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Abstract

In this paper we illustrate a statistical physics approach to problem
of the emergence of language. In this perspective language is seen as an
evolving and self-organizing system, whose components are continuously
shaped and (ri)-shaped through the interactions among the individuals of
a population. We illustrate several examples corresponding to the early
stages of the emergence of a language, namely the emergence of a common
lexicon and the emergence of a shared set of linguistics categories. We
also discuss an experimental framework related to the World Wide Web
where new lexicons and new conventions are emerging trough the collective
activity of millions of users. Finally we highlight the potential of such
an approach in the interdisciplinary effort to understand the origin of
linguistic structures.
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1 Introduction

One of the first questions the reader could ask while reading this paper is what
physics in general, and particularly statistical physics, has to do with the prob-
lem of the emergence of language.

Statistical physics has proven to be a very fruitful framework to describe
phenomena outside the realm of traditional physics [1]. The last years have wit-
nessed the attempt by physicists to study collective phenomena emerging from
the interactions of individuals as elementary units in social structures [2]. In
social phenomena the basic constituents are not particles but humans and every
individual interacts with a limited number of peers, usually negligible compared
to the total number of people in the system. In spite of that, human societies are
characterized by stunning global regularities [3]. There are transitions from dis-
order to order, like the spontaneous formation of a common language/culture or
the emergence of consensus about a specific issue. There are examples of scaling
and universality. These macroscopic phenomena naturally call for a statistical
physics approach to social behavior, i.e., the attempt to understand regularities
at large scale as collective effects of the interaction among single individuals,
considered as relatively simple entities. This is the paradigm of the Complex
Systems science: an assembly of many interacting (and simple) units whose col-
lective (i.e., large scale) behavior is not trivially deducible from the knowledge
of the rules that govern their mutual interactions.

Now consider the problem of the emergence of language. It is of course true
that if one adopts a static point of view where language is seen as a system frozen
at a particular point in time with its sound structure, vocabulary and grammar,
there is no place for statistical physics oriented studies. But as linguists begin to
get access to more and more data from systematic recordings and the massive
volume of text appearing on the World Wide Web, and as they look at new
language-like communication systems that have emerged recently - such as text
messaging protocols for use with mobile phones or social tagging of resources
available on the web - doubts arise whether human communication systems
can be captured within a static picture or in a clean formal calculus. The static
picture is giving way to a view where language is undergoing constant change as
speakers and hearers use all their available resources in creative ways to achieve
their communicative goals.

This is the point of view of semiotic dynamics [4] which looks at language as
an adaptive evolving system where new words and grammatical constructions
may be invented or acquired, new meanings may arise, the relation between lan-
guage and meaning may shift (e.g. if a word adopts a new meaning), the relation
between meanings and the world may shift (e.g. if new perceptually grounded
categories are introduced). All these changes happen both at the level of the
individual and at the group level, the focus being on the interactions among the
individuals as well as on horizontal, i.e., peer to peer, communications. Semiotic
dynamics is the sub-field of dynamics that studies the properties of such evolv-
ing semiotic systems. In this new perspective, complex systems science turns
out to be a natural allied in the quest for the general mechanisms underlying
the emergence of a shared set of conventions in a population of individuals.

In semiotic dynamics models assume a population of agents that have only
local interactions and carry out some communicative task, such as drawing the
attention of another agent to an object in their surroundings by using a name.
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Typically agents do not start with a given communication system but must
build one up from scratch. The communication evolves through successive con-
versations, i.e., events that involve a certain number of agents (two, in practical
implementations) and meanings. It is worth remarking that here conversations
are particular cases of language games, which, as already pointed out in [5, 6],
can be used to describe linguistic behavior, even if they can include also non
linguistic behavior, such as pointing.

In this paper we explore several modalities of interactions among the individ-
uals of a population corresponding to language games of increasing complexity.
We first consider the so-called Naming Game (Sect. 2), which possibly repre-
sents the simplest example of the complex processes leading progressively to the
establishment of human-like languages. It was expressly conceived to explore
the role of self-organization in the evolution of language [7, 8] and it has ac-
quired, since then, a paradigmatic role. The original paper [7], focused mainly
on the formation of vocabularies, i.e., a set of mappings between words and
meanings (for instance physical objects). In this context, each agent develops
its own vocabulary in a random private fashion, but agents are forced to align
their vocabularies, through successive conversations, in order to obtain the ben-
efit of cooperating through communication. Thus, a globally shared vocabulary
emerges as a result of local adjustments of individual word-meaning association.

The next step we consider is the so-called Category Game (Sect. 3). In this
case one focuses on the process by which a population of individuals manages
to categorize a single perceptually continuous channel, each stimulus being rep-
resented as a real-valued number ranging in the interval [0, 1]. The problem of
the emergence of a discrete shared set of categories out of a continuous percep-
tual channel is a notoriously difficult problem relevant for color categorization,
vowels formation, etc. The central result here is the emergence of a hierarchi-
cal category structure made of two distinct levels: a basic layer, responsible
for fine discrimination of the environment, and a shared linguistic layer that
groups together perceptions to guarantee communicative success. Remarkably,
the number of linguistic categories turns out to be finite and small, as observed
in natural languages.

Finally we conclude by focusing on results coming from an experimental
platform: the Web (Sect. 4). Though only a few years old, the growth of the
World Wide Web and its effect on the society have been astonishing, spread-
ing from the research in high-energy physics into other scientific disciplines,
academe in general, commerce, entertainment, politics and almost anywhere
where communication serves a purpose. Innovation has widened the possibili-
ties for communication. Social media like blogs, wikis and social bookmarking
tools allow the immediacy of conversation, with unprecedented levels of com-
munication speed and community size. In this perspective the web is acquiring
the status of a platform for social computing, able to coordinate and exploit the
cognitive abilities of the users for a given task. In this sense, it is likely that
the new social platforms appearing on the web, could rapidly become a very
interesting laboratory for social sciences. Here we report in particular on the
temporal growth of tag dictionaries in collaborative tagging systems and discuss
the implications for studies on the emergence of language.
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2 The Naming Game

In the Naming Game (NG) a population of individuals agrees on the use of a
simple convention (e.g. the name to give to an object) without resorting to any
central coordination, but on the contrary exploiting only local interactions [7, 8].
It is possibly the simplest model in which the idea that language can be seen
as a complex adaptive system [4] has been applied and challenged. This orig-
inal seminal idea triggered a series of contributions along the same lines and
many variants have been proposed over the years. It is particularly interest-
ing to mention the work proposed in [9], that focuses on an imitation model
which simulates how a common vocabulary is formed by agents imitating each
other, either using a mere random strategy or a strategy in which imitation
follows the majority (which implies non-local information for the agents). In
the following we shall present a minimal [10] version of the NG which results in
a drastic simplification of the model definition, while keeping the same overall
phenomenology. Indeed, its simplicity has allowed for an extensive application
of complex systems concepts and techniques to various aspects of its dynamics,
ranging from the self-organizing global behaviors to the role of topology, that is
unprecedented in the study of the emergence and evolution of language [10, 11].
For a review of statistical physics models related to language evolution we refer
to [2].

2.1 The model

The NG is played by a population of N agents which play pairwise interactions
in order to negotiate conventions, i.e., associations between forms and meanings,
and it is able to describe the emergence of a global consensus among them. For
the sake of simplicity the model does not take into account the possibility of
homonymy, so that all meanings are independent and one can work with only
one of them, without loss of generality. An example of such a game is that of
a population that has to reach the consensus on the name (i.e., the form) to
assign to an object (i.e., the meaning) exploiting only local interactions, and we
will adopt this perspective in the following.

Each agent disposes of an internal inventory, in which an a priori unlimited
number of words can be stored. As initial conditions we require all inventories
to be empty. At each time step (t = 1, 2, ..), a pair of neighboring agents is
chosen randomly, one playing as “speaker”, the other as “hearer”, and negotiate
according to the following rules (see Fig. 1):

• the speaker selects randomly one of its words (or invents a new word if its
inventory is empty) and conveys it to the hearer;

• if the hearer’s inventory contains such a word, the two agents update
their inventories so as to keep only the word involved in the interaction
(success);

• otherwise, the hearer adds the word to those already stored in its inventory
(failure).

Similar cooperative learning processes are present on the Web (e.g., in the case
of collaborative tagging systems described in Sect. 4) and may be used in sensor
networks [12].
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Figure 1: Naming Game Examples of the dynamics of the inventories in a
failed (top) and a successful (bottom) game. The speaker selects the word
highlighted. If the hearer does not possess that word he includes it in his
inventory (top). Otherwise both agents erase their inventories only keeping the
winning word (bottom).

With this scheme of interaction, the assumption of the absence of homon-
ymy simply translates into assuring that each newly invented word had never
appeared before in the population. Thus, single objects are independent (i.e.,
it is impossible that two agents use the same word for two different objects)
and their number becomes a trivial parameter of the model. Indeed, one can
treat an environment composed by an arbitrary number of objects by a simple
controlled rescaling of the findings of the case with one object. For this reason,
as we mentioned above, we concentrate on the presence of one single object,
without loss of generality.

It is also interesting to note that the problem of homonymy has been stud-
ied in great detail in the context of evolutionary game theory and it has been
shown [13] that languages with homonymy are evolutionary unstable. However
it is obvious that homonymy is an essential aspect of human languages, while
synonymy seems less relevant. The two authors solve this apparent paradox not-
ing that if we think of “words in a context” homonymy almost disappears while
synonymy acquires a much grater role. In the framework of the NG, homonymy
is not always an unstable feature (see Sect. 3 and [14] for an example) and its
survival depends in general on the size of the meaning and signal spaces [15].

This observation fits very well also with the implicitly assumed inferential
model of learning, according to which we assume that agents are placed in a
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common environment and they are able to point referents. So, after a failure,
the speaker is able to point the named object (or referent) to the hearer which
in its turn can assign the new name to it.

Another important remark concerns the random extraction of the word in
the speaker’s inventory. Most previously proposed models of Semiotic dynamics
attempted to give a more detailed representation of the negotiation interaction
assigning weights to the words in the inventories. In such models, the word
with largest weight is automatically chosen by the speaker and communicated
to the hearer. Success and failures are translated into updates of the weights: the
weight of a word involved in a successful interaction is increased to the detriment
of those of the others (with no deletion of words); a failure leads to the decrease
of the weight of the word not understood by the hearer. An example of a model
including weights dynamics can be found in [16] (and references therein). For
the sake of simplicity the minimal NG described above avoids the use of weights.
Indeed, these are apparently more realistic, but their presence is not essential
for the emergence of a global collective behavior of the system [17].

2.2 Phenomenology

The non-equilibrium dynamics of the NG is characterized by three temporal
regions: (1) initially the words are invented; (2) then they spread throughout
the system inducing a reorganization process of the inventories; (3) this process
eventually triggers the final convergence towards the global consensus (all agents
possess the same unique word).

More precisely, the main quantities of interest which describe the system’s
evolution are [10]

• the total number Nw(t) of words in the system at the time t (i.e., the total
size of the memory);

• the number of different words Nd(t) in the system at the time t;

• the average success rate S(t), i.e., the probability, computed averaging over
many simulation runs, that the chosen agent gets involved in a successful
interaction at a given time t.

The consensus state is obtained when Nd = 1 and Nw = N (so that S = 1),
and the temporal evolution of the three main quantities is presented in Fig. 2
(circles). At the beginning, many disjoint pairs of agents interact, with empty
initial inventories: they invent a large number of different words (N/2, on aver-
age) that start spreading throughout the system through failure events. Indeed,
the number of words decreases only by means of successful interactions, which
are limited in early stages by the very low overlap between the inventories. The
number of different words Nd grows, rapidly reaching a maximum in a time that
scales as O(N), and then saturates to a plateau where Nd = N/2, on average.
The total number Nw of words, on the other hand, keeps growing after Nd has
saturated, since the words continue to propagate throughout the system even
if no new one is introduced. The peak of Nw scales as O(N1.5) [10], meaning
that each agent stores O(N0.5) words. This peak occurs after the system has
evolved for a time tmax ∼ O(N1.5). In the subsequent dynamics, strong correla-
tions between words and agents develop, driving the system to a final rather fast
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convergence to the absorbing state in a time tconv ∼ O(N1.5). The S-shaped
curve of the success rate in Fig. 2 summarizes the dynamics: initially, agents
hardly understand each others (S(t) is very low); then the inventories start to
present significant overlaps, so that S(t) increases until it reaches 1. It is worth
noting that the established communication system is not only effective (agents
can understand each others) but also efficient (no memory is wasted in the final
state).
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Figure 2: Time evolution of the total number of words Nw (top), of the
number of different words Nd (center), and of the average success rate S(t)
(bottom), for a mean-field system (black circles) and low-dimensional lattices
(1D, red squares and 2D, blue triangles) with N = 1024 agents, averaged over
103 realizations. The inset in the top graph shows the very slow convergence in
low-dimensional lattices.

2.3 Role of topology

In the NG at each time step two agents are randomly extracted. This means
that each agent can in principle interact with anyone else, and the population is
unstructured (i.e., we are in the mean-field case). However, the hypothesis that
each agent can in principle talk to anybody else is quite unrealistic when we deal
with large populations. The traditional remedy adopted in statistical mechanics
is to embed agents in a regular quenched spatial structure, typically a regular
d−dimensional lattice. The effects of such an underlying structure on the NG
are remarkable [18]. Compared to the mean-field case, the model converges
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Mean-field Lattices (d ≤ 4) Networks
Maximum memory N1.5 N N

Convergence time N1.5 N1+ 2

d N1.4±0.1

Table 1: Scaling with the system size N of the maximum number of words
(memory) and time of convergence. Networks, thanks to the small-world prop-
erty and the finite connectivity, ensure a trade-off between the fast convergence
of mean-field topology and the small memory requirements of lattices.

very slowly, and the reason is related to the formation of many different local
clusters of agents with the same unique word, that grow through a competition
taking place at their boundaries (i.e., by coarsening dynamics, in the terms of
statistical mechanics). Therefore the maximum memory per agent is now finite
(while, as we have seen, it scales as

√
N for the complete graph), but it can be

shown that the consensus is reached in a time tconv/N ∼ N2/d, i.e., slower than
the mean-field case if d ≤ 4.

A more realistic alternative to regular structures are given by complex net-
works. A network is, roughly speaking, an ensemble of nodes connected by links
(or edges). Examples of such structures are ubiquitous, Internet and the World
Wide Web being the most obvious. Moreover, recently, it has been found out
that many more systems, ranging from the social to the biological and techno-
logical domains, can be described as networks [19, 20, 21]. Among the most
peculiar features shared by most natural or artificial networks there are the
“small world” property [22] and the scale free degree distribution [23]. The first
is the name attributed to the evidence that the minimal hop distance between
each pair of nodes scales logarithmically with the network’s size instead of alge-
braically as in usual regular lattices. The second is the fact that, said degree k
of a node the number of links which connect it to other nodes, the degree dis-
tribution P (k) follows a power law P (k) ∼ k−γ , thus allowing for the presence
of very few nodes with very high connectivity that in general play a central role
in the structural and dynamical properties of the system.

The behavior of the NG on complex networks can be understood resorting to
the results obtained in the most artificial cases of mean-field and low dimensional
topologies [24, 25]. Indeed, the small-world property prevents the formation
of compact clusters of agents sharing the same unique words, while the finite
connectivity ensures finite memory requirements. Thus, the convergence time
on these topologies is very close (except for logarithmic corrections) to the mean-
field one, whereas the required memory stays finite (it does not depend on N
only on the average degree). Table 1 summarizes the results we have presented.

Along with the global quantities we have studied so far, it is also interesting
to investigate the microscopic activity patterns of single agents, and to study
how they are affected by underlying topology [26]. In particular, in complex
networks, simple properties of the degree distribution (namely the first two mo-
ments) turn out to affect dramatically the memory requirements of the agents,
in a way that depends both on the general features of the considered network
and on the connectivity of the single agents. Without entering in the mathe-
matical details that allow to quantify precisely the impact of topology on agents
activity [26], a simple look at Figure 3 allows to gain a qualitatively idea of the
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Figure 3: Temporal series of the inventory size of a single agent in different
topologies. Top: Series from a Barabási-Albert (BA) network with N = 104

nodes and average degree 〈k〉 = 10, for nodes of high degree (e.g. k = 414)
and low degree (e.g. k = 10). Bottom: Series for nodes in Erdös-Rényi random
graph (N = 104, 〈k〉 = 50) and in a one-dimensional ring (k = 2).

relevance of the phenomenon. Here the time evolution of the inventory size of
single agents is presented, and the role of connectivity patterns is evident. Top
panels refers to an hub (left) and a less connected node (right) belonging to
the same Barabási-Albert network [23] (an artificial graph with a power law
degree distribution given by P (k) ∼ k−3, i.e., where the vast majority of nodes
is poorly connected while few hubs have large degrees). The bottom left panel,
on the other hand, concerns the activity of an average node on an homogeneous
Erdös-Rényi random graph [27], where the degree distribution is peaked and all
nodes have very similar connectivity patterns. The bottom right square, finally,
presents the activity of an agent belonging to a population arranged on the
nodes of a linear chain, whose inventory never exceeds the size of two words.
In summary, the microscopic point of view not only supports and complements
the study of global quantities, but also allows to point out deeper connections
between the learning process of the agents (i.e., the dynamics of acquisition and
deletion of words of a single agent) and the topological properties of the system.

3 The Category Game

In the past there have been many computational and mathematical studies ad-
dressing the learning procedures for form-meaning associations [28, 29]. From
the point of view of methodology, the evolutionary scheme, based on the max-
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imization of some fitness functions, has been extensively applied [30, 31]. Re-
cent years, however, have shown that also the orthogonal approach of self-
organization can be fruitfully exploited in multi-agent models for the emergence
of language [32, 33, 10]. In this context, a community of language users is viewed
as a complex dynamical system which has to develop a shared communication
system [4, 34]. In this debate, a still open problem concerns the emergence of a
small number of forms out of a diverging number of meanings. For example the
few “basic color terms”, present in natural languages, coarse-grain an almost
infinite number of perceivable different colors [35, 36, 37].

Adopting the point of view of Semiotic dynamics [4], we shall show that an
assembly of individuals with basic communication rules and without any exter-
nal supervision may evolve an initially empty set of categories, achieving a non-
trivial communication system characterized by a few linguistic categories [14].
To probe the hypothesis that cultural exchange is sufficient to this extent, indi-
viduals in this model are never replaced (unlike in evolutionary schemes [30, 31]),
the only evolution occurring in their internal form-meaning association tables,
i.e. their “mind”. The individuals play elementary language games [6, 8] whose
rules constitute the only knowledge initially shared by the population. They
are also capable of perceiving analogical stimuli and communicating with each
others [32, 33].

3.1 The model

The model involves a population of N individuals (or players), committed in
the categorization of a single analogical perceptual channel, each stimulus being
represented as a real-valued number ranging in the interval [0, 1].

Here categorization is identified as a partition of the interval [0, 1] in dis-
crete sub-intervals, from now onwards denoted as perceptual categories. This
approach can also be extended to categories with prototypes and fuzzy bound-
aries, for instance adding a weight structure upon it. Typical proposals in
literature, such as prototypes with a weight function equal to the inverse of the
distance from the prototype [33], are exactly equivalent to our “rigid boundaries”
categories. Moreover, all the results of this experiment can be easily generalized
to multi-dimensional perceptual channels, provided an appropriate definition of
category domains is given. It should be kept in mind that the goal is to inves-
tigate why the continuum of perceivable meanings in the world is organized, in
language, in a finite and small number of subsets with different names, with a no
immediate (objective) cause for a given partition with respect to other infinite
possibilities. Apart from the evident example of the partition of the continuous
light spectrum in a small number of “basic color terms”, this phenomenon is
widespread in language: one can ask, for example, what objective differences
allow to distinguish a cup from a glass; one can present a multi-dimensional
continuum of objects able to “contain a liquid” (including also objects given as
a prize), but a natural discontinuity between cups and glasses does not appear;
our model, even reducing the phenomenon to the case of a 1-dimensional con-
tinuum, unveils a mechanism which can be easily extended to any kind of space,
once it has been provided with a topology. The mechanism we propose for the
discrete partition in linguistic subsets (categories) does not depend on the exact
nature of this topology, which is of course a fundamental, yet different, matter
of investigation.
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Each individual has a dynamical inventory of form-meaning associations
linking perceptual categories (meanings) to words (forms), representing their
linguistic counterpart. Perceptual categories and words associated to them co-
evolve dynamically through a sequence of elementary communication interac-
tions, simply referred as games. All players are initialized with only the trivial
perceptual category [0, 1], with no name associated to it. At each time step a
pair of individuals (one playing as speaker and the other as hearer) is selected
and presented with a new “scene”, i.e. a set of M ≥ 2 objects (stimuli), de-
noted as oi ∈ [0, 1] with i ∈ [1, M ]. The speaker discriminates the scene, adding
new category boundaries to isolate the topic, then he names one object and the
hearer tries to guess it.The word to name the object is chosen by the speaker
among those associated to the category containing the object, with a preference
for the one which has been succesfully used in the most recent game involving
that category. A correct guess makes the game successful. Based on game’s out-
comes individuals may update their category boundaries and the inventory of
the associated words: in a successful game both players erase competing words
in the category containing the topic, keeping only the word used in that game;
in failed games, the speaker points out the topic and the hearer proceeds to
discriminate it, if necessary, and then adds the spoken word to its inventory for
that category.

Fig. 4 describes two examples representing a failure (game 1) and a success
(game 2), respectively. Two objects are presented to both players. The speaker
selects the topic. In game 1 the speaker has to discriminate the chosen topic (“a”
in this case) by creating a new boundary in his rightmost perceptual category
at the position (a + b)/2. The two new categories inherit the words-inventory
of the parent perceptual category (here the words “green” and “olive”) along
with a different brand new word each (“brown” and “blue”). Then the speaker
browses the list of words associated to the perceptual category containing the
topic. There are two possibilities: if a previous successful communication has
occurred with this category, the last winning word is chosen; otherwise the last
created word is selected. In the present example the speaker chooses the word
“brown”, and transmits it to the hearer. The outcome of the game is a failure
since the hearer does not have the word “brown” in his inventory. The speaker
unveils the topic, in a non-linguistic way (e.g. pointing at it), and the hearer
adds the new word to the word inventory of the corresponding category. In game
2 the speaker chooses the topic ”a”, finds the topic already discriminated and
verbalizes it using the word ”green” (which, for example, may be the winning
word in the last successful communication concerning that category). The hearer
knows this word and therefore points correctly to the topic. This is a successful
game: both the speaker and the hearer eliminate all competing words for the
perceptual category containing the topic, leaving “green” only. In general when
ambiguities are present (e.g. the hearer finds the verbalized word associated
to more than one category containing an object), these are solved making an
unbiased random choice.
The perceptive resolution power of the individuals limits their ability to distin-
guish objects/stimuli that are too close to each other in the perceptual space:
in order to take this into account, we define a threshold dmin, inversely propor-
tional to their resolution power 1. In a given scene the M stimuli are chosen to be

1In psychology, dmin is equivalent to the so-called Just Noticeable Difference (“JND”) or
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Figure 4: Rules of the Category Game. The two examples describe a failure
(game 1) and a success (game 2), respectively (see text for the details).

at a distance larger than this threshold, i.e. |oi −oj | > dmin for every pair (i, j).
Nevertheless, objects presented in different games may be closer than dmin.
The way stimuli are randomly chosen characterizes the kind of simulated envi-
ronment: simulations will be presented both with a homogeneous environment
(uniform distribution in [0, 1]) and more natural environments (e.g., without
loss of generality, the distributions of the hue sampled from pictures portraying
natural landscapes).

3.2 Phenomenology

A resume of the main results of the numerical experiment is given in Fig. 5. The
evolution of the population presents two main stages: 1) a phase where players
do not understand each other, followed by 2) a phase where communication
has reached an averagely high success thanks to the emergence of a common
language, still with evolving perceptual categories and a finite fraction of failures
due to slightly unaligned categories and ambiguities. The first phase is marked
by the growth and decline of synonymy, see Fig. 5a. Synonymy, in the context
of the “naming game” (an individual object to be named), has been discussed in
Sect. 2, where a similar evolution was observed and explained. All individuals,
when necessary, create new words with zero probability of repetition: this leads
to an initial growth of the vocabulary associated to each perceptual category.
New words are spread through the population in later games and, whenever

Difference Limen (“DL”)
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a word is understood by both players, other competing words for the same
category are forgotten 2. This eventually leads to only one word per category.
During the growth of the dictionary the success rate, see Fig. 5b, is very small.
The subsequent reduction of the dictionary corresponds to a growing success
rate which reaches its maximum value after synonymy has disappeared. In
all numerical experiments the final success rate overcomes 80% and in most of
them goes above 90%, weakly increasing with the final number of perceptual
categories. Success is reached in a number of games per player of the order of
5 × 102, logarithmically depending on N , and it remains constant hereafter.

Figure 5: Results of the simulations with N = 100 and different values of
dmin: a) Synonymy, i.e. average number of words per category; b) Success rate
measured as the fraction of successful games in a sliding time windows games
long; c) Average number of perceptual (dashed lines) and linguistic (solid lines)
categories per individual; d) Averaged overlap, i.e. alignment among players,
for perceptual (dashed curves) and linguistic (solid curves) categories.

The set of perceptual categories of each individual follows a somewhat dif-
ferent evolution (see dashed lines in Fig. 5c). The first step of each game is,
in fact, the discrimination stage where the speaker (possibly followed by the
hearer) may refine his category inventory in order to distinguish the topic from
the other objects. The growth of the number of perceptual categories nperc

of each individual is limited by the resolution power: in a game two objects
cannot appear at a distance smaller than dmin and therefore nperc < 2/dmin.

2Extensions of this model can be devised in order to account for cases where words are
not always erased, but instead they can became more “specialised”, eventually yielding to the
emergence of a hierarchy of category names.

13



The minimal distance also imposes a minimum number of categories 1/dmin

that an individual must create before his discrimination process may stop. The
average number of perceptual categories per individual, having passed 1/dmin,
grows sub-logarithmically and for many practical purposes it can be considered
constant.

The success rate is expected to depend on the alignment of the category
inventory among different individuals. The degree of alignment of category
boundaries is measured by an overlap function O

O = 2
∑

i<j

oij

N(N − 1)
with oij =

2
∑

cj

i
(lcj

i
)2

∑
ci

(lci
)2 +

∑
cj

(lcj
)2

, (1)

where lc is the width of category c, ci is one of the categories of the i-th player,
and cj

i is the generic category of the “intersection” set obtained considering all
the boundaries of both players i and j. The function returns a value propor-
tional to the degree of alignment of the category inventories, reaching its maxi-
mum unitary value when they exactly coincide. Its study, see dashed curves of
Fig. 5d, shows that alignment grows with time and saturates to a value which
is, typically, in between 60% − 70%, i.e. quite smaller than the communicative
success. This observation immediately poses a question: given such a strong
misalignment among individuals, why is communication so effective?

The answer has to be found in the analysis of polysemy, i.e. the existence
of two or more perceptual categories identified by the same unique word. Mis-
alignment, in fact, induces a “word contagion” phenomenon. With a small but
non zero probability, two individuals with similar, but not exactly equal, cate-
gory boundaries, may play a game with a topic falling in a misalignment gap, as
represented in Fig. 6a. In this way a word is copied to an adjacent perceptual
category and, through a second occurrence of a similar event, may become the
unique name of that category. Interfering events may occur in between: it is
always possible, in fact, that a game is played with a topic object falling in the
bulk of the category, where both players agree on its old name, therefore cancel-
ing the contagion. With respect to this cancelling probability, some gaps are too
small and act as almost perfectly aligned boundaries, drastically reducing the
probability of any further contagion. Thus, polysemy needs a two-step process
to emerge, and a global self-organized agreement to become stable. On the other
hand, polysemy guarantees communicative success: perceptual categories that
are not perfectly aligned tend to have the same name, forming true linguistic
categories, much better aligned among different individuals. The topmost curve
of Fig. 5d, displays the overlap function measured considering only boundaries
between categories with different names 3: it is shown to reach a much higher
value, even larger than 90%.

The appearance of linguistic categories is the evidence of a coordination of
the population on a higher hierarchical level: a superior linguistic structure on
top of the individual-dependent, finer, discrimination layer. The linguistic level
emerges as totally self-organized and is the product of the (cultural) negotiation

3We define name of a perceptual category the word that an individual would choose,
according to the rules of the model, to communicate about an object discriminated by that
category (i.e. the last-winning word or the last created word). Of course, if there is a unique
word associated with a category (which is most often the case after homonymy has almost
disappeared), the definition above identifies that word as the name of the category.
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Figure 6: Saturation in the number of linguistic categories: a) A “word
contagion” phenomenon occurs whenever the topic falls in a gap between two
misaligned categories of two playing individuals. In the shown examples two
individuals play two successive games. In game 1 the speaker (S) says ”blue”
and the hearer (H), unable to understand, adds ”blue” as a possible word for
his leftmost category; successively (game 2) the speaker repeats ”blue” and the
hearer learns this word as the definitive name for that perceptual category; both
left and right perceptual categories of the hearer are now identified by the same
name ”blue” and they can be considered (for the purpose of communication)
as a single linguistic category; b) Final number of linguistic categories as a
function of dmin at different times, with N = 100. As the time increases the
number of linguistic categories saturates. At large times, for small dmin, the
number of linguistic categories becomes independent of dmin itself. Concerning
size dependence, only a weak (logarithmic) dependence on N , not shown, is
observed.

process among the individuals. The average number of linguistic categories per
individual, nling, Fig. 5c (solid curves), grows together with ncat during the
first stage (where communicative success is still lacking), then decreases and
stabilizes to a much lower value. Some configurations of both category layers,
at a time such that the success rate has overcome 95%, are presented in Fig. 7,
using different sets of external stimuli.

The analysis, resumed in Fig. 6b, of the dependence of nling on dmin for dif-
ferent times, makes these findings robust and, to our knowledge, unprecedented.
As the resolution power is increased, i.e. as dmin is diminished, the asymptotic
number of linguistic categories becomes less and less dependent upon dmin itself.
Most importantly, even if any state with nling > 1 is not stable, we have the
clear evidence of a saturation with time, in close resemblance with metastability
in glassy systems [38, 39]. This observation allows to give a solution to the long-
standing problem of explaining the finite (and small) number of linguistic cate-
gories nling . In previous pioneering approaches [32, 33] the number of linguistic
categories nling was trivially constrained (with a small range of variability) by
dmin, with a relation of the kind nling ∝ 1/dmin, implying a divergence of nling
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Figure 7: Categories and the pressure of environment. Inventories of
10 individuals randomly picked up in a population of N = 100 players, with
dmin = 0.01, after 107 games. For each player the configuration of perceptual
(small vertical lines) and linguistic (long vertical lines) category boundaries is
superimposed to a colored histogram indicating the relative frequency of stim-
uli. The labels indicate the unique word associated to all perceptual categories
forming each linguistic category. Three cases are presented: one with uniformly
distributed stimuli (a) and two with stimuli randomly extracted from the hue
distribution of natural pictures (b and c). One can appreciate the perfect agree-
ment of category names, as well as the good alignment of linguistic category
boundaries. Moreover, linguistic categories tend to be more refined in regions
where stimuli are more frequent: an example of how the environment may in-
fluence the categorization process.

with the resolution power. In our model we have a clear indication of a finite
nling even in the continuum limit, i.e. dmin → 0, corresponding to an infinite
resolution power.

3.3 Outlook on the Category Game

An extensive and systematic series of simulations has demonstrated that a sim-
ple negotiation scheme, based on memory and feedback, is sufficient to guarantee
the emergence of a self-organized communication system which is able to dis-
criminate objects in the world, requiring only a small set of words. Individuals
alone are endowed with the ability of forming perceptual categories, while cul-
tural interaction among them is responsible for the emergence and alignment of
linguistic categories. The Category Game reproduces a typical feature of nat-
ural languages: despite a very high resolution power, the number of linguistic
categories is very small. For instance, in many human languages, the num-
ber of “basic color terms” used to categorize colors usually amounts to about
ten [35, 36, 37], in European languages it fluctuates between 6 and 12, depending
on gender, level of education, and social class, while the light spectrum resolu-
tion power of our eyes is evidently much higher. Note that in the simulations one
observes a reduction, with time, of the number of linguistic categories toward
the final plateau. The experimental evidence [40], collected in empirical studies
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on color categorization, of a growth of the number of categories from technolog-
ically less developed societies to more developed ones could be, in our opinion,
an effect of the increased number N of players actively involved in the evolution
of the communicative process. Finally we believe that these results could be
important both from the point of view of language evolution theories, possibly
leading to a quantitative comparison with real data 4 [41] and suggesting new
experiments (e.g., different populations sizes and ages), and from the point view
of applications (e.g., emergence of new communication systems in biological, so-
cial and technological contexts [42, 43]). The typical approach of physicists, to
make contact between model and real data, would be to investigate the statis-
tical properties of fluctuations (e.g. distribution of lengths of gaps between not
perfectly aligned categories, or of number of different words in the population
associated to some boundary region between adjacent categories). Since most
of experimental data concern categorization of spaces of dimensionality larger
than 1, an extension of the Category Game model to higher dimension is what
is sought after in present and future researches.

4 Collaborative Tagging

The paradigm of collaborative tagging [44, 45] has been swiftly adopted and de-
ployed in a wide range of systems, motivating a surge of interest in understand-
ing their structure and evolution. Folksonomies have been known to exhibit
striking statistical regularities and activity patterns [46, 43].

In this context, a natural topic for investigation is the vocabulary of tags
that is used within a given system, and in particular its evolution over time, as
new users, resources and tags come into play. Some insights in this direction are
reported in [46] and [47], but a systematic attempt at characterizing vocabulary
growth in collaborative tagging system is still lacking. Here we make a first
step in that direction by analyzing a large-scale snapshot of del.icio.us and
identifying a few stylized facts about the temporal evolution of tag vocabulary
in a variety of contexts.

Ordinary vocabularies of words feature several interesting properties, and
one of the most striking is related to their growth [48]. If one scans a text
written in natural language and monitors the number of different words that
have appeared as a function of the total number of words read, one realizes that
this growth is described by a sub-linear law of growth, and often by a power-law
behavior with an exponent smaller than one. It is thus tempting to investigate
the same features in a folksonomy, regarded as a stream of time-ordered posts
in a given context. How does the number of tags grow? Is the asymptotic
number of tags finite? What is the rate of invention of new tags? Does their
number eventually reach a plateau? Beyond the pure theoretical interest, these
questions may be important for collaborative tagging and more generally for
understanding the dynamics of tags in online social communities, where a deeper
understanding of the temporal evolution of the system is important for both
managing existing systems and designing new ones.

The outline of this section is as follows. Section 4.1 describes the experimen-
tal data we analyzed. Section 4.2 is devoted to the temporal evolution of the

4A collection of available experimental data can be found in The World Color Survey,
http://www.icsi.berkeley.edu/wcs
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global vocabulary, i.e. the growth of the number of different tags in the entire
system, while the analysis of local vocabulary growth – the number of distinct
tags used in the context of a given resource or user – is addressed in Section 4.3.
In Section 4.4 we cast this work in a wider perspective and discuss some open
questions.

4.1 Experimental data

Our analysis focuses on del.icio.us for several reasons: i) it was the first system
to deploy the ideas and technologies of collaborative tagging, so it has acquired a
paradigmatic character and it is the natural starting point for any quantitative
study. ii) because of its popularity, it has a large community of active users
and comprises a precious body of raw data on the structure and evolution of a
folksonomy. iii) it is a broad folksonomy [49], i.e. single tagging events (posts)
retain their identity and can be individually retrieved. This allows to define and
measure the multiplicity (or frequency) of tags in a given context (for exampe,
a resource or a user), providing a precious opportunity to probe social aspects
in the tagging behavior of a community. Contrary to this, popular tagging
systems falling in the narrow folksonomy class (Flickr, for example) are based
on a different model of user interaction, where tags are mostly applied by the
content creator, no notion of tag multiplicity is possible in the context of a single
resource, and no access is given to the raw sequence of tagging events.

The basic unit of information in a collaborative tagging system is a (user,

resource, {tags}) triple, here referred to as “post”. In del.icio.us (as well as
in many other systems) a post also contains a timestamp indicating the physical
time of the tagging event, so that the temporal ordering of posts can be preserved
and the dynamical evolution of the system over time can be reconstructed and
investigated.

The dataset used for the present analysis consists of approximately 5 · 106

posts, comprising about 650000 users, 1.9 · 106 resources and 2.5 · 106 distinct
tags, and covering almost 3 years of user activity, from early 2004 up to Novem-
ber 2006. For the present study, a time-ordered sequence of posts was built and
converted to a time-ordered table of tag assignments (TAS), by mapping each
post of the form (user, resource, {tag1, tag2, . . . }) into adjacent as-
signments of the form (tag1, user, resource), (tag2, user, resource),

. . . , one for each tag in the post. Such a table, and selections of it, were used
as the base for analysis described in the following.

4.2 Global vocabulary growth

We begin by studying the evolution over time of the size of the global “tag
vocabulary”, i.e. the total number of different tags that are present in the folk-
sonomy. As a function of physical time (inset of Fig. 8) the growth of the global
vocabulary is rather featureless, and reflects the huge growth of del.icio.us over
the past 3 years. The fact that the system grew up in size so fast, indeed,
makes physical time unsuitable to study the temporal evolution of del.icio.us,
because a large fraction of the total activity is compressed in the final part of its
temporal history. Physical time is in many respects “external” to the system,
and a much better notion of “time” can be defined in terms of quantities that
are intrinsic to the system itself. As mentioned above, we start our analysis
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Figure 8: Temporal evolution of the total number of distinct tags in

del.icio.us As a function of the intrinsic time τ (see main text), the number
N(τ) of distinct tags (red dots) increases closely following a power-law (straight
line in a log-log plot) across the entire history of the system. The solid black line,
provided as an aid for the eye, corresponds to a power-law with exponent γ ≃
0.8. The inset shows the number N of distinct tags as function of physical time,
spanning almost 3 years of growth and six orders of magnitude in vocabulary
size. The main graph and the inset refer to the same interval of physical time.

from a time-ordered table of tag assignments. For the system as a whole, we
can define an “intrinsic time” τ as the index of a tag assignment into such a
table, so that τ runs from 1 to the number of total tags assignments, i.e. the
sum of the number of tags in all posts (about 1.4 · 108 in our case). For each
post added to the system, this “clock” τ increases by a number of ticks equal
to the number of tags in that post.

Fig. 8 shows the total number of distinct tags N(τ) present in the system
at time τ , as a function of τ . In terms of this intrinsic time, a remarkably clean
power-law behavior (straight line on a log-log plot) can be observed through-
out the full history of the system. This is even more interesting because the
data shown in Fig. 8 span a time interval covering almost the entire history of
del.icio.us: the power-law trend emerges already at the very beginning and is
obeyed all the way to present times, as the number of active users and that of
bookmarked resources dramatically increase over time. It’s worth noticing the
following points:

• The number N of distinct tags present in the system does not appear
to level off towards a steady-state plateau. This is not surprising in its
own merit because del.icio.us is an open-ended system and new users and
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resources are a source of continuous novelty for the tags comprised by the
folksonomy.

• The power-law growth followed by N(τ) is of the form N(τ) ∼ τγ , with
γ < 1. The black line in Fig. 8 corresponds to γ ≃ 0.8.

• The rate at which new tags appear at time τ scales as dN(τ)/dτ ∼ τγ−1.
That is, new tags – as a function of the intrinsic time τ – appear less
and less frequently, with the invention rate of new tags monotonically
decreasing towards zero. The approach to zero is however so slow that the
cumulated number of tags, asymptotically, does not converge to a constant
value but is unbounded — assuming the observed trend stays valid.

It is remarkable that the above statistical regularities hold throughout the his-
tory of del.icio.us, while the system undergoes a huge change in the size of its
user base, the number of bookmarked resources, several changes in the user
interface are made, tag suggestion is introduced, and so on.

The above observations constitute the core facts of the present study, and
in the following we will shift from the global view of the system to a local one,
to see whether these facts stay valid, and to deepen our analysis.

4.2.1 Sub-linearity in vocabulary growth

The sub-linear growth reported here is not a newly observed phenomenon. When
dealing with the evolution of the number of attributes pertaining to some collec-
tion of objects, this sub-linear growth is generally referred to as Heaps’ law [48].
As an example, sub-linear behavior has been observed in the growth of vocabu-
lary size in texts, i.e. in the number of different words in a text as a function of
the total number of words observed while scanning through it. For the case of
English corpora, vocabulary growth exponents in the range 0.4 < γ < 0.6 have
been reported [50]. The vocabulary size of the Thai subset of WWW internet
web pages has also been found to obey a sub-linear power-law behavior with
exponent γ ≈ 0.5 [51]. In contrast, the exponent we observe here is compara-
tively high. Attempts to explain the power-law behaviors of vocabulary growth
in terms of the measured Zipf’s frequency-rank distribution of words can be
found in literature [52], as well as ad-hoc modifications of simple stochastic
models [53].

It is important to remark that, at odds with texts, no grammatical struc-
ture is embedded in tags. Moreover, the words used in folksonomies are mainly
nouns or, in general, synthetic descriptions of categories [54]. In this sense, the
only linguistic mechanisms that could be responsible for a sub-linear growth is a
possibly hierarchical organization of tags induced by semantics. Another impor-
tant difference is that in written texts the number of authors is usually limited,
while the number of users contributing to the tag vocabulary of del.icio.us is
large and growing in time.

4.3 Local vocabulary growth

We will now shift our focus to a local scope, moving from a global view of tag
vocabulary to a more fine-grained one, dealing with the restricted contexts of
single resources and users. Specifically, we will investigate how the number of
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different tags associated with a given resource (or user) grows as a function of
an intrinsic time. The notion of time we adopt in the following is the same
we employed for the global analysis of Section 4.2, except that in this case
it is restricted to the context of a single resource or user: given a resource
(or a user), we select from the global, time-ordered TAS table only those tag
assignments that involve that resource (or user). We define the intrinsic time
τ as the index into the selection, i.e. the cumulated number of tags associated
with that resource (or user). Thus our notion of time is resource-dependent
(or user-dependent), and τ naturally measures metadata accumulation in the
specific semantic context of a single resource or user.

4.3.1 Resource-specific vocabularies
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Figure 9: Vocabulary growth for single resources For 10 different resources
in del.icio.us, the number of distinct tags N(τ) associated with them is plotted
as a function of the intrinsic time τ pertaining to each resource. While single
resources display a somehow noisy evolution, an overall power-law behavior
governing the vocabulary growth is apparent, with an exponent γ ≃ 2/3 (red
line).

The large number of users tagging each resource make the statistical features
of resources quite similar, as long as they are popular enough. This can be
shown, for instance, by looking at the vocabulary growth in the context of
a single resource. In Fig. 9 we consider 10 different popular resources and
we plot the number N(τ) of distinct tags associated with them by the entire
user community, as a function of the intrinsic (resource-specific) time τ , the
total number of tags assigned. The resources are chosen among the 1000 top-
bookmarked resources in the system, starting from rank 100 and decreasing
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at intervals of 100. While the vocabulary growth exhibits a somehow noisy
temporal evolution, the general trend of growth appears to be compatible with
an algebraic law of growth, a power-law with an exponent close to 2/3. This is a
striking regularity, valid for very different resources across the system. Also, at
this level of detail, no systematic dependence on the popularity of a resource can
be detected. The local exponent of growth is smaller than the global one (Fig. 8)
and the relation between the two may be linked to the statistical properties
of tag co-occurrence, and might ultimately provide insights into the semantic
structure of folksonomies.

To better probe the similarity of growth behaviors for different resources,
we defined a rescaled growth curve, where both the intrinsic time τ and the
final number of distinct tags N(τmax) are divided by their final values, τmax

and N(τmax), respectively. In this way, the curves for different resource can be
easily plotted on the same graph. As shown in Fig. 10, all the rescaled curves lie
between two limit power-laws, (τ/τmax)1 and (τ/τmax)1/2. More importantly,
all curves tend to lie along a “universal” growth curve with an exponent close
to 2/3.
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Figure 10: Rescaled vocabulary growth The curves of Fig. 9 were rescaled
by dividing both the intrinsic time τ and the number of distinct tags N(τ)
by their final (resource-specific) values τmax and N(τmax, respectively. After
rescaling, all curves lie approximately along the “universal” (τ/τmax)2/3 line
(thick red line). On approaching the common endpoint, the slope of all curves
appear to lie in the 0.5-1 range (dashed line and thin red line, see also Fig. 11).
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4.3.2 Distribution of growth exponents

In order to make a more quantitative measure over a broader set of resources, we
implement the following unsupervised procedure for characterizing the growth
of local tag vocabularies: for each resource we measure an effective exponent γ
that approximates the rescaled vocabulary growth with a power-law (τ/τmax)γ .
The simplest way to do this is to compute γ as γ = log(N(τmax))/ log(τmax).
Fig. 11 shows the probability distribution of the resulting values of γ, measured
for three groups of resources. In particular, the red curve in Fig. 11 displays the
distribution of γ values for the 1000 top ranked (most bookmarked) resources in
del.icio.us. The distribution is well approximated by a rather narrow Gaussian
distribution, whose average value is γ∗ ≃ 0.7. This seems to confirm the idea
(Fig. 10) that there is a well-defined exponent of growth governing the temporal
evolution of popular resources. Moreover, the vocabulary growth of popular
resources appears slower than the system-wide vocabulary growth of Fig. 8.

On computing the distribution P (γ) for less and less popular resources (black
and blue curves), the distribution gets broader and its peak shifts towards higher
values of γ, indicating that the growth behavior is becoming more and more
linear. This crossover from sub-linear to linear growth for resources bookmarked
by just a few users is expected and corresponds to a sort of “priming” effect for
the resource: the first few users who bookmark it build the “core” tag vocabulary
for the resource, and since only a few posts are present at that time, most tags
are new and the size of the vocabulary grows linearly with the total number
of tags τ as well as with the number of posts associated with the resource. As
more and more users bookmark the resource, correlations and social effects come
into play and the law of growth crosses over from the linear to the “universal”
sub-linear behavior reported above.

To make contact between local vocabulary growth in the context of a single
resource and vocabulary growth in the context of a single user, we repeat the
above analysis for the 1000 most active users in del.icio.us (as measured by the
number of resources they bookmarked). The resulting probability distribution
P (γ) is shown in Fig. 12 and is qualitatively similar to the ones of Fig. 11. In
particular, we notice that the peak of P (γ) is compatible with the value γ∗

observed for the top-ranked resources.
We would like to remark that the huge variability of vocabularies, at the level

of single users and resources, is not in contrast with very regular – and simple –
features at the global level. On the contrary, the emergence of regularity from
the uncoordinated activity of users is the hallmark of complexity and indicates
that tools and concepts from complex system science may prove valuable for
understanding the structure and dynamics of folksonomies.

4.4 Outlook on Collaborative Tagging

Analyzing the growth dynamics of local vocabularies, associated with a given
resource or user, may provide insights into the relationship between the behav-
ior of individual users and vocabulary growth at the system – or community –
level, as well as insights into the process of invention of new tags. For popular
resources in del.icio.us we report a sub-linear growth with exponents sharply
peaked around a characteristic value (slightly different from the global one),
while for less popular resources we observe exponent values slowly shifting to-
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wards 1. The sub-linear growth observed at the local level cannot be explained
as a mere reflection of the growth in the number of users, (which, for resources,
is linear in the intrinsic time) nor as an increase in the average number of tags
per post (which has a rather stable characteristic value).

These observations point out that sub-linear dictionary growth is a genuine
non-trivial feature of the system and open several problems. Is sub-linear growth
at the global level (or at the local level) related to correlations among users’
activity? Does the growth observed in the context of a single user reflect a
collective/cooperative phenomenon, or is it just mirroring the complex cognitive
processes (incorporating semantics) at the level of that individual user? Is the
difference between local and global exponents relevant, and if so, what kind of
information about the structure of tag space is it disclosing? What are the key
elements in the user-system interaction that lead to the observed behaviors?

5 Conclusions

In this paper we have illustrated the point of view of statistical physics on the
longstanding problem concerning the emergence and evolution of language. We
introduced in particular the main tools and methods proposed so far by describ-
ing several concrete examples corresponding to the early stages in the emergence
of language: e.g., the formation of a shared lexicon and the establishment of a
common set of linguistic categories. Though promising, these studies did not
yet face the hardest problems in linguistics, namely the emergence of syntax
and grammar. Currently new studies are ongoing focusing on the emergence
of higher forms of agreement, e.g., compositionality, syntactic or grammatical
structures. It is clear how it would be highly important to cast a theoretical
framework where all these problems could be defined, formalized and solved.
In this perspective a crucial factor will be most likely represented by the avail-
ability of large sets of empirical quantitative data. The joint interdisciplinary
activity should then include systematic campaigns of data gathering as well as
the devising of new experimental setups for a continuous monitoring of linguis-
tic features. From this point of view the Web may be of great help, both as a
platform to perform controlled online social experiments, and as a repository
of empirical data on large-scale phenomena. It is only in this way that a vir-
tuous cycle involving data collection, data analysis, modeling and predictions
could be triggered, giving rise to an ever more rigorous and focused approach
to language.

It is worth stressing how the contribution physicists could give should not be
considered in any way as alternative to more traditional approaches. We rather
think that it would be crucial to foster the interactions across the different
disciplines cooperating with linguistics, by promoting scientific activities with
concrete mutual exchanges among all the interested scientists. This would help
both in identifying the problems and sharpening the focus, as well as in devising
the most suitable theoretical concepts and tools to approach the research.
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Métais, editors, NLDB, volume 3999 of Lecture Notes in Computer Science,
pages 58–69. Springer, 2006.

28



0.5 0.6 0.7 0.8 0.9 1
γ

0

2

4

6

8

10

12

P(γ)

rank 1-1000
rank 100000-101000
rank 900000-901000

Figure 11: Probability distribution of the vocabulary growth exponent

γ for resources, as a function of their rank. The red curve is the normalized
probability distribution P (γ) for the 1000 top-ranked (most bookmarked) re-
sources in del.icio.us. It appears to be sharply peaked at a characteristic value
γ∗ ≃ 0.71 (vertical line) and can be closely fitted with a Gaussian (dashed line).
This indicates that highly bookmarked resources share a characteristic law of
growth, as already pointed out in Fig. 10. On computing the distribution P (γ)
for less and less popular resources (black curve and blue curve), the peak shifts
towards higher values of γ and the growth behavior becomes more and more
linear. The typical number of users who have bookmarked the resources used in
this analysis is approximately a few thousands for the red curve, a few hundreds
for the black curve, and just a few users for the blue one.
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Figure 12: Probability distribution of the vocabulary growth exponent

γfor user vocabularies. The distribution P (γ) was computed for the 1000 most
active users in del.icio.us. Similarly to Fig. 11, it appears peaked around a
characteristic value close to the same observed for top-ranked resources (vertical
line, same as in Fig. 11).
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