
Journal of Symbolic Computation 104 (2021) 724–753
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Computing invariants for multipersistence via 

spectral systems and effective homology

Andrea Guidolin a, Jose Divasón b, Ana Romero b, 
Francesco Vaccarino c

a Basque Centre for Applied Mathematics - Bilbao, Spain
b Universidad de La Rioja - Logroño, Spain
c Politecnico di Torino & ISI Foundation - Turin, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 29 September 2020

Keywords:
Symbolic computation
Constructive algebraic topology
Multipersistence
Spectral systems
Effective homology

Both spectral sequences and persistent homology are tools in al-
gebraic topology defined from filtrations of objects (e.g. topological 
spaces or simplicial complexes) indexed over the set Z of integer 
numbers. A recent work has shown the details of the relation be-
tween both concepts. Moreover, generalizations of both concepts 
have been proposed which originate from a different choice of the 
set of indices of the filtration, producing the new notions of mul-
tipersistence and spectral system. In this paper, we show that these 
notions are also related, generalizing results valid in the case of 
filtrations over Z. By using this relation and some previous pro-
grams for computing spectral systems, we have developed a new 
module for the Kenzo system computing multipersistence. We also 
present a birth-death descriptor and a new invariant providing in-
formation on multifiltrations. This new invariant, in some cases, is 
able to provide more information than the rank invariant. We show 
some applications of our algorithms to spaces of infinite type via 
the effective homology technique, where the performance has also 
been improved by means of discrete vector fields.

© 2020 Elsevier Ltd. All rights reserved.

E-mail addresses: aguidolin@bcamath.org (A. Guidolin), jose.divason@unirioja.es (J. Divasón), ana.romero@unirioja.es
(A. Romero), francesco.vaccarino@polito.it (F. Vaccarino).
https://doi.org/10.1016/j.jsc.2020.09.007
0747-7171/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jsc.2020.09.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2020.09.007&domain=pdf
mailto:aguidolin@bcamath.org
mailto:jose.divason@unirioja.es
mailto:ana.romero@unirioja.es
mailto:francesco.vaccarino@polito.it
https://doi.org/10.1016/j.jsc.2020.09.007


A. Guidolin, J. Divasón, A. Romero et al. Journal of Symbolic Computation 104 (2021) 724–753
1. Introduction

Persistent homology (Edelsbrunner et al. (2002); Zomorodian and Carlsson (2005)) is a technique 
in computational algebraic topology conceived to summarize the information of a filtration (usually of 
simplicial complexes) in the form of topological invariants. Homology is used to study the topological 
features at each point of the filtration and to track their evolution across the whole filtration. Since 
simplicial complexes are in many situations convenient objects to be associated with data of different 
type (e.g. point clouds, networks, digital images), persistent homology represents a versatile method 
for the analysis of data, which significantly contributed to the development of topological data analysis.

Spectral sequences (McCleary (2001)) are a tool in algebraic topology which provides informa-
tion on the homology of a complex by means of successive approximations and are also defined by 
means of filtrations. The notions of persistent homology and spectral sequence are related, as ex-
plained in Basu and Parida (2017) using exact couples, a classical construction in algebraic topology, 
complementing a previous approach (Romero et al. (2014)).

In their original setting, both spectral sequences and persistent homology are defined from filtra-
tions with indices in Z. Nevertheless, generalizations of both concepts have been proposed which 
originate from a different choice of the index set of the filtration. Multipersistence (Carlsson and 
Zomorodian (2009)) is a generalization of persistent homology for filtrations with indices in Zm . On 
the other hand, spectral sequences have been generalized in Matschke (2013) to the case of filtrations 
over any partially ordered set, producing the notion of spectral system.

As said, the goal of persistent homology is to provide an invariant which summarizes the topolog-
ical properties of a filtration. Persistence diagrams and the barcode are used in persistent homology 
to capture the birth and death of homology classes across the filtration, and are complete invariants: 
they completely characterize (up to isomorphism) an algebraic structure associated with the filtration, 
called persistence module. Since there is no complete invariant in the multiparameter case (Carlsson 
and Zomorodian (2009)), incomplete invariants are defined for multipersistence. The most common 
one is the rank invariant, which provides useful information, but it sometimes cannot distinguish 
between non-isomorphic persistence modules. Moreover, detecting births and deaths of homology 
classes is much more complicated in the multiparameter case.

The main contributions of this work are as follows. We first show the relation between gen-
eralized persistent homology and spectral systems in a general scenario. Then, we propose a new 
implementation of programs for multipersistence as a new module for the computer algebra system 
Kenzo (Dousson et al. (1999)), based on our programs for spectral systems (Guidolin and Romero 
(2018)). In addition to computing well-studied invariants of multipersistence in a new way, which 
differentiates in some key aspects from all the available implementations, we propose and compute 
both a new descriptor and a new invariant for multipersistence. Our programs make use of the ef-
fective homology technique (Rubio and Sergeraert (2002)), which allows to computationally handle 
infinitely generated objects, extending in this way the domain of applicability of our algorithms. As 
far as we know, this feature has never been exploited in any other multipersistence software. Fur-
thermore, we use discrete vector fields (Forman (1998)) to improve the programs and we provide 
examples of applications.

The programs have been implemented as a new module for the computer algebra system Kenzo 
and are available at:

https://github .com /ana -romero /Kenzo -external -modules

This work presents a revised and extended version of our previous conference paper (Guidolin et 
al. (2019)). All the sections include more details, explanations and proofs. Major changes and exten-
sions are present in the following sections:

• Section 3 has been entirely rewritten to provide more details and results which clarify the relation 
between spectral systems and multipersistence.

• Section 5 has been reworked to clarify the intuitive idea behind the descriptor we proposed 
in Guidolin et al. (2019), confusingly termed invariant therein. The descriptor has been conceived 
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to extract birth-death information from multiparameter filtrations. We extend the work by defin-
ing a new invariant by means of the spectral system associated with a filtration, and we show 
its similarities with the birth-death descriptor, including examples of computations in Kenzo for 
both notions.

• We have added a new section, cf. Section 8, where we present some detailed examples of appli-
cations of our algorithms implemented in the Kenzo system.

The paper is structured as follows. In the next section we present preliminary results about multi-
persistence and spectral systems that we need for our constructions. Section 3 shows the relationship 
between both concepts. The generalization of the rank invariant and its computation in the case of 
finitely generated modules are presented in Section 4. The descriptor, which provides information 
about the births and deaths, and the new invariant defined from spectral system are introduced in 
Section 5. Section 6 shows how the effective homology technique is used in our programs to deal with 
computations involving infinitely generated spaces. We describe how discrete vector fields are used to 
improve the algorithms in Section 7. Then, we show some examples of applications and computations 
in Section 8. Finally, we present a summary and possible further work in Section 9.

2. Preliminaries

2.1. Multipersistence

In order to introduce multipersistence, also called multiparameter or multidimensional persistence by 
some authors, let us first illustrate some fundamental concepts of persistent homology theory over a 
fixed field F . For more details and examples of applications we refer the reader to the surveys Kerber 
(2016); Edelsbrunner and Morozov (2012).

A finite Z-filtration of a simplicial complex K is a sequence of subcomplexes

∅ = . . . = K−1 = K0 ⊆ . . . ⊆ K p ⊆ K p+1 ⊆ . . . ⊆ K N = K N+1 = . . . = K .

Geometrical intuition is helpful to understand how the homology groups Hn(K ), and in particular 
the Betti numbers βn := dimF Hn(K ), describe the topological properties of K . Intuitively, we can say 
that βn counts n-dimensional holes of K : β0 is the number of connected components, β1 the number 
of “tunnels”, β2 the number of “voids”, and so on. The general idea of persistent homology is then 
to detect, using homology, the topological features which “persist” across the filtration. In order to do 
this, for every pair of indices s ≤ t in the filtration consider the map f s,t

n : Hn(Ks) → Hn(Kt) induced 
in homology by the inclusion of simplicial complexes Ks ↪−→ Kt .

Definition 1. For every pair of indices s ≤ t we define a persistent n-homology group H s,t
n (K ) as the 

subspace of Hn(Kt) given by the image of the map f s,t
n :

Hs,t
n (K ) := Im( f s,t

n : Hn(Ks) → Hn(Kt)).

We denote its dimension (as F -vector space) βs,t
n := dimF Hs,t

n (K ), called a persistent Betti number.

One says that a homology class is born at time i ∈ Z if it is an element of Hn(Ki) not belonging 
to the image Im f i−1,i

n . A homology class in Hn(K j−1) is then said to die at time j ∈ Z if its image 
under f j−1, j

n is zero, otherwise it is said to persist; the homology classes which persist until the 
last step N ∈ Z of the filtration are said to live forever. Note that for this intuition to be rigorous 
one has to fix bases of the vector spaces Hn(Ki) in accordance with the Fundamental Theorem of 
Persistent Homology (Zomorodian and Carlsson (2005)): see (Otter et al., 2017, Remark 5). Using this 
terminology, it is easy to see that for all i < j the non-negative integer

μ
i, j
n := (β

i, j−1
n − β

i, j
n ) − (β

i−1, j−1
n − β

i−1, j
n ) (1)
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is the number of distinct n-homology classes that are born at time i and die at time j. As first 
observed in Zomorodian and Carlsson (2005), the collection {β i, j

n } of persistent Betti number is a 
complete topological invariant, intuitively meaning that it captures all the topological information of 
a filtration. This notion can be made precise by introducing persistence modules (see Zomorodian and 
Carlsson (2005)): considering their decomposition as F[x]-modules, it can be proven that two persis-
tence modules are isomorphic if and only if they are described by the same collection of persistent 
Betti numbers. This invariant is sometimes represented in the equivalent form of a persistence diagram
or a barcode for more effective visualization.

In some applications a setting in which simplicial complexes vary according to two or more pa-
rameters may be more interesting, for example because the interplay of the parameters can reveal 
information on the data. Combining the different parameters, one can build a filtration along m axes, 
which potentially encodes much more information than m linear filtrations considered one at a time.

Definition 2. Consider Zm , endowed with the usual coordinate-wise partial order ≤. A collection of 
simplicial complexes (K v )v∈Zm such that K v ⊆ K w if v ≤ w is called a Zm-filtration of simplicial 
complexes.

Definition 3. A Zm-filtration (K v )v∈Zm of simplicial complexes is finite if there exists an element 
w = (w1, . . . , wm) ∈ Zm such that, for each i = 1, . . . , m, each Z-filtration obtained fixing m − 1
parameters except the i-th, here denoted (K̂ (i)

p )p∈Z , is finite, with

∅ = . . . = K̂ (i)
−1 = K̂ (i)

0 ⊆ K̂ (i)
1 ⊆ . . . ⊆ K̂ (i)

wi
= K̂ (i)

wi+1 = . . .

Multipersistence (Carlsson and Zomorodian (2009)) is a generalization of persistent homology 
which deals with Zm-filtrations instead of usual Z-filtrations. The purpose is (again) to use homology 
to describe the evolution of topological features across a Zm-filtration of simplicial complexes. As we 
have seen, the ultimate goal of persistent homology is to provide an invariant, an object associated 
with a filtration which summarizes its topological properties. Unlike the 1-parameter case, there is no 
discrete complete invariant for multiparameter persistence. To support this claim, relying again on the 
concept of persistence module, one can endow the homology of a Zm-filtration with the structure of 
a F[x1, . . . , xm]-module, and consider that the classification of F[x1, . . . , xm]-modules is known to be 
very hard for m > 1. The impossibility to produce a complete invariant in the multiparameter case has 
been proved in Carlsson and Zomorodian (2009) through algebraic geometry arguments, but more re-
cently also arguments from quiver representation theory have been proposed (see for instance Oudot 
(2015)). Nevertheless, invariants can be defined for multipersistence which are informative and rela-
tively easy to compute. One of the most relevant in applications is the rank invariant, an immediate 
generalization of persistent Betti numbers proposed in Carlsson and Zomorodian (2009).

Definition 4. Let (K v )v∈Zm be a Zm-filtration of simplicial complexes and let v ≤ w in Zm . We denote 
f v,w
n : Hn(K v) → Hn(K w) the map induced in homology by the inclusion K v ↪−→ K w and define

β v,w
n := dimF Im( f v,w

n : Hn(K v) → Hn(K w)).

The collection of all β v,w
n , for every pair of indices v ≤ w and for every n, is called rank invariant of 

the Zm-filtration.

Even if in the present work we will focus mainly on the rank invariant, we want to recall that other 
invariants have been proposed for multipersistence (Carlsson et al. (2010); Chacholski et al. (2017); 
Cerri et al. (2013); Lesnick and Wright (2015); Vaccarino et al. (2017); Scolamiero et al. (2017); Har-
rington et al. (2019); Dey and Xin (2018); Miller (2017)).

It is worth recalling the definition one-critical filtrations, introduced in Carlsson et al. (2009), 
which are very commonly used in multipersistence since they yield “better-behaved” persistence 
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modules. A finite Zm-filtration of simplicial complexes (K v )v∈Zm is called one-critical if, for every sim-
plex σ , there exists exactly one filtration degree v = v(σ ) ∈Zm such that σ ∈ K v −⋃

u<v Ku . Given a 
finite set of points X := {X (1), . . . , X (k)} ⊆Zm , where X ( j) = (x( j)

1 , . . . , x( j)
m ) for each j ∈ {1, . . . , k}, we 

denote by glb the greatest lower bound, that can be explicitly expressed as

glb(X ) = (min
j

x( j)
1 , . . . ,min

j
x( j)

m ).

One-critical filtrations have the following property:

Fact 5. Let (K v) be a one-critical Zm-filtration of simplicial complexes, let X := {X (1), . . . , X (k)} ⊆Zm

and Y := glb(X ). It holds

k⋂
j=1

K X( j) = KY .

Let us remark that clearly every Zm-filtration of simplicial complexes (K v ) determines a Zm-
filtration of chain complexes (F v ), where F v denotes C∗(K v). Although we have chosen to introduce 
persistence theory and multipersistence using filtrations of simplicial complexes, in the following sec-
tions we will consider the more general framework of filtered chain complexes. Moreover, besides 
Zm-filtration, in this work we will consider filtrations indexed over any partially ordered set (poset):

Definition 6. A filtration of a chain complex C∗ = (Cn, dn) over a poset (I, ≤), briefly called an I-
filtration, is a collection of chain subcomplexes F = (Fi C∗)i∈I such that Fi C∗ ⊆ F j C∗ whenever i ≤ j
in I . We will often denote the chain subcomplexes simply as Fi , forgetting about the grading of 
homology, when we are only interested in the filtration index i.

We now briefly review some key definitions of persistence theory in the general framework of the 
present paper, namely assuming that indices are elements of a poset (I, ≤). A persistence module V is 
a collection of vector spaces {V i}i∈I and linear maps {� j

i : V i → V j}i≤ j such that �i
i = Id, for all i ∈ I , 

and �k
j�

j
i = �k

i , for all i ≤ j ≤ k. A morphism between the persistence modules V = {V i, �
j
i : V i → V j}

and U = {Ui, h
j
i : Ui → U j} is a collection of linear maps ϕ = {ϕi : V i → Ui}i∈I such that h j

i ϕi = ϕ j�
j
i , 

for all i ≤ j. If each ϕi is an isomorphism, ϕ is called an isomorphism of persistence modules. An 
invariant is a property preserved by isomorphism of persistence modules. Notice that we are always 
thinking of a persistence module V as obtained by applying n-homology to a filtration (Fi)i∈I of chain 
complexes (or simplicial complexes), so that V i = Hn(Fi) and the maps � j

i : Hn(Fi) → Hn(F j) are 
induced by inclusions Fi ↪−→ F j . When the poset of indices is Z these definitions give us the (single-
parameter) persistent homology case; when the poset of indices is Zm for m ≥ 2 these definitions 
describe the multipersistence case.

2.2. Spectral systems

Spectral systems are a construction that extends the classical definition of spectral sequence (Mc-
Cleary (2001)) to the case of filtrations indexed over a partially ordered set (poset). Firstly, recall 
that for classical spectral sequences, which arise from a Z-filtration (F p)p∈Z , we have the formula 
(see MacLane (1963)):

Er
p,q = Zr

p,q + F p−1C p+q

d(Zr−1
p+r−1,q−r+2) + F p−1C p+q

,

where Zr
p,q = {a ∈ F p C p+q : d(a) ∈ F p−r C p+q−1} and the usual convention is to denote n := p + q. This 

formula can be therefore rewritten as
728
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Er
p,q = F p Cn ∩ d−1(F p−r Cn−1) + F p−1Cn

F pCn ∩ d(F p+r−1Cn+1) + F p−1Cn
,

where we can see more clearly the interplay of 4 filtration indices: p − r, p − 1, p and p + r − 1.
In Matschke (2013), this formula was imitated and generalized to the case of I-filtrations by defin-

ing, for every 4-tuple of indices z ≤ s ≤ p ≤ b in I , the term

Sn[z, s, p,b] := F pCn ∩ d−1(F zCn−1) + FsCn

F pCn ∩ d(FbCn+1) + FsCn
. (2)

The collection of all such terms is called a generalized spectral sequence or a spectral system for the 
I-filtration (Fi)i∈I . To gain familiarity with the definition, let us remark that the homology Hn(F p)

of a chain subcomplex F p = F p C∗ can be expressed as Sn[−∞, −∞, p, p], for each p ∈ I , with the 
convention that F−∞ = 0. Similarly, for each s ≤ p in I , the relative homology Hn(F p/Fs) can be 
expressed as Sn[s, s, p, p]. In the case of a Z-filtration (F p)p∈Z , the term Er

p,q of the associated 
spectral sequence can be expressed as Sn[p − r, p − 1, p, p + r − 1].

In the rest of this section we include some results and definitions about spectral systems present 
in Matschke (2013) that we will use in our work. It is worth noting that Matschke’s results are stated 
in a more general situation than the one presented above (his work is based on spectral systems 
which are not necessarily associated to a generalized filtration, but are defined in a more general 
structure named exact couples systems, see Section 3). Thus, with the aim of making this work self-
contained, we have incorporated our own proofs of such results, which are more direct than the ones 
present in the original paper, since we can restrict ourselves to the particular case of spectral systems 
associated with a generalized filtration.

First of all, let us recall some well-known results on modules which will be used repeatedly in the 
proofs. In the next statements we suppose we have fixed a commutative ring R (in the present work, 
R is Z or a field F ), and we use the term module to mean R-module.

Fact 7. The following holds:

1. (The modular law). Let N, S, T be submodules of a module M . If T ⊆ N , then N ∩(S +T ) = N ∩ S +T .
2. Let f : M → M ′ be a morphism of modules and let N be a submodule of M such that N ⊆ Ker f . 

Then there exists a unique morphism of modules ϕ : M/N → M ′ such that ϕq = f , where q de-
notes the canonical projection M → M/N . Furthermore, Imϕ = Im f and Kerϕ = Ker f /N .

3. Let M be a module, and let S, T be submodules of M . Then (S + T )/T ∼= S/(S ∩ T ).
4. Let T ⊆ S ⊆ M be modules. Then (M/T )/(S/T ) ∼= M/S .

The modular law is stated for example in MacLane (1963, p. 318), the other statements are proven 
in Atiyah and Macdonald (1969, Ch. 2). Using 1. and 3. of Fact 7 we can express the generic term (2)
of a spectral system as

Sn[z, s, p,b] ∼= F pCn ∩ d−1(F zCn−1)

F pCn ∩ d(FbCn+1) + FsCn ∩ d−1(F zCn−1)
, (3)

which will be sometimes convenient in what follows. Notice that the submodule F p Cn ∩ d(FbCn+1) at 
the denominator can be written also as d(Fb Cn+1 ∩ d−1(F p Cn)).

To simplify notations, in the remainder of this section we denote Fi Cn simply by Fi (the appro-
priate degree n is always clear from the context), and denote canonical isomorphisms by the equal 
sign.

Lemma 8 (Matschke (2013)). Let z1 ≤ s1 ≤ p1 ≤ b1 and z2 ≤ s2 ≤ p2 ≤ b2 be two 4-tuples of indices in I
with z1 ≤ z2 , s1 ≤ s2 , p1 ≤ p2 and b1 ≤ b2 . Then the inclusion of chain subcomplexes induces a well-defined 
map

� : Sn[z1, s1, p1,b1] → Sn[z2, s2, p2,b2]
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for all n.

Proof. Express both Sn[z1, s1, p1, b1] and Sn[z2, s2, p2, b2] as in (3) and consider their numerators. 
Since z1 ≤ z2 and p1 ≤ p2, we have an inclusion j : F p1 ∩ d−1(F z1 ) ↪→ F p2 ∩ d−1(F z2 ). Now, con-
sider the canonical projections q1 : F p1 ∩ d−1(F z1 ) → Sn[z1, s1, p1, b1] and q2 : F p2 ∩ d−1(F z2 ) →
Sn[z2, s2, p2, b2] and the composition f := q2 j. We have

Ker f = F p1 ∩ d−1(F z1) ∩ (F p2 ∩ d(Fb2) + Fs2 ∩ d−1(F z2)).

Since z1 ≤ z2, s1 ≤ s2, p1 ≤ p2 and b1 ≤ b2, the denominator N1 := F p1 ∩ d(Fb1 ) + Fs1 ∩ d−1(F z1 )

of Sn[z1, s1, p1, b1] is a submodule of Ker f , so � is well-defined as the unique morphism such that 
�q1 = f . �

For the sake of readability, we avoid decorating the maps � with indices denoting the domain, the 
codomain and the degree n. Observe that, with the notations of the previous proof, Ker� = Ker f /N1

and

Im � = Im f = F p1 ∩ d−1(F z1) + N2

N2
, (4)

with N2 := F p2 ∩ d(Fb2 ) + Fs2 ∩ d−1(F z2 ).

Lemma 9 (Matschke (2013)). For any z ≤ p1 ≤ p2 ≤ p3 ≤ b in I , the maps induced by inclusions produce a 
short exact sequence

0 → Sn[z, p1, p2,b] �−→ Sn[z, p1, p3,b] �′−→ Sn[z, p2, p3,b] → 0, (5)

for all n.

Proof. We prove exactness at the middle term. Using the explicit formulas for Ker �′ and Im � stated 
above, we see that

Ker�′

Im �
∼= F p3 ∩ d−1(F z) ∩ (F p3 ∩ d(Fb) + F p2 ∩ d−1(F z))

F p3 ∩ d−1(F z) + F p2 ∩ d−1(F z)
∼= 0.

Similarly, using the explicit formulas for Ker� and Im �′ one can easily check that � is injective and �′
is surjective. �
Lemma 10 (Matschke (2013)). Given an I-filtration (Fi)i∈I for a chain complex C∗ and three 4-tuples of indices 
satisfying the condition

z3 ≤ s3 ≤ p3 ≤ b3

= =

z2 ≤ s2 ≤ p2 ≤ b2

= =

z1 ≤ s1 ≤ p1 ≤ b1

the differential of the chain complex C∗ induces differentials d3, d2 between the terms

Sn+1[z3, s3, p3,b3] d3−→ Sn[z2, s2, p2,b2] d2−→ Sn−1[z1, s1, p1,b1]
and by taking homology we obtain

Ker d2 ∼= Sn[s1, s2, p2, p3].

Im d3
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Proof. We adapt the arguments of Weibel (1994, Construction 5.4.6) for classical spectral sequences 
to our current choice of indices in I . To show that the induced differentials are well-defined, let us 
focus on d2 : Sn[z2, s2, p2, b2] → Sn−1[z1, s1, p1, b1]. Similarly to the proof of Lemma 8, express both 
Sn[z2, s2, p2, b2] and Sn−1[z1, s1, p1, b1] as in (3) and consider their numerators. Since z2 = p1, the 
image d(F p2 ∩ d−1(F z2 )) = F z2 ∩ d(F p2 ) is contained in F p1 ∩ d−1(F z1 ). Let g be the morphism

F p2 ∩ d−1(F z2)
d−→ F z2 ∩ d(F p2) ↪→ F p1 ∩ d−1(F z1)

q1−→ Sn−1[z1, s1, p1,b1],
where q1 is the canonical projection. We have

Ker g = {x ∈ F p2 ∩ d−1(F z2) | d(x) ∈ F p1 ∩ d(Fb1) + Fs1 ∩ d−1(F z1)}
= Fb1 ∩ d−1(F p1) + F p2 ∩ d−1(Fs1).

Since z2 = p1 and s2 = b1, the denominator N := F p2 ∩ d(Fb2 ) + Fs2 ∩ d−1(F z2 ) of Sn[z2, s2, p2, b2] is 
contained in Ker g . As a result, the map d2 is well-defined on the quotient.

Let us prove now the last part of the claim. Clearly, Ker d2 = Ker g/N and Im d3 = (F z3 ∩ d(F p3 ) +
N)/N , so

Ker d2

Im d3

∼= F p2 ∩ d−1(Fs1) + Fb1 ∩ d−1(F p1)

F z3 ∩ d(F p3) + Fs2 ∩ d−1(F z2)
∼= F p2 ∩ d−1(Fs1)

F p2 ∩ d(F p3) + Fs2 ∩ d−1(Fs1)∼= Sn[s1, s2, p2, p3] �
Notice that generalized spectral sequences are in many aspects similar to classical ones. For exam-

ple, Lemma 10 extends what in the classical case is the process of obtaining terms of the page r + 1
by taking homology at page r.

The paper Matschke (2013) includes some explicit examples of spectral systems which generalize 
for instance the classical spectral sequences of Serre, Eilenberg–Moore and Adams–Novikov. However, 
as in the case of spectral sequences associated with a linear filtration, no algorithm is provided to 
compute the different components when the initial chain complexes are not finitely generated. Thanks 
to the method of effective homology (Rubio and Sergeraert (2002)), in Guidolin and Romero (2018) an 
algorithm is developed for computing spectral systems of spaces (possibly) of infinite type; the special 
case of the Serre spectral system is treated in Guidolin and Romero (2020). The corresponding pro-
grams were implemented as a new module for the system Kenzo (Dousson et al. (1999)), a symbolic 
computation software written in Common Lisp and devoted to algebraic topology, solving in this way 
also the classical problems of spectral sequences: determining differential maps and extensions. The 
effective homology method was also used by the third author in Romero et al. (2006) for computing 
spectral sequences in the case of Z-filtrations.

3. Relation between spectral systems and multipersistence

In Basu and Parida (2017), a relation between spectral sequences and persistent homology (both 
defined for Z-filtrations and taking homology over a fixed field F ) is proved by means of the clas-
sical notion of exact couples introduced in Massey (1952). Exact couples are collections of long exact 
sequences, with an additional hypothesis on the involved modules, which can be derived to obtain 
new exact sequences.

More precisely, each exact couple is a 5-tuple (Dr, Er, ir, jr, kr), where Dr, Er are F -vector spaces 
and ir, jr, kr are linear maps such that the triangular diagram

Dr Dr

Er

ir

jrkr
(6)

is exact at each vertex: Ker( jr) = Im(ir), Ker(kr) = Im( jr) and Ker(ir) = Im(kr).
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Associated with a Z-filtration (F p) there are exact couples (Dr, Er, ir, jr, kr) where, for each r ≥ 1, 
Dr = ⊕

p,q H p,p+r−1
p+q and Er = ⊕

p,q Er
p,q , with the linear maps ir, jr induced by inclusions and the 

linear map kr induced by the differential. Each exact couple (Dr, Er, ir, jr, kr) consists of a collection 
of long exact sequences

· · · → H p−1,p+r−2
n

ir−→ H p,p+r−1
n

jr

−→ Er
p,q

kr−→ H p−r,p−1
n−1

ir−→ H p−r+1,p
n−1 → ·· · (7)

Using the simple fact that in an exact sequence of finite dimensional F -vector spaces

· · · f−→ U
g−→ V

h−→ W
l−→ · · · (8)

it holds dimF V = (dimF U − dimF Im f ) + (dimF W − dimF Im l), in Basu and Parida (2017) the 
following relation is obtained:

dimF Er
p,q = β

p,p+r−1
n − β

p−1,p+r−1
n + β

p−r,p−1
n−1 − β

p−r,p
n−1 , (9)

for all integers p, q, r with r ≥ 1 and n := p + q. This relation can be inverted, to express every persis-
tent Betti number βs,t

n as a combination of the dimensions dimF Er
p,q . The existence of these relations 

intuitively means that the collections of integers {βs,t
n } and {dimF Er

p,q} carry the same amount of 
topological information about the filtration.

In this section we show how the relation (9) can be generalized for the case of filtrations over a 
poset I (with some additional hypotheses), a result contained in the PhD thesis Guidolin (2018). A 
relevant part of the work consists in rephrasing in our generalized setting the arguments of Basu and 
Parida (2017). First of all, let us denote by −∞ the minimum of the poset I , which can be added 
“artificially” to the poset if needed, and let us suppose that F−∞ = 0. This assumption is consistent 
with the fact that we are ultimately interested in finite filtrations, having zero chain groups for small 
enough filtration indices.

The notion of exact and derived couples is generalized for I-filtrations in Matschke (2013, Defi-
nition 4.1) and referred to by the expression exact couple system. An exact couple system is again a 
collection of particular long exact sequences, where now the involved spaces are indexed over the 
poset I . Incidentally, exact couple systems can be seen as a way to define spectral systems that is 
even more general than the one we presented in Section 2.2. For the scope of the present work, how-
ever, we only need a specific property that exact couple systems share with classical exact couples 
(Proposition 11 below), which intuitively consists in a method to produce, from a collection of long 
exact sequences, a new collection of long exact sequences.

Before employing some long exact sequences of terms of the spectral system to deduce the sought 
relation, we introduce some relevant definitions. Firstly, let us state the natural generalization of the 
rank invariant (Definition 4) that we will use in what follows. Given an I-filtration (Fi)i∈I and v ≤ w
in I , we define

βn(v, w) := dimF Im(� : Hn(F v) → Hn(F w)),

where � is the map induced by the inclusion F v ↪−→ F w ; we call rank invariant the collection of all 
βn(v, w), for any n and any v ≤ w . The map � : Hn(F v) → Hn(F w) has been denoted by f v,w

n in 
Section 2 in the case of Zm-filtration. In the general case of a spectral system associated with an I-
filtered chain complex, however, we prefer to use the notation � for all the maps induced by inclusion, 
which are well-defined whenever the assumptions of Lemma 8 hold.

Let us now introduce the class of posets of interest for the present section. A partially ordered 
abelian group (I, +, ≤) is an abelian group (I, +) endowed with a partial order ≤ that is translation 
invariant: for all p, t, t′ ∈ I , if t ≤ t′ then p + t ≤ p + t′ .

We now state a property of exact couples which we will apply to spectral systems associated with 
I-filtrations, with I a partially ordered abelian group.

Proposition 11 (Massey (1952); McCleary (2001)). Let (D, E, i, j, k) be an exact couple. The map ∂ := jk is 
a differential ∂ : E → E and there is an exact couple (D ′, E ′, i′, j′, k′), called the derived couple, such that 
D ′ = Im i and E ′ = Ker∂/ Im ∂ .
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Remark 12. The maps i′, j′, k′ of Proposition 11 are respectively induced by i, j, k. For more details, we 
address the reader to McCleary (2001, § 2.2). As we show below, our application to spectral systems 
over a partially ordered abelian group I consists in fixing p, u ∈ I , with u ≥ 0, and considering, for 
some integer r ≥ 1,

D :=
⊕

n,h∈Z
Sn[−∞,−∞, p + hu, p + (h + r − 1)u],

E :=
⊕

n,h∈Z
Sn[p + (h − r)u, p + (h − 1)u, p + hu, p + (h + r − 1)u].

Given an I-filtration with I a partially ordered abelian group, consider at first a collection of “sim-
ple” long exact sequences of relative homology defined from the filtration, like in the case of exact 
couples:

· · · → Sn[−∞,−∞, s, s] �−→ Sn[−∞,−∞, p, p] �−→ Sn[s, s, p, p]
k−→ Sn−1[−∞,−∞, s, s] �−→ Sn−1[−∞,−∞, p, p] → · · ·

for each s ≤ p in I . Denoting v := p − s and imitating the classical construction of the derived couple 
(Proposition 11 and Remark 12), we obtain long exact sequences

· · · → Sn[−∞,−∞, p − v, p] �−→ Sn[−∞,−∞, p, p + v] �−→ Sn[p − 2v, p − v, p, p + v]
k−→ Sn−1[−∞,−∞, p − 2v, p − v] �−→ Sn−1[−∞,−∞, p − v, p] → · · ·

where the involved vector spaces are determined as images Im � or applying Lemma 10. The maps 
denoted by � are again induced by inclusion, and k is induced by the differential. This construction 
clearly can be iterated, yielding for each integer r ≥ 1 long exact sequences of the form

· · · → Sn[−∞,−∞, p − v, p + (r − 2)v] �−→ Sn[−∞,−∞, p, p + (r − 1)v]
�−→ Sn[p − rv, p − v, p, p + (r − 1)v] k−→ Sn−1[−∞,−∞, p − rv, p − v]

�−→ Sn−1[−∞,−∞, p − (r − 1)v, p] → · · · .

With a slight modification of this argument, for any element w ≥ 0 of I we can obtain long exact 
sequences of the form

· · · → Sn[−∞,−∞, p − v, p − v + w] �−→ Sn[−∞,−∞, p, p + w]
�−→ Sn[p − v − w, p − v, p, p + w] k−→ Sn−1[−∞,−∞, p − v − w, p − v]

�−→ Sn−1[−∞,−∞, p − w, p] → · · · . (10)

Exactness can be proven either directly or considering the filtrations with indices . . . ≤ p − v − w ≤
p − v ≤ p ≤ p + w ≤ . . . Recalling equation (4), observe that if p ≤ u and b ≤ t in I then

Sn[−∞,−∞, p, t] = Im(� : Sn[−∞,−∞, p,b] −→ Sn[−∞,−∞, u, t]). (11)

Since in particular Sn[−∞, −∞, p, t] = Im(� : Hn(F p) −→ Hn(Ft)), which yields by definition
dimF Sn[−∞, −∞, p, t] = βn(p, t), from (10) and using the simple fact stated after (8) we can obtain 
the generalization we sought for.
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Theorem 13. Let (Sn[z, s, p, b]) be the spectral system associated with an I-filtration, with I a partially or-
dered abelian group. For all p, v, w ∈ I such that v, w ≥ 0, the dimension dimF Sn[p − v − w, p − v, p, p +
w] is equal to

βn(p, p + w) − βn(p − v, p + w) + βn−1(p − v − w, p − v) − βn−1(p − v − w, p). (12)

Remark 14. Even if the choice of p, v, w ∈ I in Theorem 13 allows to independently select only three 
out of the four indices of a term Sn[z, s, p, b], for example z, p, b, we can intervene on the fourth 
index using Lemma 9: if z ≤ p1 ≤ p2 ≤ p3 ≤ b are indices in I , then

dimF Sn[z, p1, p3,b] = dimF Sn[z, p1, p2,b] + dimF Sn[z, p2, p3,b].

Consider now a finite Zm-filtration of simplicial complexes (K v)v∈Zm and the induced Zm-
filtration of chain complexes (F v )v∈Zm . Theorem 13, together with Remark 14, allows to express the 
dimension of each term Sn[z, s, p, b] of the associated spectral system as a combination of some β v,w

n . 
Notice that, using a recursive argument, the relation (12) can be inverted, allowing to express every 
β

v,w
n as a combination of the dimensions of some terms Sn[z, s, p, b]. This allows to conclude that the 

spectral system over Zm carries the same amount of topological information on the filtration as the 
rank invariant of Definition 4, as the collections {dimF Sn[z, s, p, b]} and {β v,w

n } can be determined 
one from the other.

In Section 5.2 we present a second application of the previous argument, considering a different 
poset related to multipersistence.

4. Generalizing the rank invariant in the finite case

As we mentioned in Section 2, a number of invariants for multipersistence have been proposed, 
and a few implementations are available. Let us name some of them, addressing the interested reader 
to recent works like Dey and Xin (2019) for a more complete list of references. In Carlsson et al. 
(2010) the authors propose for the first time an efficient algorithm to compute invariants associated 
with resolutions of modules constructed from Zm-filtrations, although some restrictive assumptions 
are made on the type of filtrations; a more general framework is studied in Chacholski et al. (2017); 
efficient algorithms for 2-parameter persistence are presented in Lesnick and Wright (2019). In Cerri 
et al. (2013) the study of a Zm-filtration is reduced to a family of Z-filtrations corresponding to 
linear sections with different slopes. This idea has been further developed in Lesnick and Wright 
(2015), together with the theoretical bases of the software RIVET for visualizing 2-parameter persis-
tence. The paper Harrington et al. (2019) presents an interesting approach via commutative algebra. 
Efficient methods to deal with a particular class of 2-parameter persistence modules are introduced 
in Dey and Xin (2018). A different special class of 2-parameter persistence modules that admits a de-
composition with “simple” indecomposables is studied in Cochoy and Oudot (2020). In Scolamiero 
et al. (2017) an algebraic definition of noise (negligible topological features) for multipersistence 
is introduced and some related invariants are studied. Real multipersistence modules are studied 
in Miller (2017); to this aim, downsets (see below) in Rm play a key role. Generalized persis-
tent homology and its relation with filtrations of weighted graphs is studied in Vaccarino et al. 
(2017).

Trying to generalize the existing programs, each of which was developed to deal with particular 
situations, we propose a new implementation of multipersistence as a new module for the system 
Kenzo, making use of our previous programs for computing spectral systems presented in Guidolin 
and Romero (2018). Our new programs are in several respects more general than the existing ones, 
since they compute multipersistence over integer coefficients and they can be applied to filtrations 
over any poset. Moreover, as we will show in Section 6, thanks to the effective homology technique 
our algorithms can be used to determine multipersistence of spaces of infinite type, a unique feature 
among the available software for multipersistence. Our programs are written in the Common Lisp pro-
gramming language, making use of functional programming to deal with infinitely generated spaces 
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Fig. 1. Small simplicial complex filtered over Z2.

and general posets. The implementation of the effective homology technique makes our programs 
less efficient than available implementations for computations in multipersistence; however, this is a 
necessary trade-off for extending the domain of applicability of our algorithms to infinitely generated 
chain complexes and filtrations over general posets. For this reason, we do not include in the present 
work a computational efficiency comparison with other software, since our aim is to complement the 
available implementations with new and unique features rather than improve their computational 
speed.

Since we start from persistent homology groups and the rank invariant, we first extend the com-
putation of these notions to the case of I-filtrations. Let (Fi)i∈I be an I-filtration of a chain complex 
C∗ and v ≤ w in I . We consider the quotient group

H v,w
n := F v Cn ∩ Ker dn

F v Cn ∩ d(F w Cn+1)
, (13)

called a (generalized) persistent homology group, which clearly represents the homology classes in 
Hn(F v) which are still present in Hn(F w), that is, it corresponds to Im(� : Hn(F v) → Hn(F w)). When 
computing this group with coefficients in a field, its rank corresponds to the rank invariant. In our 
case, we have developed a Kenzo function computing the group with integer coefficients, producing 
not only the rank but also the generators and the torsion coefficients. Our programs use some pre-
vious functions computing spectral systems developed in Guidolin and Romero (2018), since some of 
the subgroups appearing in the quotient (13) are similar to the subgroups appearing in the spectral 
system terms (2). Once these subgroups are determined, the corresponding quotient can be com-
puted by means of diagonalization algorithms of matrices in a similar way to the algorithm used 
to compute homology groups by means of the Smith Normal Form technique (see Kaczynski et al. 
(2004)).

As a didactic example, let us consider the chain complex endowed with a (finite) Z2-filtration 
associated with the filtered simplicial complex of Fig. 1, which shows, corresponding to each of the 
points (1, 1), (1, 2), (1, 3), . . . , (3, 3) ∈ Z2, a simplicial complex constituted by 0-simplices (points 
a, b, c, . . .), 1-simplices (edges ab, ac, . . .) and 2-simplices (the triangles bcd and cde). For example, in 
degree 1, there are two homology classes (1-dimensional holes) which live in F(1,2) and still live in 
F(2,2) , so that H (1,2),(2,2)

1 =Z2, with generators given by the combinations 1 ∗ ab − 1 ∗ ac + 1 ∗ bc and 
−1 ∗ab + 1 ∗ac − 1 ∗bd + 1 ∗ cd. However, there is only one class which lives in F(1,2) and still lives in 
F(3,3) , so that H (1,1),(3,3)

1 = Z, generated in this case by the combination 1 ∗ ab − 1 ∗ ac + 1 ∗ bc. The 
second class has died because the triangle bcd has been filled.

> (multiprst-group K ’(1 2) ’(2 2) 1)
Multipersistence group H[(1 2),(2 2)]_{1}
Component Z
Component Z
> (multiprst-gnrts K ’(1 2) ’(2 2) 1)
({CMBN 1}<1 * AB><-1 * AC><1 * BC>
735



A. Guidolin, J. Divasón, A. Romero et al. Journal of Symbolic Computation 104 (2021) 724–753
Fig. 2. Second filtration for the small simplicial complex filtered over Z2.

{CMBN 1}<-1 * AB><1 * AC><-1 * BD><1 * CD>)
> (multiprst-group K ’(1 2) ’(3 3) 1)
Multipersistence group H[(1 2),(3 3)]_{1}
Component Z
> (multiprst-gnrts K ’(1 2) ’(3 3) 1)
({CMBN 1}<1 * AB><-1 * AC><1 * BC>)

In this case, we can observe that all the persistent homology groups are free; in Section 6 we will 
present meaningful examples of results with non-null torsion coefficients.

Let us finish this section by observing with a simple example that the rank invariant is not com-
plete, in the sense that sometimes it is unable to discriminate between different filtrations (yielding 
non-isomorphic persistence modules). To this aim, let us consider a second filtration for the example 
of Fig. 1, given by Fig. 2. The persistence modules in 1-homology associated with the two filtrations 
are not isomorphic, but the rank invariant of both filtrations is the same, as one can easily verify.

5. A descriptor for birth-death of homology classes and a new invariant

Consider the case of 1-parameter persistent homology, defined from Z-filtrations. We recall the 
definition

Mi, j
n := Fi Cn ∩ d(F jCn+1) + Fi−1Cn

Fi Cn ∩ d(F j−1Cn+1) + Fi−1Cn

∼= Fi Cn ∩ d(F jCn+1)

Fi Cn ∩ d(F j−1Cn+1) + d(F jCn+1) ∩ Fi−1Cn
(14)

of birth-death modules given in Romero et al. (2014), therein denoted B Di, j
n . When homology is com-

puted over a field, the rank of Mi, j
n is given by the quantity μi, j

n of equation (1), representing the 
number of homology classes which are born at step i (meaning that these classes are present at step 
i but they are not present at the previous step i − 1) and die at step j of the filtration (meaning 
that they are present at the previous step j − 1 but they are not present at step j because they are 
boundaries or they merge with another class).

For multipersistence, the concepts of birth and death of a homology class cannot be immediately 
generalized from the 1-parameter case. For example, in Fig. 1 we cannot say that the 1-homology 
class (1-hole) corresponding to the generator 1 ∗ bc − 1 ∗ bd + 1 ∗ cd is born at a unique particular 
position of Z2 (because it is present at both positions (1, 2) and (2, 1) and for both of them it is 
not present at a previous step). As we have seen, this issue can be solved by considering one-critical 
filtrations (Section 2), which arise quite naturally in some applications. A more serious problem is 
that, because of the lack of a decomposition theorem for multipersistence modules like the one for 
single-parameter persistence, which is a consequence of the complexity of indecomposables for mul-
tipersistence modules (see Section 2.1, Buchet and Escolar (2018), Dey and Xin (2019)), the definition 
of birth and death can depend on the choice of bases for each Hn(F v).

Interesting approaches to extend the ideas of birth and death of homology classes to multipersis-
tence are proposed in the papers Harrington et al. (2019) and Miller (2017). For the scope of this 
work, the most relevant approach is described in the PhD thesis Thomas (2019): through the notion 
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of multirank invariant, the author establishes a rigorous way for counting births and deaths across a 
generalized filtration. Nonetheless, an additional hypothesis on the positions to compare in the filtra-
tion is needed in order for the count of births and deaths to agree with the intuitive idea, like in the 
case of 1-parameter persistence. In what follows we choose a more “empirical” approach, mimicking 
the formula (14) to define a descriptor which, as we will see in some examples, is able to extract 
birth-death information from a given multiparameter filtration that agrees with the intuition of birth 
and death of homology classes. The computation of the descriptor is obtained via a modification of 
our Kenzo programs computing spectral systems. In this section, we also introduce a new invariant, 
defined using the spectral system associated with a filtration, and observe that it has some similarities 
with the birth-death descriptor. In order to define these new notions we consider, along with Zm , the 
poset of downsets of Zm , which is used in Matschke (2013) to gain more options in the construction 
of generalized spectral sequences and which will allow us to say that a homology class is born or 
dead at different positions in Zm .

Definition 15. A downset of Zm is a subset A ⊆Zm such that if Q ≤ P in Zm and P ∈ A, then Q ∈ A; 
the poset D(Zm) is the collection of all downsets of Zm , endowed with the partial order given by 
inclusion ⊆.

Filtering data with respect to m parameters produces in a natural way, in addition to the Zm-
filtration (F P )P∈Zm we used in the previous sections, also a D(Zm)-filtration (F p) defined, for each 
p ∈ D(Zm), as F p := ∑

P∈p F P . Moreover, we will observe in Section 5.1 that computing the terms 
of the spectral system over D(Zm) produces more topological information than the rank invariant. In 
particular, (some terms of) the spectral system of the filtrations defined in Figs. 1 and 2 are different; 
the spectral system of the filtration over D(Zm) can therefore be considered as an invariant associated 
with a filtration which allows to discriminate between a larger number of topological features.

At this point, it seems natural to investigate possible relations between the rank invariant and 
the spectral system over D(Zm), as we did in Section 3 for Zm-filtrations. In this case, since there 
is no natural additive structure on D(Zm) that turns it into a partially ordered abelian group, we 
have to be more subtle. The easiest way to construct a partially ordered abelian group starting from 
D(Zm) is to consider the translation of a fixed downset p ∈ D(Zm). Denoting T p the family of all 
downsets of D(Zm) obtained translating p by any v ∈ Zm , we see that (T p, translation, ⊆) is a par-
tially ordered abelian group. We can now apply the results in Section 3, including (10), using the 
poset (T p, translation, ⊆), and combining this with results on isomorphic terms within a spectral sys-
tem (Matschke, 2013, Lemma 3.8) one can obtain interesting relations, the study of which is outside 
the scope of this work.

For the sake of exposition, we organize the rest of this section in two parts, respectively devoted 
to the descriptor for birth and death of homology classes and to the new invariant defined from the 
spectral system. Both subsections contain examples of computations with our programs in Kenzo.

5.1. The birth-death descriptor

We introduce the descriptor in the most general framework, starting from a general Zm-filtration 
(F P ) and considering F p := ∑

P∈p F P for any p ∈ D(Zm), even if the most interesting uses are 
arguably in some particular situations, for example restricting the “shape” of the downsets p or as-
suming that the Zm-filtration (F P ) is induced by a one-critical (see Section 2) Zm-filtration (K P ) of 
simplicial complexes.

Consider a downset p ∈ D(Zm). We are interested in D(Zm)-filtrations canonically associated with 
finite Zm-filtrations, so we are actually working with the poset of downsets D(Zm≥0). A collection 
{P1, . . . , Pk} of points of Zm is the minimal set of generators of p if it is the minimal set such that, 
for each point of P ∈ p, it holds P ≤ P j for some j ∈ {1, . . . , k}. In this case, we denote F̂ p Cn :=
∩k

j=1 F P j Cn . Analogously, consider a downset b ∈ D(Zm) and its minimal set of generators {B1, . . . , Br}. 
We now give our definition of a descriptor for birth and death of homology classes.
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Definition 16. Let (F P ) be a Zm-filtration and consider the canonically associated D(Zm)-filtration 
(F p := ∑

P∈p F P ). For each p ≤ b in D(Zm) we define

M p,b
n := F̂ p,b

n

Ap,b
n + B p,b

n

where the numerator is

F̂ p,b
n := F̂ pCn ∩ d( F̂bCn+1)

and the denominator has summands

Ap,b
n := ∑

Q F̂ p,b
n ∩ F Q Cn + ∑

X F̂ p,b
n ∩ F X Cn,

with the sums respectively ranging over Q ∈ Zm not comparable with the points P j and X ∈ p \
{P1, . . . , Pk}, and

B p,b
n := ∑

R F̂ p,b
n ∩ d(F R Cn+1) + ∑

Y F̂ p,b
n ∩ d(FY Cn+1),

with the sums respectively ranging over R ∈ Zm not comparable with the points B j and Y ∈ b \
{B1, . . . , Br}.

Intuitively, the groups M p,b
n try to capture the homology classes being born in F p and dying in 

Fb , where now the downsets p and b may be generated by several points in Zm to deal with the 
complexity of a filtration with m parameters and the fact that a homology class can appear and 
disappear at different non-comparable positions. As we said before, the notions of birth and death are 
not rigorous as in the (single-parameter) persistent homology framework because they depend on the 
choice of bases for each Hn(F v). To understand the idea behind Definition 16, let us focus at first on 
the numerator F̂ p,b

n = F̂ p Cn ∩ d( F̂bCn+1) of M p,b
n . The fact that F̂ p Cn := ∩k

j=1 F P j Cn tells that we want 
to consider n-cycles that have a common representative at all positions {P1, . . . , Pk}, which bound an 
(n + 1)-chain of F̂bCn+1 := ∩r

j=1 F B j Cn+1. Notice that, depending on the application, the dependence 

of M p,b
n on a common representative may be a relevant issue. At the denominator of M p,b

n , the term 
Ap,b

n is given by the elements of F̂ p,b
n that appear also in positions non comparable with P1, . . . , Pk or 

“before” these points, while the term B p,b
n is given by the elements of F̂ p,b

n that become boundaries 
also in positions non comparable with B1, . . . , Br or “before” these points.

As we mentioned, Definition 16 becomes particularly interesting in some simpler situations. First 
of all, observe that if m = 1 the descriptor coincides with the module of (14), for all i ≤ j. To better 
understand the definition for m = 2, let us consider downsets generated by just one point in Z2, 
which is equivalent to considering a Z2-filtration (F P ). Moreover, let us assume that the filtration is 
finite: recalling Definition 3, this means that the relevant spaces of the filtration have indices in the 
finite grid with lower-left corner (0, 0) and upper-right corner w = (w1, w2) ∈ Z2. In this case for 
each P = (p1, p2) ≤ B = (b1, b2) in Z2 we have

M P ,B
n := F P ,B

n

A P ,B
n + B P ,B

n

where

F P ,B
n :=F P Cn ∩ d(F B Cn+1),

A P ,B
n :=F P ,B

n ∩ F(p1−1,w2)Cn + F P ,B
n ∩ F(w1,p2−1)Cn,

B P ,B
n :=F P ,B

n ∩ d(F(b1−1,w2)Cn+1) + F P ,B
n ∩ d(F(w1,b2−1)Cn+1).

If the filtration (F P ) is induced by a one-critical Z2-filtration (K P ) of simplicial complexes, the terms 
A P ,B

n and B P ,B
n in the above formula can be further simplified by virtue of Fact 5:
738



A. Guidolin, J. Divasón, A. Romero et al. Journal of Symbolic Computation 104 (2021) 724–753
A P ,B
n :=F P ,B

n ∩ F(p1−1,p2)Cn + F P ,B
n ∩ F(p1,p2−1)Cn,

B P ,B
n :=F P ,B

n ∩ d(F(b1−1,w2)Cn+1) + F P ,B
n ∩ d(F(w1,b2−1)Cn+1).

Notice that, again by Fact 5, for one-critical filtrations the case of downsets generated by just one 
point in Z2 covers all possibilities. The example we just presented for Z2 can be easily generalized 
to Zm-filtrations. In Section 5.2 we introduce an invariant that inspired the definition of M p,b

n .
Using again our previous programs for computing spectral systems, we have implemented in Kenzo 

functions for computing the groups M p,b
n which, as before, produce not only the groups but also 

the generators. For example, let us consider again the filtered complex in Fig. 1 and the downsets 
p = ((1, 2), (2, 1)) (meaning generated by {(1, 2), (2, 1)}) and b = ((1, 3), (3, 2)). The group M p,b

1 is 
equal to Z, with generator 1 ∗ bc − 1 ∗ bd + 1 ∗ cd. This means intuitively that the homology class 
corresponding to the boundary of the triangle bcd is born at positions (1, 2) and (2, 1) and dies at 
positions (1, 3) and (3, 2).

> (multiprst-m-group K (list ’(1 2) ’(2 1))
(list ’(1 3) ’(3 2)) 1)

Multipersistence group M[((1 2) (2 1)),((1 3) (3 2))]_{1}
Component Z
> (multiprst-m-gnrts K (list ’(1 2) ’(2 1))

(list ’(1 3) ’(3 2)) 1)
({CMBN 1}<1 * BC><-1 * BD><1 * CD>)

One of the advantages of the use of the poset D(Zm) and the definition of this new descriptor is 
that it makes it possible to distinguish filtrations which, as we have seen in Section 4, sometimes have 
the same rank invariant. Let us consider again the generalized filtrations described in Figs. 1 and 2
(with the same rank invariant) and the downsets p = ((1, 3), (2, 2), (3, 1)) and b = ((2, 3), (3, 2)); the 
group M p,b

1 is equal to Z in the first filtration, with generator 1 ∗ cd − 1 ∗ ce + 1 ∗ de and the 0-group 
(NIL) in the second one (because in that filtration this homology class is born at a smaller downset, 
((1, 3), (2, 1))).

> (multiprst-m-group K (list ’(1 3) ’(2 2) ’(3 1))
(list ’(2 3) ’(3 2)) 1)

Multipersistence group M[((1 3) (2 2) (3 1)),((2 3) (3 2))]_{1}
Component Z
> (multiprst-m-gnrts K (list ’(1 3) ’(2 2) ’(3 1))

(list ’(2 3) ’(3 2)) 1)
({CMBN 1}<1 * CD><-1 * CE><1 * DE>)
> (multiprst-m-group K2 (list ’(1 3) ’(2 2) ’(3 1))

(list ’(2 3) ’(3 2)) 1)
Multipersistence group M[((1 3) (2 2) (3 1)),((2 3) (3 2))]_{1}
NIL

5.2. A new invariant defined from the spectral system

In this subsection we focus on the behavior of the differential in a spectral system and use it to 
define an invariant for persistence over a poset I . We start by studying the case of classical spectral 
sequences (associated with Z-filtrations), a situation where our new invariant defined as the image 
of differentials coincides with Definition 16 and (14). We then extend our definition to filtrations 
indexed over general posets, proving that it yields an invariant for generalized persistence.

Given a Z-filtration (F p), consider two 4-tuples of indices as follows:

p ≤ p + r − 1 ≤ p + r ≤ p + 2r − 1

= =

p − r ≤ p − 1 ≤ p ≤ p + r − 1
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The differential (dr
p+r)n+1 = dr

p+r,q−r+1 : Er
p+r,q−r+1 → Er

p,q of the rth page of the spectral sequence 
can be written in the following equivalent way (see Lemma 10):

(dr
p+r)n+1 : Sn+1[p, p + r − 1, p + r, p + 2r − 1] −→ Sn[p − r, p − 1, p, p + r − 1].

Let us consider the image of this differential:

I p,p+r
n := Im(dr

p+r)n+1 = F p Cn ∩ d(F p+r Cn+1)

F pCn ∩ d(F p+r−1Cn+1) + F p−1Cn ∩ d(F p+r Cn+1)
. (15)

Working over a fixed field F we have the following result:

Proposition 17. Given a Z-filtration (F p), knowledge of {dimF I p,p+r
n } and the dimensions of the 0-page of 

the spectral sequence {dimF E0
p,q} is equivalent to knowledge of the dimensions of all the terms of the spectral 

sequence {dimF Er
p,q}.

Proof. For r = 0, consider the chain complexes

· · · → E0
p,q+1

d0
p,q+1−−−→ E0

p,q

d0
p,q−−→ E0

p,q−1 → ·· ·
and observe that, for example, dimF E0

p,q+1 = dimF Ker d0
p,q+1 + dimF Im d0

p,q+1 and, since the 1-

page is obtained by taking homology, dimF E1
p,q = dimF Ker d0

p,q +dimF Im d0
p,q+1. Therefore, knowing 

dimF Im d0
p,q and dimF E0

p,q for all p and q allows to determine dimF Ker d0
p,q and thus dimF E1

p,q , 
for all p and q. The result is obtained by iterating this argument. �

As explained in Basu and Parida (2017) and Section 3, for Z-filtrations the collection {dimF Er
p,q}

is an invariant equivalent to persistent Betti numbers {βs,t
n }. Proposition 17 tells therefore that also 

{dimF I p,p+r
n }, together with {dimF E0

p,q}, is an invariant equivalent to persistent Betti numbers. No-

tice that, since E0
p,q = F p Cn/F p−1Cn , the collection {dimF E0

p,q} contains information equivalent to 
{dimF F p Cn}.

We introduce now the natural generalization of I p,p+r
n for filtrations indexed over a general poset 

I . Let (Fi) be an I-filtration, and consider two 4-tuples of indices as follows:

z2 ≤ s2 ≤ p2 ≤ b2

= =

z1 ≤ s1 ≤ p1 ≤ b1

As before, by Lemma 10 there is a differential

dn+1 : Sn+1[z2, s2, p2,b2] −→ Sn[z1, s1, p1,b1].
We imitate (15) and define

In[s1, p1, s2, p2] := Im dn+1 = F p1 Cn ∩ d(F p2 Cn+1)

F p1 Cn ∩ d(Fs2 Cn+1) + Fs1 Cn ∩ d(F p2 Cn+1)
. (16)

Notice that the indices z1 and b2 do not influence the expression (16), which depends only on the 
indices s1 ≤ p1 ≤ s2 ≤ p2.

In order to show that {In[s1, p1, s2, p2]} is an invariant, let us review some facts on morphisms of 
I-filtered chain complexes, which are defined generalizing in the natural way the notion of morphisms 
of Z-filtered chain complexes:

Definition 18. Let (C∗, F ) and (C ′∗, F ′) be two I-filtered chain complexes, respectively endowed with 
filtrations F = (Fi)i∈I and F ′ = (F ′

i )i∈I . A morphism of I-filtered chain complexes f : (C∗, F ) → (C ′∗, F ′) is 
a chain map f : C∗ → C ′∗ compatible with the filtrations, that is satisfying
740
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f (Fi C∗) ⊆ F ′
i C

′∗,
for all i ∈ I .

Denote by (Sn[z, s, p, b]) and (S ′
n[z, s, p, b]) the spectral systems associated respectively with the I-

filtered chain complexes (C∗, F ) and (C ′∗, F ′). A morphism of I-filtered chain complexes f : (C∗, F ) →
(C ′∗, F ′) induces, for any 4-tuple of indices z ≤ s ≤ p ≤ b in I , morphisms

f z,s,p,b
n : Sn[z, s, p,b] → S ′

n[z, s, p,b]
that commute with the differentials of the spectral systems. The construction of the spectral system 
associated with an I-filtered chain complex is functorial, meaning that for each 4-tuple of indices 
z ≤ s ≤ p ≤ b it holds Idz,s,p,b = IdS[z,s,p,b] and, for each pair of morphisms f , g of I-filtered chain 
complexes such that the composition g f is defined, it holds (g f )z,s,p,b = gz,s,p,b f z,s,p,b . Recalling 
Fact 7, the last equality appears evident from the following commutative diagram:

F p ∩ d−1(F z) F ′
p ∩ d−1(F ′

z) F ′′
p ∩ d−1(F ′′

z )

Sn[z, s, p,b] S ′
n[z, s, p,b] S ′′

n[z, s, p,b].

f

q

g

q′ q′′
f z,s,p,b
n gz,s,p,b

n

We now prove that {In[s1, p1, s2, p2]} is an invariant for generalized persistence over a poset I . 
Notice that we use a stronger hypothesis than just isomorphism of persistence modules.

Proposition 19. If a morphism of I-filtered chain complexes f : (C∗, F ) → (C ′∗, F ′) induces isomorphisms of 
persistence modules, then for each z ≤ s ≤ p ≤ b in I it induces isomorphisms

f z,s,p,b
n : Sn[z, s, p,b] → S ′

n[z, s, p,b].

Proof. We use here the spectral system notation Sn[−∞, −∞, p, p] = Hn(F p) for homology, for each 
p ∈ I (see Section 2). By equation (11) in Section 3, if p ≤ u and b ≤ t in I then

Sn[−∞,−∞, p, t] = Im(� : Sn[−∞,−∞, p,b] −→ Sn[−∞,−∞, u, t]),
where � denotes every map induced by inclusion, and in particular Sn[−∞, −∞, p, t] = Im(� :
Hn(F p) −→ Hn(Ft)). Since by hypothesis f : (C∗, F ) → (C ′∗, F ′) induces isomorphisms of persistence 
modules, for each p ≤ t the map induced by f

f −∞,−∞,p,t
n : Sn[−∞,−∞, p, t] → S ′

n[−∞,−∞, p, t] (17)

is an isomorphism. Considering long exact sequences like (10) of Section 3 we have a commutative 
diagram

· · · Sn[−∞,−∞, p,b] Sn[z, s, p,b] Sn−1[−∞,−∞, z, s] · · ·

· · · S ′
n[−∞,−∞, p,b] S ′

n[z, s, p,b] S ′
n−1[−∞,−∞, z, s] · · ·

�

f

�

f

k

f z,s,p,b
n

�

f f

�′ �′ k′ �′

for each z ≤ s ≤ p ≤ b, where the vertical maps denoted by f (for simplicity) are isomorphisms like 
(17), and f z,s,p,b

n : Sn[z, s, p, b] → S ′
n[z, s, p, b] is the map induced by f : (C∗, F ) → (C ′∗, F ′). By the 

Five Lemma (MacLane, 1963, Lemma 3.3), we can conclude that f z,s,p,b
n is an isomorphism. �

Corollary 20. In the situation of Proposition 19 it holds that In[s1, p1, s2, p2] ∼= I ′
n[s1, p1, s2, p2] for all 

s1 ≤ p1 ≤ s2 ≤ p2 and all n.
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Proof. The claim follows from the commutativity of

Sn+1[z2, s2, p2,b2] Sn[z1, s1, p1,b1]

S ′
n+1[z2, s2, p2,b2] S ′

n[z1, s1, p1,b1]

dn+1

f
z2,s2,p2,b2
n+1 f

z1,s1,p1,b1
n

d′
n+1

where by Proposition 19 the vertical maps are isomorphisms. �
As done for the descriptor M p,b

n , we have also implemented the construction of the new invariant 
In[s1, p1, s2, p2] using our previous programs for computing spectral systems, producing not only the 
groups but also the generators. We consider again the examples of filtered complexes in Figs. 1 and 2
and show that the new invariant is able to distinguish between both filtrations.

> (multiprst-i-group K (list ’(1 1) ) (list ’(1 2) ’(2 1))
(list ’(1 2) ’(2 1)) (list ’(1 3) ’(3 2)) 1)
Multipersistence group I[((1 1)),((1 2) (2 1)),((1 2) (2 1)),
((1 3) (3 2))]_{1}
Component Z
> (multiprst-i-group K2 (list ’(1 1) ) (list ’(1 2) ’(2 1))
(list ’(1 2) ’(2 1)) (list ’(1 3) ’(3 2)) 1)
Multipersistence group I[((1 1)),((1 2) (2 1)),((1 2) (2 1)),
((1 3) (3 2))]_{1}
Component Z
Component Z

It is clear that, for D(Zm)-filtrations, computing In[s1, p1, s2, p2] for any choice of elements s1 ≤
p1 ≤ s2 ≤ p2 in D(Zm) determines a combinatorial explosion and is usually unfeasible in practice. We 
think that a good choice consists in considering p1 and p2 as generated (respectively) by single points 
P and B in Zm , with P ≤ B , and setting s1 := p1 \ {P } and s2 := p2 \ {B}. Incidentally, this choice is 
also meaningful in terms of connections within the spectral system (see (Matschke, 2013, Sect. 3)). 
In this setting, we can notice that the definition of In[s1, p1, s2, p2] is similar to the descriptor M p,b

n
introduced above, especially in the case of downsets generated by single points.

6. Effective homology for infinitely generated spaces

Effective homology (Rubio and Sergeraert (2002, 2006)) is a technique developed to computation-
ally determine the homology of complicated spaces. We briefly introduce the notions necessary to 
understand the method, before showing how it can be used in the context of persistent homology.

Definition 21. A reduction ρ := (D∗ ⇒⇒ C∗) between two chain complexes D∗ and C∗ is a triple 
( f , g, h) where: (a) The components f and g are chain complex morphisms f : D∗ → C∗ and 
g : C∗ → D∗; (b) The component h is a morphism of graded modules h : D∗ → D∗+1 of degree +1; 
(c) The following relations must be satisfied: (1) f g = idC∗ ; (2) g f + dD∗h + hdD∗ = idD∗ ; (3) f h = 0; 
(4) hg = 0; (5) hh = 0.

Since f is a chain equivalence between D∗ and C∗ , in particular the homology groups Hn(D∗) and 
Hn(C∗) are canonically isomorphic, for each n.

Definition 22. An effective chain complex C∗ is a free chain complex (i.e., a chain complex consisting 
of free Z-modules) where each group Cn is finitely generated, and there is an algorithm that returns 
a Z-base in each degree n.
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Intuitively, an effective chain complex C∗ is a chain complex whose homology can be easily deter-
mined via standard diagonalization algorithms (see Kaczynski et al. (2004)).

Definition 23. A chain complex C∗ has effective homology if there exist a chain complex D∗ , an effective
chain complex EC∗ and two reductions C∗ ⇐⇐ D∗ ⇒⇒ EC∗ .

The technique of effective homology has been implemented in the system Kenzo, which is able 
to automatically construct the reductions C∗ ⇐⇐ D∗ ⇒⇒ EC∗ in several situations arising in algebraic 
topology and homological algebra. In the scenario of the previous definition, the method of effective 
homology allows to determine the homology groups of the original chain complex C∗ by using EC∗
to perform the computations. In this way, Kenzo is able to determine homology and homotopy groups 
of complicated spaces, even when the chain complex C∗ is not finitely generated (resulting thus 
untreatable by standard algorithms), and has shown its potentiality successfully computing previously 
unknown results (Rubio and Sergeraert (2006)).

Now, we want to show how the effective homology technique can be applied to compute persistent 
homology groups. First, let us study the behavior of reductions when we introduce I-filtrations on the 
involved chain complexes. Let F (resp. F ′) be an I-filtration of a chain complex D∗ (resp. C∗), and let 
S (resp. S ′) denote the terms of the associated spectral system. In Guidolin and Romero (2018) we 
stated the following result.

Theorem 24. (Guidolin (2018)) Let ρ = ( f , g, h) : D∗ ⇒ C∗ be a reduction between the I-filtered chain com-
plexes (D∗, F ) and (C∗, F ′), and suppose that f and g are compatible with the filtrations, that is, f (Fi) ⊆ F ′

i
and g(F ′

i ) ⊆ Fi for all i ∈ I . Then, given four indices z ≤ s ≤ p ≤ b in I , the map f induces for each n an 
isomorphism

f z,s,p,b
n : Sn[z, s, p,b] → S ′

n[z, s, p,b]
whenever the homotopy h : D∗ → D∗+1 satisfies the conditions h(F z) ⊆ Fs and h(F p) ⊆ Fb.

Proof. Remember the following properties of a reduction:

• f g = IdC∗ ,
• g f + dD∗h + hdD∗ = IdD∗ .

The first property implies that, for any 4-tuple of indices z ≤ s ≤ p ≤ b in I , we have the induced 
maps ( f g)

z,s,p,b
n = (IdC∗ )

z,s,p,b
n between terms of the spectral system. Then, by functoriality,

f z,s,p,b
n gz,s,p,b

n = IdS ′
n[z,s,p,b] .

The second property means that h is a chain homotopy between g f and IdD∗ . Then, a generalization 
of (MacLane, 1963, Prop. 3.5) whose details are worked out in Guidolin (2018) yields induced maps 
(g f )z,s,p,b

n = (IdD∗)
z,s,p,b
n whenever h satisfies the conditions h(F z) ⊆ Fs and h(F p) ⊆ Fb . Therefore, 

again by functoriality,

gz,s,p,b
n f z,s,p,b

n = IdSn[z,s,p,b]
whenever h satisfies h(F z) ⊆ Fs and h(F p) ⊆ Fb . �

This result is very useful, and is used also in Guidolin and Romero (2020) to study how the effec-
tive homology technique can be leveraged to compute the Serre spectral system, a generalization of 
the classical Serre spectral sequence.

Now, taking into account the relations between multipersistence and spectral systems studied in 
Section 3, we obtain the following corollary.
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Corollary 25. In the situation of Theorem 24, we have in particular that the map f induces isomorphisms

H p,b
n (D∗) = Sn[−∞,−∞, p,b] → H p,b

n (C∗) = S ′
n[−∞,−∞, p,b]

whenever the homotopy h : D∗ → D∗+1 satisfies the condition h(F p) ⊆ Fb.

Clearly, if in Corollary 25 the map h is also compatible with the filtrations, we can conclude that 
H p,b

n (D∗) ∼= H p,b
n (C∗) for all p ≤ b in I . This new result provides us a method for computing persistent 

homology groups of chain complexes of infinite type when the effective homology (Definition 23) 
of the chain complex is known. This method has been implemented in Kenzo and can be applied 
to complicated spaces filtered over general posets. As we mentioned before, it represents a unique 
feature among the available programs for computing invariants for (generalized) persistent homology.

We prove a result similar to Theorem 24 also for the descriptor M p,b
n introduced in Section 5.2.

Theorem 26. Let ρ = ( f , g, h) : D∗ ⇒ C∗ be a reduction between the I-filtered chain complexes (D∗, F ) and 
(C∗, F ′), let p ≤ b in I and let us suppose that f and g are compatible with the filtrations and h satisfies the 
condition h( F̂ p,b) ⊆ ∑

R F R + ∑
Y FY with R ∈Zm not comparable with the points B j defining the downset 

b and Y ∈ b \ {B1, . . . , Br}. Then, the map f induces for each n an isomorphism

f p,b
n : M p,b

n (D∗) → M p,b
n (C∗).

Proof. Remember the formula

M p,b
n := F̂ p,b

n

Ap,b
n + B p,b

n

in Definition 16 and the following properties of a reduction:

• f g = IdC∗ ,
• g f + dD∗h + hdD∗ = IdD∗ .

The first property implies that, for any pair of indices p ≤ b in I , we have the induced maps ( f g)
p,b
n =

(IdC∗ )
p,b
n . Then,

f p,b
n g p,b

n = Id
M p,b

n
.

The second property implies that, given σ ∈ F̂ p,b
n , we have Id(σ ) = g f (σ ) + hd(σ ) + dh(σ ). On the 

one hand, hd(σ ) = 0 (since σ ∈ F̂ p,b
n and dd = 0); on the other hand, we know that h( F̂ p,b

n ) ⊆∑
R F R + ∑

Y FY and d is compatible with the filtration, so dh(σ ) ∈ B p,b
n which is part of the quo-

tient defining M p,b
n . Considering now the induced maps on the corresponding quotients, we have the 

desired expression

Id
M p,b

n
= g p,b

n f p,b
n . �

Observe that, if the map h is compatible with the filtrations, then we can deduce M p,b
n (D∗) ∼=

M p,b
n (C∗) for every p < b. We conclude this section with a result describing the behavior of reductions 

(and effective homology) on the invariant I we introduced in Section 5.2.

Theorem 27. Let ρ = ( f , g, h) : D∗ ⇒ C∗ be a reduction between the I-filtered chain complexes (D∗, F ) and 
(C∗, F ′), and suppose that f and g are compatible with the filtrations. Then, given four indices s1 ≤ p1 ≤ s2 ≤
p2 in I , the map f induces for each n an isomorphism
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f s1,p1,s2,p2
n : In[s1, p1, s2, p2] → I ′

n[s1, p1, s2, p2]
whenever the homotopy h : D∗ → D∗+1 satisfies the condition h(F p1) ⊆ Fs2 .

Proof. We can apply a similar argument to the proof of Corollary 20. In that proof the indices were 
elements in I such that

z2 ≤ s2 ≤ p2 ≤ b2

= =
z1 ≤ s1 ≤ p1 ≤ b1

but now we can disregard z1 and b2, since they do not intervene in the definition of In[s1, p1, s2, p2]. 
In other words, we can set “artificially” z1 = −∞ and b2 = ∞, with F−∞ := 0 and F∞ := D∗ , and 
similarly with F ′ and C∗ . Then, the vertical maps in the proof of Corollary 20 are isomorphisms by 
Theorem 24, for which we only need to assume h(F p1 ) ⊆ Fs2 . �

If in Theorem 27 also the map h is compatible with the filtrations, we clearly have In[s1, p1, s2, p2]∼= I ′
n[s1, p1, s2, p2] for every choice of indices s1 ≤ p1 ≤ s2 ≤ p2 in I .

7. Improving the algorithms via discrete vector fields

The ability of the system Kenzo to exploit the relationship between different chain complexes is 
brought one step further by the use of discrete vector fields, a notion introduced by Robin Forman (For-
man (1998)) which proved itself incredibly useful in computational algebraic topology. For example, 
in Mischaikow and Nanda (2013) discrete vector fields are applied to the computation of persistent 
homology. In what follows we briefly describe how discrete vector fields can simplify the computa-
tion of generalized persistent homology in our setting, which possibly involves chain complexes of 
infinite type. For other applications of discrete vector fields to multipersistence we refer the reader to 
Scaramuccia et al. (2020) and Landi and Scaramuccia (2019).

Let C∗ = (Cn, dn) be a free chain complex with distinguished Z-bases Bn ⊆ Cn , whose elements we 
call n-cells. We will use the notation C∗ = (Cn, dn, Bn) when we want to stress that the chain complex 
C∗ is equipped with distinguished bases.

Definition 28. A discrete vector field V on C∗ is a collection of pairs of cells V = {(σk; τk)}k∈K satisfying 
specific conditions (see Romero and Sergeraert, 2010, Definition 5):

• Every component σk ∈ Bn is a regular face of the corresponding τk ∈ Bn+1 (that is, the coefficient 
of σk in dτk is +1 or −1).

• Each generator (cell) of C∗ appears at most one time in V .

Let us point out that we do not require the distinguished bases Bn or the vector field V to be 
finite. Observe that our definition is quite general, and does not require the chain complex C∗ to be 
canonically associated with a topological or combinatorial object such as a simplicial complex or a 
simplicial set; on the other hand, starting from a simplicial complex or a simplicial set K , there are 
“obvious” distinguished bases Bn for C∗ = C∗(K ), given by the sets of n-simplices of K .

Definition 29. A pair (σ j; τ j) of V is called a vector; we use the notations τ j = V (σ j) or σ j = V −1(τ j)

to express the fact that σ j and τ j are the components of a vector of V . The cells σ j and τ j are called 
respectively a source cell and a target cell. A cell σ ∈ Bn which does not appear in the discrete vector 
field V is called a critical cell.

Definition 30. Given a discrete vector field V , a V -path π of degree n and length m is a sequence 
π = {(σ jk ; τ jk )}0≤k<m such that:

• Every pair (σ jk ; τ jk ) is a vector of V and τ jk is an n-cell.
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• For every 0 < k < m, the component σ jk is a face of τ jk−1 (meaning that the coefficient of σ jk in 
dτ jk−1 is non-null), non necessarily regular but different from σ jk−1 .

Definition 31. A discrete vector field V is called admissible if, for every n ∈Z, a function λn : Bn →N
is provided such that the length of every V -path starting from σ ∈ Bn is bounded by λn(σ ).

The following result, due to Forman (Forman, 1998, § 8), has been generalized in Romero and 
Sergeraert (2010) to the case of chain complexes not necessarily of finite type.

Theorem 32. (Forman (1998); Romero and Sergeraert (2010)) Let C∗ = (Cn, dn, Bn) be a free chain complex 
and V = {(σk; τk)}k∈K be an admissible discrete vector field on C∗ . Then the vector field V defines a canonical 
reduction ρ = ( f , g, h) : (Cn, dn)⇒⇒ (Cc

n, d′
n) where Cc

n is the free Z-module generated by critical n-cells and 
d′

n is an appropriate differential canonically defined from C∗ and V .

Theorem 32, together with Kenzo’s algorithms for automatically constructing admissible discrete 
vector fields (Romero and Sergeraert (2010)), allows to compute the homology groups Hn(C∗) ∼=
Hn(Cc∗) working with the chain complex Cc∗ of reduced size. We sketch the proof given in Romero 
and Sergeraert (2010), as we will refer to it for proving Theorem 37.

Proof. For each basis Bn , consider the partition Bt
n ∪ Bs

n ∪ Bc
n into target, source and critical cells, 

which induces a decomposition (as Z-modules) of the chain groups: Cn = Ct
n ⊕ C s

n ⊕ Cc
n . By virtue of 

this decomposition, each differential dn can be represented as a 3 × 3 matrix

dn =
⎡
⎣

dn,1,1 dn,1,2 dn,1,3
dn,2,1 dn,2,2 dn,2,3
dn,3,1 dn,3,2 dn,3,3

⎤
⎦ .

It can be proven that dn,2,1 : Ct
n → C s

n−1 is an isomorphism, and that its inverse d−1
n,2,1 : C s

n−1 → Ct
n can 

be made explicit via the recursive formula

d−1
n,2,1(σ ) = ε(σ , V (σ ))

⎛
⎝V (σ ) −

∑
σ ′∈Bs

n−1\{σ }
ε(σ ′, V (σ ))d−1

n,2,1(σ
′)

⎞
⎠ , (18)

where ε(σ , τ ) denotes the coefficient of σ in the differential dτ . Then, the differential d′ and the 
maps f , g, h of the reduction can be explicitly defined as follows:

d′
n = dn,3,3 − dn,3,1d−1

n,2,1dn,2,3 fn−1 =
[

0 −dn,3,1d−1
n,2,1 1

]

gn =
⎡
⎣

−d−1
n,2,1dn,2,3

0
1

⎤
⎦ hn−1 =

⎡
⎣

0 d−1
n,2,1 0

0 0 0
0 0 0 �

⎤
⎦ (19)

We now want to add I-filtrations to the picture, in order to show the relevance of discrete vec-
tor fields in the computation of persistent homology groups for generalized persistence. We have to 
require that an additional compatibility condition is satisfied:

Definition 33. An I-filtration F = (Fi)i∈I of C∗ = (Cn, dn, Bn) is an I-filtration F of the chain complex 
(Cn, dn) that is compatible with faces: if σ is a face of a cell τ , then (τ ∈ Fi =⇒ σ ∈ Fi), for all i ∈ I .

Remark 34. Since we are considering the general framework of chain complexes (Cn, dn, Bn) equipped 
with distinguished bases for the chain groups, compatibility with faces (Definition 33) is not automat-
ically satisfied for every I-filtration of chain subcomplexes of (Cn, dn). As a counterexample, let C1 be 
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generated by an element x and let C0 be generated by two elements a, b, with d(x) = b −a. Given the 
poset I = {0 < 1}, let F1 be the full chain complex (with generators x, a, b) and let F0 be generated 
by x and b − a. Then x ∈ F0 but (in general) a /∈ F0.

Notice that in a canonical reduction ρ : (Cn, dn)⇒⇒ (Cc
n, d′

n), an I-filtration defined on the chain 
complex C∗ canonically induces an I-filtration on Cc∗ .

Definition 35. Let C∗ = (Cn, dn, Bn) be a free chain complex with an I-filtration F = (Fi)i∈I and let 
V = {(σk; τk)}k∈K be a discrete vector field on C∗ . If (σk ∈ Fi ⇐⇒ τk ∈ Fi) for all i ∈ I and for all 
k ∈ K we say that V is compatible with the I-filtration F .

Remark 36. Let F = (Fi)i∈I be an I-filtration of C∗ = (Cn, dn, Bn). By Definition 33, if σ is a face of 
a cell τ , then (τ ∈ Fi =⇒ σ ∈ Fi), for all i ∈ I . Then, if V = {(σ j; τ j)} j∈ J is a discrete vector field 
compatible with the filtration, for each V -path π = {(σ jk ; τ jk )}0≤k<m we can conclude that

σ j0 ∈ Fi =⇒ τ jm ∈ Fi,

for each i ∈ I .

Theorem 37. (Guidolin (2018)) If C∗ = (Cn, dn, Bn) is endowed with an I-filtration F = (Fi)i∈I and V =
{(σk; τk)}k∈K is an admissible discrete vector field on C∗ which is compatible with F , then the three maps of 
the canonical reduction ρ = ( f , g, h) : (Cn, dn)⇒⇒ (Cc

n, d′
n) described in Theorem 32 are compatible with the 

filtrations.

Proof. We refer to the proof of Theorem 32. Recall the decomposition Cn = Ct
n ⊕ C s

n ⊕ Cc
n of the 

chain groups; on the groups Ct
n , C s

n and Cc
n consider the “obvious” I-filtrations (of abelian groups) 

induced by F . Clearly, each component dn,k,� (with k, � = 1, 2, 3) of the differential d is compatible 
with the filtrations. As the differential d′ of Cc∗ and the maps f , g, h of the reduction are given by 
(19), we only need to prove that d−1

n,2,1 is compatible with the filtrations in order to conclude that 
d′, f , g, h are compatible with the filtrations. For each σ ∈ C s

n−1, using the recursive formula (18) we 
can express d−1

n,2,1(σ ) as a finite sum

d−1
n,2,1(σ ) =

∑
λkτ jk ,

where the λk are coefficients in Z and each τ jk is at the end of a V -path starting from σ . Then from 
Remark 36 follows that d−1

n,2,1 is compatible with the filtrations. �
Since in particular the map h of ρ = ( f , g, h) : (Cn, dn)⇒⇒ (Cc

n, d′
n) is compatible with the I-

filtrations defined on C∗ and Cc∗ , Corollary 25, Theorem 26 and Theorem 27 tell us that discrete 
vector fields can be used to improve the computations, with a guarantee that the returned results are 
correct for all persistent homology groups, descriptors M p,b

n and invariants In[s1, p1, s2, p2]:

Corollary 38. In the situation of Theorem 37, the map f of the reduction ρ = ( f , g, h) : (Cn, dn)⇒⇒ (Cc
n, d′

n)

induces isomorphisms:

• H p,b
n (C∗) ∼= H p,b

n (Cc∗) for all p ≤ b in I ,

• M p,b
n (C∗) ∼= M p,b

n (Cc∗) for all p < b in I ,
• In(C∗)[s1, p1, s2, p2] ∼= In(Cc∗)[s1, p1, s2, p2] for all s1 ≤ p1 ≤ s2 ≤ p2 in I .

Making use of this result and of Kenzo algorithms for computing admissible discrete vector 
fields (Romero and Sergeraert (2010)) we have enhanced our programs for the computation of multi-
persistence.
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8. Examples and computations

The algorithms presented in the previous sections have been implemented as a new module for 
the Kenzo system available at https://github .com /ana -romero /Kenzo -external -modules. In this section 
we present three different examples of application of our programs.

8.1. Effective example

As a first example showing the functionality of our algorithms, let us consider the following chain 
complex C∗ , which is effective (Definition 22):

C2 = Z4 d2−→ C1 = Z4 d1−→ C0 =Z

with differential maps d2 and d1 given respectively by the matrices

D2 =

⎡
⎢⎢⎣

0 0 0 0
2 0 0 0
0 2 0 1
1 0 2 0

⎤
⎥⎥⎦ and D1 = [

1 0 0 0
]
.

Its homology groups are: H0(C∗) = 0, H1(C∗) =Z/4Z and H2(C∗) =Z. In particular, observe that H1
is not free.

Let us suppose now that the free groups C0, C1 and C2 are generated respectively by elements 
C0 = 〈a〉, C1 = 〈b1, b2, b3, b4〉 and C2 = 〈c1, c2, c3, c4〉. Then, we consider the generalized filtration over 
Z2 given by F(1,1) = 〈a〉, F(1,2) = 〈a, b1, b2, b3, b4, c1, c2, c3〉, F(2,1) = 〈a, b3, b4, c3〉 and F(2,2) = C∗ . We 
focus on degree of homology n = 1 (where the most interesting groups appear) and compute the 
multipersistence groups, together with their generators, for different indices of the filtration.

> (multiprst-group C ’(2 2) ’(2 2) 1)
Multipersistence group H[(2 2),(2 2)]_{1}
NIL
> (multiprst-group C ’(1 2) ’(1 2) 1)
Multipersistence group H[(1 2),(1 2)]_{1}
Component Z/2Z
Component Z/4Z
> (multiprst-gnrts C ’(1 2) ’(1 2) 1)
({CMBN 1}<1 * B3>
{CMBN 1}<-1 * B2>)

> (multiprst-group C ’(2 1) ’(2 1) 1)
Multipersistence group H[(2 1),(2 1)]_{1}
Component Z/2Z
Component Z
> (multiprst-gnrts C ’(2 1) ’(2 1) 1)
({CMBN 1}<1 * B4>
{CMBN 1}<1 * B3>)

> (multiprst-group C ’(2 2) ’(2 2) 1)
Multipersistence group H[(2 2),(2 2)]_{1}
Component Z/4Z
> (multiprst-gnrts C ’(2 2) ’(2 2) 1)
({CMBN 1}<-1 * B2>)
> (multiprst-group C ’(1 2) ’(2 2) 1)
Multipersistence group H[(1 2),(2 2)]_{1}
Component Z/4Z
> (multiprst-gnrts C ’(1 2) ’(2 2) 1)
({CMBN 1}<-1 * B2>)
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> (multiprst-group C ’(2 1) ’(2 2) 1)
Multipersistence group H[(2 1),(2 2)]_{1}
Component Z/2Z
> (multiprst-gnrts C ’(2 1) ’(2 2) 1)
({CMBN 1}<1 * B4>)

From these computations, we can construct the persistence module (for n = 1) which can be sum-
marized by the following modules and morphisms:

V (1,2) = Z/2Z⊕Z/4Z V (2,2) = Z/4Z

V (1,1) = 0 V (2,1) = Z/2Z⊕Z

[−2 0]

[0 1]

We can also compute our new descriptor of Section 5 and see that the homology class generated 
by the element b3 is born at positions (1, 2) and (2, 1) and dies at (2, 2):

> (multiprst-m-group C (list ’(1 2)) (list ’(2 2)) 1)
NIL
> (multiprst-m-group C (list ’(2 1)) (list ’(2 2)) 1)
NIL
> (multiprst-m-group C (list ’(1 2) ’(2 1)) (list ’(2 2)) 1)
Component Z/2Z
> (multiprst-m-gnrts C (list ’(1 2) ’(2 1)) (list ’(2 2)) 1)
({CMBN 1}<1 * B3>)

Moreover, the new invariant In[s1, p1, s2, p2] can provide useful information on the generalized 
filtration.

> (multiprst-i-group C (list ’(1 1)) (list ’(1 2)) (list ’(1 2))
(list ’(2 2)) 1)
Multipersistence group I[((1 1)),((1 2)),((1 2)),((2 2))]_{1}
Component Z/2Z
> (multiprst-i-group C (list ’(1 1)) (list ’(2 1)) (list ’(2 1))
(list ’(2 2)) 1)
Multipersistence group I[((1 1)),((2 1)),((2 1)),((2 2))]_{1}
Component Z

8.2. Using effective homology

An example of situation where the computation of multipersistence of infinitely generated chain 
complexes can be relevant involves twisted Cartesian products (May (1967)) of simplicial sets where 
at least one space is of infinite type. Twisted Cartesian products are obtained as total spaces of towers 
of fibrations (successive fibrations where the total space of each one coincides with the base of the 
previous one), and multipersistence provides information on the interaction of the homology groups 
of the different components in the product.

For example, let us consider the first stages of the Whitehead tower for computing the homotopy 
groups of the sphere S3, given by the following tower of fibrations:

X6 X5 X4 B = S3

G4 = K (Z2,4) G3 = K (Z2,3) G2 = K (Z,2)

The first total space X4 can be seen as a twisted Cartesian product X4 = K (Z, 2) ×τ4 S3, where 
K (Z, 2) is an Eilenberg–MacLane space (May (1967)). The total space X5 of the second fibration is 
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given by X5 = K (Z2, 3) ×τ5 X4 = K (Z2, 3) ×τ5 (K (Z, 2) ×τ4 S3). Finally, the total space X6 of the third 
fibration is equal to X6 = K (Z2, 4) ×τ6 X5 = K (Z2, 4) ×τ6 (K (Z2, 3) ×τ5 (K (Z, 2) ×τ4 S3)). See May 
(1967) for the construction of this tower, which satisfies Hn(Xn) ∼= πn(S3).

Eilenberg–MacLane spaces K (π, n)’s are represented in Kenzo by means of the classifying space 
constructor (see May (1967) for details). In particular, if the group π is not finite (for instance Z), 
then the set of m-simplices of K (π, n) for every m ≥ n is infinite and hence K (π, n) is of infinite 
type.

The total space X6 can be filtered over D(Z3) (where m = 3 coincides with the number of fibra-
tions) by using the degeneracy degrees of the simplices (May (1967)), so that multipersistence can be 
studied. Let us observe that one of the factors, namely K (Z, 2), is not of finite type, so the rank in-
variant can not be directly determined via standard algorithms based on matrix reduction. However, 
the effective homology method implemented in Kenzo combined with the theoretical guarantee of 
Corollary 25 makes it possible to determine the multipersistence groups (and their rank).

In this example, our results allow us to reproduce the result π6(S3) ∼= H6(X6) ∼= Z/12Z given by 
the group H ((7,7,7)),((7,7,7))

6 :

> (multiprst-group X6 (list ’(7 7 7)) (list ’(7 7 7)) 6)
Multipersistence group H[((7 7 7)),((7 7 7))]_{6}
Component Z/12Z

In a context like this, the computation of multipersistence can reveal interesting information not 
only on the homology of individual spaces, but also on the role played by the filtration, as we see for 
example for the group H ((6,6,6)),((7,6,6))

6 =Z/4Z ⊕Z.

> (multiprst-group X6 (list ’(6 6 6)) (list ’(7 6 6)) 6)
Multipersistence group H[((6 6 6)),((7 6 6))]_{6}
Component Z/4Z
Component Z

We want to stress the important role of Corollary 25 and Theorem 26 in this situation, as they 
characterize the persistent homology groups that can be computed correctly using effective homol-
ogy in terms of the behavior of the homotopy operators h of the involved reductions, which can be 
determined explicitly.

Notice also that the system Kenzo is able to handle simplicial sets, which are more general and 
versatile than simplicial complexes; this allows it to deal with a broader variety of situations. The 
method of effective homology further enlarges the range of objects in algebraic topology it can 
compute and manipulate. To our knowledge, Kenzo is the only available software to make com-
putations on filtrations of infinitely generated chain complexes like the one we considered in this 
example.

8.3. Using discrete vector fields

As a last example of application of our programs, let us show how discrete vector fields can 
be used to improve the efficiency when working with chain complexes (or simplicial sets) with a 
large number of generators. Consider the chain complex associated with the digital image shown in 
Fig. 3, filtered over Z2 (more precisely: a 4 × 4 grid in Z2). For details and examples on how a 
digital image yields a simplicial complex and a chain complex we refer the reader to Romero et al. 
(2016).

In this case the simplicial complex has 203 vertices, 408 edges and 208 triangles. Even if the 
associated chain complex is not very big, it is convenient to use discrete vector fields to reduce it 
to a smaller one. The paper Guidolin and Romero (2018) includes an algorithm to determine an 
admissible discrete vector field which is compatible with a given generalized filtration defined on a 
chain complex of finite type. This discrete vector field can be computed in Kenzo and, when applied 
to the chain complex of this example, returns an effective chain complex as in Theorem 32 (stored in 
a slot called efhm) with 21 vertices, 23 edges and 5 triangles.
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Fig. 3. Digital image filtered over Z2.

> (efhm K3)
[K155 Homotopy-Equivalence K123 <= K123 => K141]
> (setf efK3 (rbcc (efhm K3)))
[K141 Generalized-Filtered-Chain-Complex]
> (length (basis efK3 0))
21
> (length (basis efK3 1))
23
> (length (basis efK3 2))
5

In this way, we can significantly improve the computation of the multipersistence groups and our 
new descriptor M p,b and the invariant with their corresponding generators.

9. Conclusions and further work

We presented a set of programs for performing computations on chain complexes with filtrations 
defined over posets. The programs allow to compute generalized persistent homology, and in par-
ticular some relevant invariants in the context of multipersistence. Although, due to the necessary 
adjustments to deal with infinite spaces, our programs are not as efficient as previous existing imple-
mentations with polynomial complexity, we provide algorithms which are valid in general situations, 
some of which cannot be tackled by any other method. One fundamental aspect of our implemen-
tation consists in the use of the effective homology technique, which makes it possible to handle 
infinitely generated chain complexes. Another important feature concerns the possibility of defining 
and using for computation filtrations over general posets. Our programs, improved using discrete vec-
tor fields, have been implemented as a new module for the Kenzo system.

We focused our study on filtrations indexed over the posets Zm and D(Zm), for their relevance in 
relation with multipersistence. In this respect, a theoretical contribution of our work is the description 
of the relation between persistent homology and spectral systems in a general scenario, which extends 
a result valid for persistent homology and spectral sequences arising from Z-filtrations. Furthermore, 
we introduce a descriptor, which is able to extract birth-death information from multiparameter fil-
trations, and a new invariant. Both of them have also been implemented in the Kenzo system. We 
show the connection between both definitions and their discriminative power in the context of mul-
tipersistence.

Two fundamental requirements in persistent homology theory are computability and robustness. 
As a future research direction, we intend to reduce the computational cost for our invariants and 
to further investigate their behavior with respect to small changes in the multiparameter filtration. 
As we reviewed in Section 4, several approaches have been proposed to tackle the problems arising 
with multiparameter filtrations. Since effective homology displays a good behavior with respect to the 
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invariants we considered in this work, studying its applicability to other constructions represents an 
interesting scope for further research.
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