘1.1 ´82.5˘1.7 ´83.4˘1.3 ´122.8˘1.3 ´266.2˘1.9 ´287.3˘0.3 ´286.7˘0.6 0.80˘0.27
Swimmer 21.3˘1.1 25.2˘0.8 25.0˘0.5 24.0˘0.3 22.4˘0.3 12.8˘1.2 14.0˘0.2 2.69˘1.71
Hopper 58.6˘4.8 61.9˘4.2 62.2˘1.7 59.7˘3.1 60.8˘1.0 66.7˘2.7 73.4˘1.2 5.33˘2.32
Walker 2D 61.6˘5.5 37.6˘4.0 62.7˘18.2 80.8˘6.6 102.1˘19.3 91.5˘13.0 97.2˘17.6 5.10˘3.74

ministically the action taken when the option was initiated,
i.e., the k–persistent policy, and as termination condition
whether k timesteps have passed after the option started, i.e.,
βpHtq“1tt mod k“0u. Interestingly, in Mann et al. (2015)
an approximate value iteration procedure for options lasting
at least a given number of steps is proposed and analyzed.
This approach shares some similarities with action persis-
tence. Nevertheless, we believe that the option framework
is more general and usually the time abstractions are related
to the semantic of the tasks, rather than based on the modifi-
cation of the control frequency, like action persistence.

8. Experimental Evaluation
In this section, we provide the empirical evaluation of PFQI,
with the threefold goal: i) proving that a persistence ką1
can boost learning, leading to more profitable policies, ii)
assessing the quality of our persistence selection method,
and iii) studying how the batch size influences the perfor-
mance of PFQI policies for different persistences. Refer to
Appendix D for detailed experimental settings.

We train PFQI, using extra-trees (Geurts et al., 2006) as a
regression model, for J iterations and different values of
k, starting with the same dataset D collected at persistence
1. To compare the performance of the learned policies πk
at the different persistences, we estimate their expected re-
turn Jρ,πkk in the corresponding MDP Mk. Table 1 shows
the results for different continuous environments and differ-
ent persistences averaged over 20 runs and highlighting in
bold the persistence with the highest average performance
and the ones that are not statistically significantly differ-
ent from that one. Across the different environments we
observe some common trends in line with our theory: i)
persistence 1 rarely leads to the best performance; ii) ex-
cessively increasing persistence prevents the control at all.
In Cartpole (Barto et al., 1983), we easily identify a persis-
tence (k“4) that outperforms all the others. In the Lunar
Lander (Brockman et al., 2016) persistences kPt4,8u are
the only ones that lead to positive return (i.e., the lander

does not crash) and in the Acrobot domain (Geramifard
et al., 2015) we identify kPt2,4u as optimal persistences.
A qualitatively different behavior is displayed in Mountain
Car (Moore, 1991), Pendulum (Brockman et al., 2016), and
Swimmer (Coulom, 2002), where we observe a plateau of
three persistences with similar performance. An explanation
for this phenomenon is that, in those domains, the optimal
policy tends to persist actions on its own, making the differ-
ence less evident. Intriguingly, the more complex Mujoco
domains, like Hopper and Walker 2D (Erickson et al., 2019),
seem to benefit from the higher persistences.

To test the quality of our persistence selection method, we
compare the performance of the estimated optimal persis-
tence, i.e., the one with the highest estimated expected return
pkPargmax pJρ,πkk , and the performance of the persistence
rk selected by maximizing the index Bk (Equation (15)).
For each run i“1,...,20, we compute the performance loss
δi“ pJ

ρ,π
pk

pk
´ pJ

ρ,π
rki

rki
and we report it in the last column of

Table 1. In the Cartpole experiment, we observe a zero
loss, which means that our heuristic always selects the op-
timal persistence (k“4). Differently, non–zero loss occurs
in the other domains, which means that sometimes the in-
dex Bk mispredicts the optimal persistence. Nevertheless,
in almost all cases the average performance loss is signifi-
cantly smaller than the magnitude of the return, proving the
effectiveness of our heuristics.

In Figure 2, we show the learning curves for the Cartpole ex-
periment, highlighting the components that contribute to the
index Bk. The first plot reports the estimated expected re-
turn pJρ,πkk , obtained by averaging 10 trajectories executing
πk in the environment Mk, which confirms that k“4 is the
optimal persistence. The second plot shows the estimated
return pJρk obtained by averaging the Q-function Qk learned
with PFQI(k), over the initial states sampled from ρ. We
can see that for kPt1,2u, PFQI(k) tends to overestimate the
return, while for k“4 we notice a slight underestimation.
The overestimation phenomenon can be explained by the
fact that with small persistences we perform a large number

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

0 200 400

0

100

200

Iteration

E
xp

ec
te

d
re

tu
rn

Ĵ
ρ
,π
k

k

0 200 400

0

100

200

300

Iteration

E
st

im
at

ed
re

tu
rn

Ĵ
ρ k

0 200 400

0

2

4

6

8

Iteration

‖Q̃
k
−

Q
k
‖ 1
,D

0 200 400

−400

−200

0

Iteration

In
de

x
B
k

k = 1 k = 2 k = 4 k = 8 k = 16

Figure 2. Expected return pJ
ρ,πk
k , estimated return pJρk , estimated expected Bellman residual } rQk´Qk}1,D , and persistence selection index

Bk in the Cartpole experiment as a function of the number of iterations for different persistences. 20 runs, 95 % c.i.

10 30 50 100 200 400

−20

0

20

40

Batch Size n

E
xp

ec
te

d
re

tu
rn

Ĵ
ρ
,π
k

k

k = 1 k = 2

k = 4 k = 8

Figure 3. Expected return pJ
ρ,πk
k in the Trading experiment as a

function of the batch size. 10 runs, 95 % c.i.

of applications of the operator pT˚, which involves a maxi-
mization over the action space, injecting an overestimation
bias. By combining this curve with the expected Bellman
residual (third plot), we get the value of our persistence
selection index Bk (fourth plot). Finally, we observe that
Bk correctly ranks persistences 4 and 8, but overestimates
persistences 8 and 16, compared to persistence 1.

To analyze the effect of the batch size, we run PFQI on
the Trading environment (see Appendix D.4) varying the
number of sampled trajectories. In Figure 3, we notice that
the performance improves as the batch size increases, for
all persistences. Moreover, we observe that if the batch size
is small (nPt10,30,50u), higher persistences (kPt2,4,8u)
result in better performances, while for larger batch sizes,
k“1 becomes the best choice. Since data is taken from real
market prices, this environment is very noisy, thus, when
the amount of samples is limited, PFQI can exploit higher
persistences to mitigate the poor estimation.

9. Open Questions
Improving Exploration with Persistence We analyzed
the effect of action persistence on FQI with a fixed dataset,
collected in the base MDP M. In principle, samples can be
collected at arbitrary persistence. We may wonder how well
the same sampling policy (e.g., the uniform policy over A),
executed at different persistences, explores the environment.
For instance, in Mountain Car, high persistences increase

the probability of reaching the goal, generating more infor-
mative datasets (preliminary results in Appendix E.1).

Learn in Mk and execute in Mk1 Deploying each policy
πk in the corresponding MDP Mk allows for some guar-
antees (Lemma 6.1). However, we empirically discovered
that using πk in an MDP Mk1 with smaller persistence k1

sometimes improves its performance. (preliminary results
in Appendix E.2). We wonder what regularity conditions on
the environment are needed to explain this phenomenon.

Persistence in On–line RL Our approach focuses on batch
off–line RL. However, the on–line framework could open
up new opportunities for action persistence. Specifically, we
could dynamically adapt the persistence (and so the control
frequency) to speed up learning. Intuition suggests that we
should start with a low frequency, reaching a fairly good
policy with few samples, and then increase it to refine the
learned policy.

10. Discussion and Conclusions
In this paper, we formalized the notion of action persistence,
i.e., the repetition of a single action for a fixed number k
of decision epochs, having the effect of altering the control
frequency of the system. We have shown that persistence
leads to the definition of new Bellman operators and that
we are able to bound the induced performance loss, under
some regularity conditions on the MDP. Based on these
considerations, we presented and analyzed a novel batch RL
algorithm, PFQI, able to approximate the value function at
a given persistence. The experimental evaluation justifies
the introduction of persistence, since reducing the control
frequency can lead to an improvement when dealing with
a limited number of samples. Furthermore, we introduced
a persistence selection heuristic, which is able to identify
good persistence in most cases. We believe that our work
makes a step towards understanding why repeating actions
may be useful for solving complex control tasks. Numerous
questions remain unanswered, leading to several appealing
future research directions.

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

Acknowledgements
The research was conducted under a cooperative agreement
between ISI Foundation, Banca IMI and Intesa Sanpaolo
Innovation Center.

References
Antos, A., Szepesvári, C., and Munos, R. Learning

near-optimal policies with bellman-residual minimiza-
tion based fitted policy iteration and a single sample
path. Machine Learning, 71(1):89–129, 2008. doi:
10.1007/s10994-007-5038-2.

Bacon, P., Harb, J., and Precup, D. The option-critic ar-
chitecture. In Singh, S. P. and Markovitch, S. (eds.),
Proceedings of the Thirty-First AAAI Conference on Ar-
tificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, pp. 1726–1734. AAAI Press, 2017.

Baird, L. C. Reinforcement learning in continuous time:
Advantage updating. In Proceedings of 1994 IEEE In-
ternational Conference on Neural Networks (ICNN’94),
volume 4, pp. 2448–2453. IEEE, 1994.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuron-
like adaptive elements that can solve difficult learning
control problems. IEEE Trans. Systems, Man, and Cyber-
netics, 13(5):834–846, 1983. doi: 10.1109/TSMC.1983.
6313077.

Bertsekas, D. P. Dynamic programming and optimal control,
3rd Edition. Athena Scientific, 2005. ISBN 1886529264.

Bertsekas, D. P. and Shreve, S. Stochastic optimal control:
the discrete-time case. 2004.

Bradtke, S. J. and Duff, M. O. Reinforcement learning
methods for continuous-time markov decision problems.
In Tesauro, G., Touretzky, D. S., and Leen, T. K. (eds.),
Advances in Neural Information Processing Systems 7,
[NIPS Conference, Denver, Colorado, USA, 1994], pp.
393–400. MIT Press, 1994.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Coulom, R. Reinforcement Learning Using Neural Net-
works, with Applications to Motor Control. (Apprentis-
sage par renforcement utilisant des réseaux de neurones,
avec des applications au contrôle moteur). PhD thesis,
Grenoble Institute of Technology, France, 2002.

Dayan, P. and Singh, S. P. Improving policies without
measuring merits. In Touretzky, D. S., Mozer, M., and
Hasselmo, M. E. (eds.), Advances in Neural Information
Processing Systems 8, NIPS, Denver, CO, USA, November
27-30, 1995, pp. 1059–1065. MIT Press, 1995.

Dietterich, T. G. The MAXQ method for hierarchical rein-
forcement learning. In Shavlik, J. W. (ed.), Proceedings
of the Fifteenth International Conference on Machine
Learning (ICML 1998), Madison, Wisconsin, USA, July
24-27, 1998, pp. 118–126. Morgan Kaufmann, 1998.

Doya, K. Reinforcement learning in continuous time and
space. Neural Computation, 12(1):219–245, 2000. doi:
10.1162/089976600300015961.

Erickson, Z. M., Gangaram, V., Kapusta, A., Liu, C. K.,
and Kemp, C. C. Assistive gym: A physics simulation
framework for assistive robotics. CoRR, abs/1910.04700,
2019.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. J. Mach. Learn. Res., 6:
503–556, 2005.

Farahmand, A., Nikovski, D. N., Igarashi, Y., and Konaka,
H. Truncated approximate dynamic programming with
task-dependent terminal value. In Schuurmans, D. and
Wellman, M. P. (eds.), Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, pp. 3123–3129. AAAI
Press, 2016.

Farahmand, A. M. Regularization in Reinforcement Learn-
ing. PhD thesis, University of Alberta, 2011.

Farahmand, A. M. and Szepesvári, C. Model selection in
reinforcement learning. Machine Learning, 85(3):299–
332, 2011. doi: 10.1007/s10994-011-5254-7.

Fleming, W. H. and Soner, H. M. Controlled Markov pro-
cesses and viscosity solutions, volume 25. Springer Sci-
ence & Business Media, 2006.

Geramifard, A., Dann, C., Klein, R. H., Dabney, W., and
How, J. P. Rlpy: a value-function-based reinforcement
learning framework for education and research. J. Mach.
Learn. Res., 16:1573–1578, 2015.

Geurts, P., Ernst, D., and Wehenkel, L. Extremely random-
ized trees. Machine Learning, 63(1):3–42, 2006. doi:
10.1007/s10994-006-6226-1.

Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. A
Distribution-Free Theory of Nonparametric Regression.
Springer series in statistics. Springer, 2002. ISBN 978-0-
387-95441-7. doi: 10.1007/b97848.

Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and
Levine, S. Learning to walk via deep reinforcement
learning. In Bicchi, A., Kress-Gazit, H., and Hutchinson,
S. (eds.), Robotics: Science and Systems XV, University
of Freiburg, Freiburg im Breisgau, Germany, June 22-26,
2019, 2019. doi: 10.15607/RSS.2019.XV.011.

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

Howard, R. A. Semi-markov decision-processes. Bulletin
of the International Statistical Institute, 40(2):625–652,
1963.

Jiang, N., Kulesza, A., Singh, S. P., and Lewis, R. L. The
dependence of effective planning horizon on model ac-
curacy. In Kambhampati, S. (ed.), Proceedings of the
Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pp. 4180–4189. IJCAI/AAAI Press, 2016.

Kilinc, O., Hu, Y., and Montana, G. Reinforcement learn-
ing for robotic manipulation using simulated locomotion
demonstrations. CoRR, abs/1910.07294, 2019.

Kober, J. and Peters, J. Learning Motor Skills - From Al-
gorithms to Robot Experiments, volume 97 of Springer
Tracts in Advanced Robotics. Springer, 2014. ISBN
978-3-319-03193-4. doi: 10.1007/978-3-319-03194-1.

Lakshminarayanan, A. S., Sharma, S., and Ravindran, B.
Dynamic action repetition for deep reinforcement learn-
ing. In Singh, S. P. and Markovitch, S. (eds.), Proceedings
of the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, California,
USA, pp. 2133–2139. AAAI Press, 2017.

Lange, S., Gabel, T., and Riedmiller, M. A. Batch rein-
forcement learning. In Wiering, M. and van Otterlo, M.
(eds.), Reinforcement Learning, volume 12 of Adaptation,
Learning, and Optimization, pp. 45–73. Springer, 2012.
doi: 10.1007/978-3-642-27645-3z 2.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In Bengio, Y. and Le-
Cun, Y. (eds.), 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

Luenberger, D. G. Introduction to dynamic systems; theory,
models, and applications. Technical report, New York:
John Wiley & Sons, 1979.

Mann, T. A., Mannor, S., and Precup, D. Approximate value
iteration with temporally extended actions. J. Artif. Intell.
Res., 53:375–438, 2015. doi: 10.1613/jair.4676.

Metelli, A. M., Mutti, M., and Restelli, M. Configurable
markov decision processes. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 3488–3497.
PMLR, 2018.

Metelli, A. M., Ghelfi, E., and Restelli, M. Reinforcement
learning in configurable continuous environments. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings
of the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning
Research, pp. 4546–4555. PMLR, 2019.

Moore, A. W. Efficient memory based learning for robot
control. PhD Thesis, Computer Laboratory, University
of Cambridge, 1991.

Müller, A. Integral probability metrics and their generating
classes of functions. Advances in Applied Probability, 29
(2):429–443, 1997.

Munos, R. A convergent reinforcement learning algorithm
in the continuous case based on a finite difference method.
In Proceedings of the Fifteenth International Joint Confer-
ence on Artificial Intelligence, IJCAI 97, Nagoya, Japan,
August 23-29, 1997, 2 Volumes, pp. 826–831. Morgan
Kaufmann, 1997.

Munos, R. Performance bounds in lp-norm for approximate
value iteration. SIAM journal on control and optimization,
46(2):541–561, 2007.

Munos, R. and Bourgine, P. Reinforcement learning for
continuous stochastic control problems. In Jordan, M. I.,
Kearns, M. J., and Solla, S. A. (eds.), Advances in Neural
Information Processing Systems 10, [NIPS Conference,
Denver, Colorado, USA, 1997], pp. 1029–1035. The MIT
Press, 1997.

Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. J. Mach. Learn. Res., 9:815–857, 2008.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res., 12:2825–2830, 2011.

Peters, J. and Schaal, S. Reinforcement learning of motor
skills with policy gradients. Neural Networks, 21(4):
682–697, 2008. doi: 10.1016/j.neunet.2008.02.003.

Peterson, J. K. On-line estimation of the optimal value func-
tion: Hjb-estimators. In Advances in Neural Information
Processing Systems, pp. 319–326, 1993.

Petrik, M. and Scherrer, B. Biasing approximate dynamic
programming with a lower discount factor. In Koller,
D., Schuurmans, D., Bengio, Y., and Bottou, L. (eds.),
Advances in Neural Information Processing Systems 21,
Proceedings of the Twenty-Second Annual Conference
on Neural Information Processing Systems, Vancouver,

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

British Columbia, Canada, December 8-11, 2008, pp.
1265–1272. Curran Associates, Inc., 2008.

Pirotta, M., Restelli, M., and Bascetta, L. Policy gradi-
ent in lipschitz markov decision processes. Machine
Learning, 100(2-3):255–283, 2015. doi: 10.1007/
s10994-015-5484-1.

Precup, D. Temporal abstraction in reinforcement learning.
PhD thesis, University of Massachusetts Amherst, 2001.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
2014.

Rachelson, E. and Lagoudakis, M. G. On the locality of
action domination in sequential decision making. In Inter-
national Symposium on Artificial Intelligence and Math-
ematics, ISAIM 2010, Fort Lauderdale, Florida, USA,
January 6-8, 2010, 2010.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., and
Moritz, P. Trust region policy optimization. In Bach,
F. R. and Blei, D. M. (eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pp. 1889–1897.
JMLR.org, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

Singh, S. P. Reinforcement learning with a hierarchy of
abstract models. In Proceedings of the National Confer-
ence on Artificial Intelligence, number 10, pp. 202. JOHN
WILEY & SONS LTD, 1992a.

Singh, S. P. Scaling reinforcement learning algorithms by
learning variable temporal resolution models. In Ma-
chine Learning Proceedings 1992, pp. 406–415. Elsevier,
1992b.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Man-
sour, Y. Policy gradient methods for reinforcement learn-
ing with function approximation. In Solla, S. A., Leen,
T. K., and Müller, K. (eds.), Advances in Neural Informa-
tion Processing Systems 12, [NIPS Conference, Denver,
Colorado, USA, November 29 - December 4, 1999], pp.
1057–1063. The MIT Press, 1999a.

Sutton, R. S., Precup, D., and Singh, S. P. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artif. Intell., 112(1-2):181–211,
1999b. doi: 10.1016/S0004-3702(99)00052-1.

Tallec, C., Blier, L., and Ollivier, Y. Making deep q-learning
methods robust to time discretization. In Chaudhuri, K.
and Salakhutdinov, R. (eds.), Proceedings of the 36th
International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pp. 6096–6104. PMLR, 2019.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Watkins, C. J. C. H. Learning from delayed rewards. PhD
thesis, King’s College, University of Cambridge, 1989.

