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Abstract. The asset management of an insurance company is more
complex than traditional portfolio management due to the presence of
obligations that the insurance company must fulfill toward the clients.
These obligations, commonly referred to as liabilities, are payments
whose magnitude and occurrence are a byproduct of insurance contracts
with the clients, and of portfolio performances.

In particular, while clients must be refunded in case of adverse events,
such as car accidents or death, they also contribute to a common financial
portfolio to earn annual returns. Customer withdrawals might increase
whenever these returns are too low or, in the presence of an annual min-
imum guaranteed, the company might have to integrate the difference.
Hence, in this context, any investment strategy cannot omit the inter-
dependency between financial assets and liabilities.

To deal with this problem, we present a stochastic model that com-
bines portfolio returns with the liabilities generated by the insurance
products offered by the company. Furthermore, we propose a risk-
adjusted optimization problem to maximize the capital of the company
over a pre-determined time horizon.

Since traditional financial tools are inadequate for such a setting, we
develop the model as a Markov Decision Process. In this way, we can use
Reinforcement Learning algorithms to solve the underlying optimization
problem. Finally, we provide experiments that show how the optimal
asset allocation can be found by training an agent with the algorithm
Deep Deterministic Policy Gradient.

Keywords: Reinforcement learning · Portfolio allocation

1 Introduction

Portfolio management is a core activity in finance, whereby an entity, such as a
fund manager or an insurance company, oversees the investments of its clients
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to meet some agreed-upon financial objectives. In the context of an insurance
company (henceforth simply referred to as ‘company’), the clients not only con-
tribute premiums to a common fund to buy assets, but also acquire the right
to be paid in case of certain events (e.g., death in the case of a life insurance
policy). Therefore, the company has to manage not only the assets, but also the
liabilities deriving from the insurance. This combination of asset-liability man-
agement, and their inter-dependency, is one of the reasons why the insurance
case is more complex than traditional portfolio management.

In this paper, we consider the problem of a company that handles insurance
products for its clients, and wishes to optimize the risk-adjusted returns of the
investment portfolio, while at the same time ensuring that its future liabilities are
covered despite possible market fluctuations. These liabilities can be stochastic,
and are usually correlated to some of the assets available to the company. In
this scenario, one cannot just optimize for the risk-adjusted return, rather the
investment portfolio has also to match the liabilities, and in particular their due
dates. Finally, in a life insurance setting, the time horizon of the problem is
relatively long (e.g., 30 years), and the portfolio gets rebalanced sporadically.

Commonly used financial tools for asset allocation such as Modern Portfolio
Theory (MPT) [17] are inadequate for the considered setting. First, Markowitz’s
theory does not take into account liabilities and the future negative cash flows
they generate. Second, it assumes a single decision point where the portfolio is
optimized. While the methodology can be repeatedly applied at each decision
point, it fails to take account for the path dependency of the problem: previous
choices affect later ones. For instance, the decision to buy a risky asset early on
in the lifetime of the fund might affect the ability to face negative cash flows later
on, and thus inform a more conservative strategy. Clearly, an optimal strategy
needs to take into account the whole decision space of the problem, i.e., the
whole sequence of decisions (asset allocations) that lead to the final outcome.

Given the stochastic nature of markets and the multi-period decision nature
of the problem, it is only natural to use a Markov Decision Process (MDP) as
a model. An MDP is an extension of a Markov chain (a stochastic model of a
sequence of events) that allows for account possible actions so that the stochastic
outcomes are partly under the control of a ‘decision maker’. The system moves in
discrete steps from a state s to a new state s′ according to some transition prob-
ability Pa(s, s′), which also depends on the action a taken. The transition gener-
ates a reward Ra(s, s′), and the goal is to find an optimal policy, i.e., a (stochastic)
mapping of states to actions, such that the expected reward is maximized.

While there are several possible ways to solve an MDP, such as linear and
dynamic programming [5], for large systems Reinforcement Learning (RL) is the
de-facto standard tool to tackle the problem [26].

The contributions of this paper can be summarized as follows:

• We describe, formalize, and implement a realistic model of the asset-liability
management process for an insurance company as a Markov Decision Process.
The action space of the model is particularly challenging to explore, as each
action can be sampled from a continuous k−1 simplex (where k is the number
of available assets).
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• We adapt a well-known algorithm for deep reinforcement learning for con-
tinuous action spaces (DDPG [14]) to our problem. To do so, we employ
several techniques that are necessary for a quick and stable convergence: a
warm-up stage to pre-train the critic network, a modification to the explo-
ration policy to maintain important structural constraints of the problem,
and a careful crafting of the reward function to implement domain-specific,
parametric asset allocation constraints.

• We show experimentally that our solution is able to outperform a traditional
mean-variance optimization baseline computed via Monte-Carlo sampling.

2 Problem Definition

This section provides a detailed description of the inner workings of a life-
insurance company. We begin with a description of the mathematical model
underlying the financial evolution of the company. Then, we provide a brief
description of the implementation in terms of components and their interaction.
Finally, we formalize the optimization problem. The Appendix includes further
details about the components described in this Section.

The problem consists in optimizing the investments of an insurance company
in order to maximize the profits. On the one side, the company manages a
segregated fund that handles a portfolio of assets of different nature (equity,
bonds, cash). On the other side, the company sells insurance products that
differ from each other in their client characterization (in terms of age, behavioral
properties such as the probability to pay premiums), and the percentage of the
profits owed to the client from the returns generated by the segregated fund
during the year. Irrespective of the profits generated by the portfolio, policies
usually stipulate a guaranteed minimum return on investment for the clients.
This minimum, referred to as Minimum Annual Yield (MAY) and denoted with
κ, is particularly important because the insurance company must integrate the
amount whenever the returns of the segregated fund are not able to meet the
MAY. Conversely, the insurance company is allowed to take part of the Surplus
(SP), by retaining a fixed spread over the surplus, or a fraction of it.

The profit of the company consists of the residual surplus once all the cash
flows of the policies have been paid off. These payments, referred to as liabilities,
are a consequence of several factors such as: insurance claims, and integration to
reach the MAY. Liabilities depend on the type of insurance policy, but are also
connected to the profits generated during the year for the client. For instance,
the probability of client withdrawal may be affected by the amount of profits
generated by the fund. To cover the liabilities, every insurance product is asso-
ciated with reserves, which represent the value of the outstanding liabilities.
Unused reserves contribute to the profits of the company.

2.1 Formalization

Our goal is to optimize the asset-liability management of the fund given an
economic scenario, over a finite time horizon in [0, T ] divided into discrete slots
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of one year. This scenario is a stochastic process which describes the financial
market, based on existing models whose parameters are calibrated by using
historical data. The model which generates the scenario is a black box from
the point of view of the optimization, and can only be queried to generate a
new realization from the process. Each realization from the process provides the
information necessary to characterize the financial assets along the considered
time interval. These random variables describe Key Financial Indicators(KFI)
such as equity indexes, interest rates, and market spreads. Therefore:

Definition 1. An Economy is a realization of KFIs from the stochastic process
E which defines the economic scenario.

We assume a set of financial asset classes, denoted with C and indexed from
1 to |C|, that can be exchanged during the considered time horizon. Assets of
each class are created at every time unit by combining a set of basic properties
specific of the asset class with their corresponding KFIs. The creation of an
asset corresponds to the definition of the minimal set of terms that allow for its
accounting.

Definition 2. An asset is a tuple composed of seven terms Y = 〈c, t0, p0, tp,m,
r, χ〉:
• c ∈ C the class of the asset;
• t0 ∈ [−∞, T ] the issue time (can be arbitrarily back in time);
• p0 ∈ R the issue price, the market price of the asset at the moment of creation;
• tp ∈ [−∞, T ] the purchase time (can be arbitrarily back in time);
• m ∈ [0,M ] the remaining maturity of the asset;
• r ∈ R the redeem value of the asset;
• χ ∈ R

M a vector of coupons paid every year by the asset up to maturity
(maximum maturity M).

The accounting of any single asset Y at a given time t requires four basic
functions: market value fMV (t, Y ), book value fBV (t, Y ), cash-flow fCF (t, Y ),
and generated income fGI(t, Y ). The collection of assets owned by the fund at
time t is the portfolio.

Definition 3. The portfolio is a multiset P(t) = {Y1 : n1, Y2 : n2, . . . } where
every Yi is an asset that has not been sold yet and has tpi ≤ t < tpi +mi (purchased
before t and not expired yet), and ni ∈ R is its nominal amount, i.e., how many
units of that asset the portfolio contains.

The accounting functions listed above apply to the portfolio as the sum of the
function applied to each asset weighted by its nominal amount. To disambiguate
the notation, we use the letter g to denote the functions applied to the portfolio
while we keep the letter f for the functions applied to a single asset. As an
example, the market value applied to the portfolio corresponds to gMV (t).

The contribution of a single asset class c to the portfolio value is calculated
as follows:

Ac(t) =

∑
Yi∈P(t)|ci=c ni · fMV (t, Yi)

gMV (t)
. (1)



Reinforcement Learning for Portfolio Allocation 241

Definition 4. We define the asset allocation at time t as a vector A(t) =
〈A1(t), A2(t), . . . , A|C|(t)〉.
The portfolio is modified by means of selling and buying functions that
take in input the current portfolio P(t) and a target asset allocation Xt =
〈X1,X2, . . . , X|C|〉.

Selling is performed first in order to free resources to buy new assets. Selling is
guided by a projection function gsell(P(t),Xt) that returns in output a multiset
S = {Y1 : s1, Y2 : s2, . . .} which contain the nominal amount of each asset in
the portfolio that has to be sold in order to move the asset allocation toward
X. Thus, after the selling actions, the nominal amount of every asset Yi ∈ P(t)
is equal to ni − si. The purchase of new assets is done in a similar way by
using a projection function gbuy(P(t),Xt) that provides a multiset of new assets
{Ỹ1 : nb

1, Ỹ2 : nb
1, . . . , Ỹk : nb

k} bought from the market where nb
i is the nominal

amount of the asset to be added to the portfolio.
Putting all together, we can derive the portfolio at the next time step as:

P(t + 1) = (P(t) \ gsell(P(t),Xt)) ∪ gbuy(P(t),Xt). (2)

In order to complete the functions necessary to describe the segregated fund,
let us define the capital gain of the portfolio at time t as follows:

gCG(t, S) =
∑

Yi∈P(t)

si · (fMV (t, Yi) − fBV (t, Yi)), (3)

and the portfolio return as gPR(t, S) = gGI(t)+gCG(t,S)
1/2(gBV (t−1)+gBV (t)) . The insurance com-

pany has to face liabilities in the form of insurance claims due to deaths and
client withdrawal from the contract (surrender). Each insurance product guaran-
tees different benefits to the clients. Hence, its liabilities affect the profits of the
company differently from those of another product. For this reason, we assume
that the ith insurance product is completely described in terms of the negative
cash flow generated by the product.

Definition 5. The i-th insurance product is a function qNF (Zi,R(t)) which
determines the negative cash flow generated by the product as function of a set
of parameters Zi and the set of portfolio returns R(t) for time t ∈ [1, T ].

The market value of the portfolio is monitored yearly and adjusted every
time it moves outside a certain range in comparison with a projection of the
(discounted) liabilities in the future, denoted by qDL(t).

Adjustments are capital injections/ejections that corresponds to loans. Let
gCI(t) be the function that determines the amount of cash that is paid or earned
at time t by applying the interest rate φinj

t to the open loans plus an additional
penalty ε for cash injections. Finally, we can define the return on capital at
time t as gR(t) = gCA(t)−gCA(t−1)

gCA(t−1) where gCA(t) = gMV (t) − qDL(t) − (gMV (0) −
qDL(0)) + gIJ (t) is the fund capital gain, net of the overall discounted liabilities
and the total injection gIJ (t) which corresponds to of the sum all the capital
adjustments (injections and ejections).
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Fig. 1. Diagram describing the main components and interactions of the Insurance
Company Model.

2.2 Implementation Details

Figure 1 provides a graphical description of the model, its components, and their
interactions. Components have been realized as black boxes, so that they can be
implemented with the desired level of detail and substituted without affecting
the soundness of the model as a whole.

At the top of the figure, we observe the Economy which provides three dif-
ferent classes of KFIs. The current implementation is based on a combination of
Cox-Ingersoll-Ross models [3] but the underlying process can be changed trans-
parently.

At the bottom we find the block Decision Maker which is composed of: Buy-
ing and Selling strategy which correspond to the the functions gsell(P(t),X), and
gbuy(P(t),X), respectively; the Discounting which perform the projection of the
liabilities in the future and discounts them according to a discount curve given
by the Economy; finally, the component named Capital Monitor implements
capital injection/ejection mechanism.

The component labelled as Loans manages the state of the loans and com-
putes the costs at every time unit. Costs are computed by using an interest curve
taken from the Economy. Insurance Products is a collection of insurance prod-
ucts where each entry stores the state of the reserves and calculates the negative
cash flow generated by the product. Finally, the component Portfolio contains
all the assets that have been bought and have not reached their maturity. The
asset referring to Cash is unique and always present because it interacts with
other components.

To exemplify the temporal dynamic of the interactions, Algorithm1 shows the
pseudo-code of the routine required to move the Company one year forward in the
future. This function constitutes the cornerstone for building the environment
of our RL framework.

The first observation is that the time update does not occur at the end of the
function but in the middle. This is because, in principle, this routine describes
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Algorithm 1. Step forward in the evolution of the segregated fund in time
function Step(X)

costLoans = loans.gCI (t)
discounting = disc.qDL(t)insuranceProds
inj = capitalMonitor.verify(portfolio.gMV (t), discounting)
if inj �= 0 then

loans.insert(inj)
sells ← gsell(portfolio,X)
new ← gbuy(portfolio,X)
portfolio = (portfolio\sells) ∪ new
returns = returns ∪ portfolio.getReturn(sells)
t = t + 1
ncashflow = insuranceProds.qNF (returns)
pcashflow = portfolio.gCF (t)
portfolio.updateCash(pcashflow, ncashflow, costLoans)
return portfolio.gCA(t)

what happens between the end of the current year and the beginning of the next.
The operations performed at the end of the year are: the computation of the costs
of the loans which can be either positive or negative and will be subtracted from
the cash in the next year; the capital injection/ejection if needed; finally, the
selling and buying operations as well as the computation of the capital gain of the
year. Then, the time counter is increased and the cash is updated by considering
negative and positive cash flow together with the costs of the loans. Finally, the
routine ends by returning the current capital. Let us remark that the capital
does not change only because of the cash flow, but also as a consequence of the
changes of the KFIs that are embedded in the assets composing the portfolio.

2.3 Optimization Problem

Our goal is to optimize the average final return on capital, adjusted for its
volatility. Specifically, we measure volatility as the standard deviation of the
return on capital over the time horizon, given an asset allocation strategy and
an economic scenario.

The volatility provides an estimation of the yearly oscillations of the returns
within each simulation run. The idea behind its use is to penalize portfo-
lios that lead to large oscillations of the returns during the considered time
interval, which are a hindrance to the payment of the liabilities. Let μ =
1
T

∑T
t=1 gR(t) be the average of the return within the same realization, and let

σ =
√

1
T

∑T
t=1 (gR(t) − μ)2 be the standard deviation. The objective function

can be written as follows:

argmax
X0,...,XT−1

= E
E

[μ − λ · σ] (4)

where X0, . . . ,XT−1 are the asset allocations at any point in time and λ is a
risk aversion factor representing the weight of the volatility over the return on
capital, and the expectation is over the possible realizations of the economy E .

We define the problem in such a way that the objective function in Eq. (4)
can be guided by two different classes of constraints. The first class (Type 1 )
is necessary to maintain the problem sound from a theoretical point of view:
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Xt,i ≥ 0 ∀t, i;
∣
∣Xt

∣
∣ = 1 ∀t, which verifies that each target asset alloca-

tion is long-only and properly defined on a simplex. The second class (Type 2 )
includes constraints depending on external parameters that are used to restrict
the domain of the asset allocation; for example, we might want to set bound-
aries for the allocation of a subset of the asset classes (e.g., no more than 60%
allocation on all bonds). By denoting the subset with Q ⊂ C, we can formalize
this type of constraint as β̌ ≤ ∑

q∈Q Ac(t)q ≤ β̂, ∀t.

3 Solution

We use DDPG [14] as a starting point for the implementation of our Rein-
forcement Learning agent. DDPG, or Deep Deterministic Policy Gradient, is an
actor-critic, off-policy, model-free algorithm based on deterministic policy gra-
dient, and that can operate over continuous action spaces. DDPG belong to the
set of actor-critic agents, whose high-level architecture is depicted in Fig. 2.

Actor Network

Critic Network

Q-value

ActionState

Fig. 2. Actor-Critic agent architecture

The critic network learns to approximate the temporally discounted cumu-
lative reward of an action on a given state, exploiting the Bellman equation as
in Q-learning. The actor network, given a state, learns to produce actions that
maximize the Q-value estimated by the critic. It is worth observing that the
actor receives no direct feedback from the environment: the back-propagated
error used to train the actor flows through the critic first. During the exper-
imental phase, which will be described in the next section, we observed that,
thanks to the off-policy property of the algorithm, pre-training the critic on
randomly sampled actions (and the respective environment-generated rewards)
had a strong positive impact on the performance of the RL agent. We therefore
systematically perform a critic warm-up phase before undergoing the standard
actor-critic training loop.

3.1 Structural and Parametric Constraints

In our specific settings, actions are asset allocations, and are therefore modeled
as a point on a simplex. Within our Reinforcement Learning agent, the actions
are produced by the actor, and ensuring that these actions are on a simplex



Reinforcement Learning for Portfolio Allocation 245

can be easily achieved by setting the last actor activation function as a softmax.
We call these requirements structural constraints. However, DDPG imple-
ments RL-exploration by means of a perturbation policy that adds to the action
noise produced by an Ornstein-Uhlenbeck process [6]. Clearly, a noisy action
would likely violate the structural constraints, thus producing non-admissible
actions. In order to maintain action admissibility, we modified the standard
DDPG approach by moving the perturbation upstream with respect to the acti-
vation function. We have adopted the recently-proposed parameter perturbation
approach, where in order to perform explorative actions we add noise to the
actor weights [23]. By doing so we are sure to produce exploratory actions that
satisfy the structural constraints, as the action is produced by the final softmax
activation function of the actor. The weights are then reverted to their previous
values before proceeding with the training.

Our specific setting might impose additional, domain-related constraints,
such as upper or lower bounds on specific assets, for instance: the Equity asset
shall not surpass 20% of the total asset allocation. Since these values vary from
one scenario to another, we have implemented them in a parametric fashion,
where the threshold values are read from external configuration files, and we
call them parametric constraints. Unlike the structural constraints, there is
no straightforward way to design an actor network so that all proposed actions
are compliant with the parametric constraints. Instead of structurally prevent-
ing the actor from expressing actions that violate the parametric constraints,
we elected to teach the agent, as a whole, that such actions are undesirable.
We have therefore added a regularization term to the environment reward that
penalizes the action by an amount proportional to the excess threshold violation,
by using a hinge loss function. With this approach, the actor can quickly learn
that the simplest way to obtain higher rewards is to propose admissible actions.
At the same time, this approach allows for high flexibility, since the paramet-
ric constraints are set in the environment, and thus decoupled from the agent
architecture.

4 Experimental Evaluation

Before presenting the results obtained by using the reinforcement learning frame-
work to solve the asset allocation problem, we describe those settings that are
shared by all the experiments presented in this section. We assume an initial
asset allocation composed of cash only. The initial amount of cash is equal to
1050, while the reserves amount to 1000, which implies an initial capital of 50.
The interest rate on loans is set to the interest rate of the “Italian BTP” bond
with one year maturity, and the penalty ε is set to 2%. Similarly, the discount-
ing interest rate is set to the 30% of “Italian BTP” bonds. A single insurance
product is considered. The product guarantees a minimum yield of 0.5% per
annum, and uses a uniform distribution over time of the payments for surrender
or death.
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In order to have a baseline to compare our RL framework to, we evaluate it on
a simplified scenario on which the traditional Markowitz/Black-Litterman [1,17]
approach can be applied. In particular, we consider a scenario in which:

• a single asset allocation is decided at time zero;
• rebalancing aims only to replenish negative amounts of cash by selling the

other assets “pro quota” at every time t > 0.

These assumptions lead to a “fire and forget” scenario in which a single decision
taken at the beginning determines the overall quality of the investments. Hence,
X0 is the only decisional variable, and the entries of asset allocations Xt>0 are
determined directly the from state of the portfolio according to the formula:

Xt,i =

{
max(0, Ai(t)) i = Cash

Ai(t)
max(0,AC(t))+

∑
i�=C Ai(t)

otherwise.
(5)

The use of a single decisional variable allows the comparison of the policy
found by the agent with the results obtained by performing a gird search
on the action space combined with Monte-Carlo sampling. The grid search
is performed by exploring the action space simplex with a fixed step size in
{0.20, 0.10, 0.05, 0.02, 0.01}. Each action is evaluated by averaging the obtained
reward over 500 realizations of the economy. To avoid stochastic effects from
affecting the comparison, these realizations are drawn in advance and fixed for
all the actions of the search, and are used in round-robin during the training
of the agent. The number of realization is sufficiently large that the probability
of an agent exploring all them on a given small section of the action space is
negligible.

4.1 Three Assets Scenario.

In the first experiment we focus on a scenario with three assets: cash, equity, and
bond. We include a parametric constraint that sets 0.17 as an upper bound for
the equity asset, and set the λ risk-aversion coefficient to 0.2. In order to create a
controlled experimental environment, we run a set of simulations with 0.01 grid
step – corresponding in this scenario to 5151 simulations. From this fine-grained
set of experiments we can obviously extract coarser subsets by increasing the
grid step size, as shown in Table 1.

We use the coarsest grid (step = 0.20) for the warm-up phase of the Critic,
while keeping the more fine-grained best actions and rewards aside in order to use
them to evaluate the Actor’s performance during and after training. The warm-
up phase is a standard fully supervised learning task, and we report the Critic
loss (computed as mean absolute percentage error) during training in Fig. 3a.
We then store the pre-trained critic weights and re-load them in subsequent
experiments.

The core learning task for all our experiments is the training of our cus-
tom DDPG agent, and this process involves several hyper-parameters. These
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Table 1. Parameters and results for the grid-search based simulations: respectively,
step size for the grid, number of different actions explored, best action found with the
given grid, corresponding average reward estimated on the 500 fixed realizations of the
economy.

Step # actions Best action Best reward

0.20 21 [0.0, 0.20, 0.80] 2.552

0.10 66 [0.0, 0.10, 0.90] 2.707

0.05 231 [0.0, 0.15, 0.85] 2.790

0.02 1326 [0.0, 0.16, 0.84] 2.799

0.01 5151 [0.0, 0.17, 0.83] 2.811

include structural details for the Actor neural network (number of neurons
per layer, weight initialization parameters), training details (learning rate and
decay for both the Actor and Critic), memory buffer parameters (capacity, batch
size), and a noise parameter governing the weight perturbation process used for
exploration. We therefore carried out a hyper-parameter optimization, where we
observed that our system is rather sensitive to hyperparameter setting, with the
Actor prone to converge on one-hot actions – most commonly assigning every-
thing to bonds. The first hyper-parameter search rounds were used to define
an ‘admissibility subspace’ of hyper-parameters that did not cause the agent to
spiral into such states, while subsequent iterations (such as the one visualized
in Fig. 3b) allowed to progressively approximate the known optimal scores. To
obtain these results we trained a batch of 32 agents with different configurations
of hyper-parameters and, every 100 iterations, measured their average score on
the set of 500 pre-computed realizations. In Fig. 3b we show the cross-agent
average score and, as shaded area, its 99% confidence interval; we also show the
known best scores for grids with increasing granularity (as reported in Table 1)
as horizontal lines, with the black line corresponding to the .20 step used for the
Critic warm-up.

Figure 3c shows the learning curve of the optimal agent, able to match
and even surpass the best known action, corresponding to the 0.01-step grid.
Figure 3d also reports the actions played by the optimal Actor during the train-
ing phase. It clearly shows that the agent learns to assign the Equity asset (which
gives the highest reward) to the highest possible value that would not incur a
penalty (horizontal black line, corresponding to the set parametric constraint of
.17).

We remark that we use this three assets scenario as a sandbox where it is
still feasible to exhaustively explore the action space with non-trivial grid steps
in order to compute the best action and reward; with an increasing number
of assets this procedure quickly becomes computationally too expensive, as the
number of actions to explore grows exponentially.
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Fig. 3. Training agents on a three assets scenario.

4.2 Six Assets Scenario

The second experiment aims to show that a near optimal solution can still be
found when actions have larger dimensionality. In particular, we test the case
in which the portfolio is composed only of cash, and Italian BTP Bonds with
3, 5, 10, 20, and 30 years tenors. No constraints have been considered; hence,
any portion of the action space might contain candidates for the optimum. Fur-
thermore, the risk-aversion factor λ has been set to a high value of 4 in order
to avoid that the optimal solution comprises solely of the most profitable and
most risky asset, i.e., the 30-years bond. In this setting, we perform 15 trainings
of the agent by using only 21 actions for the warm-up. This number of actions
corresponds to an exhaustive search on a grid with step size equal to 0.5. Only
two actions used for the warm-up were able to provide a positive reward. The
largest average reward included in the warm-up was equal to 0.0607 and was
obtained by investing equally in BTP with 5 and 30 years tenors.

All the experiments provided an improvement from the initial warm-up from
a minimum of 3.9% (reward 0.0631) to a maximum of 21.7% (0.0739). Figure 4
provides a summary of the experiments by showing the evolution of the best
action found by the agent, both in terms of asset allocation1 and reward over

1 The other three assets are omitted as they go to zero very quickly.
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the training epochs. In order to provide a further comparison, we provide also
the best action found with an exhaustive search performed with a step size 0.1.
In this setting, the testing of a single action for all the 500 economies requires
around one minute, and the grid contains 3003 actions; hence, whole computation
required more than 2 days. In spite of this, the obtained reward is still quite far
from the best found by the agent, whose training requires only two hours. The
rationale behind this gap can be explained by observing the evolution of the best
asset allocation in Fig. 4b where we can notice that a near optimal solution can
be found only at precision below 1%. In particular, the best reward found was
generated by an action representing an asset allocation where only BTP at 5,10,
and 30 years had non-zero weights equal to 0.19, 0.361, and 0.449, respectively.

(a) Average Reward (b) Asset Allocation

Fig. 4. Training agents on a six assets scenario

5 Related Work

The excellent results obtained in games [18,25] and robotics [13,22] have put the
spotlight on the ability of RL to find near optimal solutions in large multi-stage,
high-dimensional problems. And as such, they have drawn the attention of the
financial sector since modern portfolio theory deals with similar settings.

Modern portfolio theory, initiated by Nobel-prize-winner Markowitz [17] and
improved by Black and Litterman [1], consists in finding the optimal finan-
cial allocation over a single time horizon by using mean-variance asset alloca-
tion models. These models heavily rely on Markov processes to characterize the
stochastic nature of the economy. Hence, they naturally suggests the coupling of
Markov Decision Process (MDP) with Reinforcement Learning (RL) as a frame-
work to solve these problems [26]. It is thus not surprising that the literature on
RL methods for asset allocation problems is growing year by year [24].

For example, Wang and Zhou [27] present a framework, called exploratory-
mean-variance (EMV), for continuous portfolio selection (action) in continuous
time and continuous wealth (state) spaces. Q-learning methods are also common.
Halperin [8] provides an example of a data-driven and model-free methods for
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optimal pricing and hedging of options with RL by constructing a risk-adjusted
MDP for a discrete-time version of the classical Black-Scholes-Merton model.
Nevmyvaka et al. [21] use Q-learning for large scale optimal order execution.

Direct policy search for portfolio allocation is instead presented by Moody et
al. [19,20], and a tree-search approach that integrates the advantages in solving
continuous action bandit problem with sample-based rollout methods is intro-
duced by Mansley et al. [15]. The algorithm, named Hierarchical Optimistic
Optimization applied to Tree (HOOT), adaptively partitions the action space,
thus enabling it to avoid the pitfalls encountered in algorithms that use a fixed
action discretization.

De Asis et al. [4] explore fixed-horizon temporal difference (TD) reinforce-
ment learning algorithms for a new kind of value function that predicts the sum
of rewards over a fixed number of future time steps. Jangmin et al. [9] perform
dynamic asset allocation with a reinforcement-learning framework which uses
the temporal information from both stock recommendations and the ratio of the
stock fund over the asset. Buhler et al. [2] tackle option pricing and hedging by
using deep RL methods. [10] explains how to handle When the model available to
the agent is estimated from data, Since the seventies, portfolio theory has been
extended in order to consider liabilities. Notable examples are Asset-Liability
Management (ALM) and dedicated portfolio theory models [12]. These models
were considered intractable before it was suggested that they can be handled
with an underlying Markovian structure and deep learning techniques [2,11]. In
this direction, Fontoura et al. [7] consider the optimization of investment portfo-
lios where investments have to match (or outperform) a future flow of liabilities
within a time constraint. They address an ALM problem with a variation of Deep
Deterministic Policy Gradient algorithm (DDPG). In spite of the fast growing
literature, only one work [7], takes in consideration a multi-stage setting that
takes into account both asset-allocation and liabilities by still allowing the use
of off-the-shelf RL methods. However, liabilities are far from the level of detail of
those presented in the current work, since their description is limited to simple
phenomena such as inflation. To the best of our knowledge, our work is the first
RL framework able to describe a strong correlation between asset allocation and
liabilities.

6 Conclusions

This paper presented a framework for the asset management of a life insurance
company which differs from traditional portfolio management due to the strong
dependency between the profits of the portfolio and the liabilities generated
by the obligations toward the clients. The framework has been developed as a
Reinforcement Learning environment by maintaining flexibility in many aspects
of the problem. The most important are: (i) not being bound to any specific set
of assets; (ii) having user-defined buying/selling strategies; (iii) the modeling
of the liabilities directly from the parameters of the insurance products that
generate them; (iv) general strategies for capital control and leverage.
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We defined a risk-adjusted optimization problem to maximize the capital
over a finite time horizon by choosing the asset-allocations at possibly any time
unit. We validated the framework by means of a set of experiments performed on
a simplified scenario where a single asset allocation must be chosen at time zero.
Despite the smaller setting, experiments demonstrate how fast the problem grows
in complexity by pointing at RL as the only viable solution for the problem.

Testing our proposed framework in a proper multi-stage setting is the future
work with the highest priority, although proper baselines for this case need to be
devised. However, the generality of the framework suggests many other problems.
For example, the compounding effect on the capital is currently not addressed
but should be taken into account as well as the definition of different measures
for the control of the risk. In addition, while our framework defines the objec-
tive function in line with modern portfolio theory for comparison purposes, the
literature on risk-adjusted MDPs [16] might provide a more robust grounding
for our portfolio allocation problem. On the experimental side, since the results
so far have shown marked oscillations when the agent is close to a near opti-
mal policy, early stopping strategies should be explored. Finally, the design of
more advanced buying and selling strategies is an orthogonal but nevertheless
interesting future direction.
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