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The enormous increase of popularity and use of the worldwide
web has led in the recent years to important changes in the ways
people communicate. An interesting example of this fact is pro-
vided by the now very popular social annotation systems, through
which users annotate resources (such as web pages or digital
photographs) with keywords known as ‘‘tags.’’ Understanding the
rich emergent structures resulting from the uncoordinated actions
of users calls for an interdisciplinary effort. In particular concepts
borrowed from statistical physics, such as random walks (RWs),
and complex networks theory, can effectively contribute to the
mathematical modeling of social annotation systems. Here, we
show that the process of social annotation can be seen as a
collective but uncoordinated exploration of an underlying seman-
tic space, pictured as a graph, through a series of RWs. This
modeling framework reproduces several aspects, thus far unex-
plained, of social annotation, among which are the peculiar growth
of the size of the vocabulary used by the community and its
complex network structure that represents an externalization of
semantic structures grounded in cognition and that are typically
hard to access.

networks theory � statistical physics � social web � emergent semantics �
web-based systems

The rise of Web 2.0 has dramatically changed the way in which
information is stored and accessed and the relationship

between information and online users. This is prompting the
need for a research agenda about ‘‘web science,’’ as put forward
in ref. 1. A central role is played by user-driven information
networks, i.e., networks of online resources built in a bottom-up
fashion by web users. These networks entangle cognitive, be-
havioral and social aspects of human agents with the structure
of the underlying technological system, effectively creating tech-
nosocial systems that display rich emergent features and emer-
gent semantics (2, 3). Understanding their structure and evolu-
tion brings forth new challenges.

Many popular web applications are now exploiting user-driven
information networks built by means of social annotations (4, 5).
Social annotations are freely established associations between
web resources and metadata (keywords, categories, ratings)
performed by a community of web users with little or no central
coordination. A mechanism of this kind that has swiftly become
well established is that of collaborative tagging (see www.adam-
mathes.com/academic/computer-mediated-communication/
folksonomies.html) (6), whereby web users associate freeform
keywords—called ‘‘tags’’—with online content such as web
pages, digital photographs, bibliographic references, and other
media. The product of the users’ tagging activity is an open-
ended information network—commonly referred to as ‘‘folk-
sonomy’’—which can be used for navigation and recommenda-
tion of content and has been the object of many recent
investigations across different disciplines (7, 8). Here, we show
how simple concepts borrowed from statistical physics and the
study of complex networks can provide a modeling framework
for the dynamics of collaborative tagging and the structure of the
ensuing folksonomy.

Two main aspects of the social annotation process, so far
unexplained, deserve special attention. One striking feature is
the so-called Heaps’ law (9) (also known as Herdan’s law in
linguistics), originally studied in information retrieval for its
relevance for indexing schemes (10). Heaps’ law is an empirical
law that describes the growth in a text of the number of distinct
words as a function of the number of total words scanned. It
describes, thus, the rate of innovation in a stream of words, where
innovation means the adoption for the first time in the text of a
given word. This law, also experimentally observed in streams of
tags, consists of a power law with a sublinear behavior (8, 11).
In this case, the rate of innovation is the rate of introduction of
new tags, and a sublinear behavior corresponds to a rate of
adoption of new words or tags decreasing with the total number
of words (or tags) scanned. Most existing studies about Heaps’
law, either in information retrieval or in linguistics, explained it
as a consequence of the so-called Zipf’s law (12) [see ref. 10 and
supporting information (SI)]. It would instead be highly desir-
able to have an explanation for it relying only on very basic
assumptions on the mechanisms behind social annotation.

Another important way to analyze user-driven information
networks is given by the framework of complex networks (13–
15). These structures are, indeed, user-driven information net-
works (16), i.e., networks linking (for instance) online resources,
tags, and users, built in a bottom-up fashion through the
uncoordinated activity of thousands to millions of web users. We
shall focus in particular on the particular structure of the
so-called cooccurrence network. The cooccurrence network is a
weighted network where nodes are tags, and 2 tags are linked if
they were used together by at least 1 user, the weight being larger
when this simultaneous use is shared by many users. Correlations
between tag occurrences are (at least partially) an externaliza-
tion of the relations between the corresponding meanings (17,
18) and have been used to infer formal representations of
knowledge from social annotations (19). Notice that cooccur-
rence of 2 tags is not a priori equivalent to a semantic link
between the meanings/concepts associated with those tags and
that understanding what cooccurrence precisely means, in terms
of semantic relations of the cooccurring tags, is an open question
that is investigated in more applied contexts (20, 21).

On these aspects of social annotation systems, a certain
number of stylized facts about, e.g., tag frequencies (6, 8) or the
growth of the tag vocabulary (11), have been reported, but no
modeling framework exists that can naturally account for them
while reproducing the cooccurrence network structure. Here, we
ask whether the structure of the cooccurrence network can be
explained in terms of a generative model and how the structure
of the experimentally observed cooccurrence network is related

Author contributions: C.C., A. Barrat, A. Baldassarri, G.S., and V.L. designed research,
performed research, contributed new reagents/analytic tools, analyzed data, and wrote
the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: vittorio.loreto@roma1.infn.it.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0901136106/DCSupplemental.

www.pnas.org�cgi�doi�10.1073�pnas.0901136106 PNAS � June 30, 2009 � vol. 106 � no. 26 � 10511–10515

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

http://www.pnas.org/cgi/content/full/0901136106/DCSupplemental
http://www.pnas.org/cgi/content/full/0901136106/DCSupplemental
http://www.pnas.org/cgi/content/full/0901136106/DCSupplemental


to the underlying hypotheses of the modeling scheme. We show
in particular that the idea of social exploration of a semantic
space has more than a metaphorical value and actually allows us
to reproduce simultaneously a set of independent correlations
and fine observables of tag cooccurrence networks as well as
robust stylized facts of collaborative tagging systems.

User-Driven Information Networks. We investigate user-driven in-
formation networks using data from 2 social bookmarking systems:
del.icio.us† and BibSonomy.‡ Del.icio.us is a very popular system for
bookmarking web pages and pioneered the mechanisms of collab-
orative tagging. It hosts a large body of social annotations that have
been used for several scientific investigations. BibSonomy is a
smaller system for bookmarking bibliographic references and web
pages (22). Both del.icio.us and BibSonomy are broad folksonomies
(see www.personalinfocloud.com/2005/02/), in which users provide
metadata about preexisting resources and multiple annotations are
possible for the same resource, making the ensuing tagging patterns
truly ‘‘social’’ and allowing their statistical characterization. A more
detailed description of the datasets is given in the SI.

A single user annotation, also known as a post, is a triple of
the form (u, r, T), where u is a user identification, r is the unique
identification of a resource (a URL pointing to a web page, for
the systems under study), and T � {t1, t2, … } is a set of tags
represented as text strings. We define the tag cooccurrence
network based on post cooccurrence. That is, given a set of posts,
we create an undirected and weighted network where nodes are
tags and 2 tags, t1 and t2 are connected by an edge if and only if
there exists 1 post in which they were used in conjunction. The
weight wt1t2

of an edge between tags t1 and t2 can be naturally
defined as the number of distinct posts where t1 and t2 cooccur.
This construction reflects the existence of semantic correlations
between tags and translates the fact that these correlations are
stronger between tags cooccurring more frequently. We empha-
size once again that the cooccurrence network is an external-
ization of hidden semantic links and therefore distinct from
underlying semantic lexicons or networks.

The study of the global properties of the tagging system, and
in particular of the global cooccurrence network, is of interest
but mixes potentially many different phenomena. We therefore
consider a narrower semantic context, defined as the set of posts
containing 1 given tag. We define the vocabulary associated with
a given tag t* as the set of all tags occurring in a post together
with t*, and the time is counted as the number of posts in which
t* has appeared. The size of the vocabulary follows a sublinear
power-law growth (Fig. 1), similar to the Heaps’ law (9) observed
for the vocabulary associated with a given resource and for the
global vocabulary (11). Fig. 1 also displays the main properties
of the cooccurrence network, as measured by the quantities
customarily used to characterize statistically complex networks
and to validate models (14, 15). These quantities can be sepa-
rated in 2 groups. On the one hand, they include the distributions
of single node or single link quantities, whose investigations
allow one to distinguish between homogeneous and heteroge-
neous systems. Fig. 1 shows that the cooccurrence networks
display broad distributions of node degrees kt (number of
neighbors of node t), node strengths st (sum of the weights of the
links connected to t, st � ¥t�wtt�), and link weights. The average
strength s(k) of vertices with degree k, s(k) � 1/Nk¥t/kt�kst, where
Nk is the number of nodes of degree k, also shows that corre-
lations between topological information and weights are present.
On the other hand, these distributions by themselves are not
sufficient to fully characterize a network, and higher-order

correlations have to be investigated. In particular, the average
nearest-neighbor degree of a vertex t, knn,t � 1/kt¥t���(t)kt�, where
�(t) is the set of t’s neighbors, gives information on correlations
between the degrees of neighboring nodes. Moreover, the clus-
tering coefficient ct � et/(kt(kt � 1)/2) of a node t measures local
cohesiveness through the ratio between the number et of links

†http://del.icio.us

‡http://www.bibsonomy.org
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Fig. 1. Data corresponding to the posts containing the tag Folksonomy in
del.icio.us. (A) Heaps’ law: growth of the vocabulary size associated with the
tag t* � Folksonomy, measured as the number of distinct tags cooccurring
with t*, as a function of the number nposts of posts containing t*. The dotted
line corresponds to a linear growth law, whereas the continuous line is a
power-law growth with exponent 0.7. (Inset) Frequency-rank plot for the tags.
The dashed line corresponds to a power law �1.42 � �1./0.7. (B and C) Main
properties of the cooccurrence network of the tags cooccurring with the tag
Folksonomy in del.icio.us, built as described in User-Driven Information Net-
works. (B) Broad distributions of degrees k, strengths s and weights w are
observed. The Inset shows the average strength of nodes of degree k, with a
superlinear growth at large k. (C) Weighted (knn

w ) and unweighted (knn)
average degree of nearest neighbors (Upper) and weighted (Cw) and un-
weighted (C) (Lower) average clustering coefficients of nodes of degree k. knn

displays a disassortative trend, and a strong clustering is observed. At small k,
the weights are close to 1 (s(k) � k, see B Inset), and knn

w � knn, Cw � C. At large
k instead, knn

w � knn and Cw � C, showing that large weights are preferentially
connecting nodes with large degree: Large-degree nodes are joined by links
of large weight, i.e., they cooccur frequently. In B and C both raw and
logarithmically binned data are shown.

10512 � www.pnas.org�cgi�doi�10.1073�pnas.0901136106 Cattuto et al.

http://www.pnas.org/cgi/content/full/0901136106/DCSupplemental


between the kt neighbors of t and the maximum number of such
links (23). The functions knn(k) � 1/Nk¥t/kt�kknn,t and C(k) �
1/Nk¥t/kt�kct are convenient summaries of these quantities, that
can also be generalized to include weights [see SI for the
definitions of knn

w (k) and Cw(k)]. Fig. 1 shows that broad distri-
butions and nontrivial correlations are observed. All of the
measured features are robust across tags within 1 tagging system
and across the tagging systems we investigated (see SI).

Modeling Social Annotation. The observed features are emergent
characteristics of the uncoordinated action of a user community,
which call for a rationalization and for a modeling framework.
We now present a simple mechanism able to reproduce the
complex evolution and structure of the empirical data.

The fundamental idea underlying our approach, illustrated in
Fig. 2, is that a post corresponds to a random walk (RW) of the
user in a ‘‘semantic space’’ modeled as a graph. Starting from a
given tag, the user adds other tags, going from 1 tag to another
by semantic association. It is then natural to picture the semantic
space as network-like, with nodes representing tags, and links
representing the possibility of a semantic link (24). A precise and
complete description of such a semantic network being out of
reach, we make very general hypothesis about its structure and
we have checked the robustness of our results with respect to
different plausible choices of the graph structure (24). Never-
theless, as we shall see later on, our results help fixing some
constraints on the structural properties of such a semantic space:
it should have a finite average degree together with a small graph
diameter, which ensures that RWs starting from a fixed node and
of limited length can potentially reach all nodes of the graph. In
this framework, the vocabulary cooccurring with a tag is asso-
ciated with the ensemble of nodes reached by successive RWs
starting from a given node, and its size with the number of
distinct visited nodes, Ndistinct, which grows as a function of the
number nRW of performed RWs. Empirical evidence on the
distribution of post lengths (Fig. 2) suggests that one consider
RWs of random lengths, distributed according to a broad law
(see SI for the case of walks of fixed length). Analytical and
numerical investigations show that sublinear power law-like
growths of Ndistinct are then generically observed, mimicking the
Heaps’ law observed in tagging systems (Fig. 3 and SI).

Synthetic Cooccurrence Networks. Vocabulary growth is only one
aspect of the dynamics of tagging systems. Networks of cooc-
currence carry much more information and exhibit very specific
features (Fig. 1). Our approach allows one to construct synthetic
cooccurrence networks: We associate to each RW a clique

formed by the nodes visited (see Fig. 2) and consider the union
of the nRW such cliques. Moreover, each link i–j built in this way
receives a weight equal to the number of times nodes i and j
appear together in a RW. This construction mimics precisely the
construction of the empirical cooccurrence network and reflects
the idea that tags that are far apart in the underlying semantic
network are visited together less often than tags that are
semantically closer. Figs. 3 and 4 show how the synthetic
networks reproduce all statistical characteristics of the empirical
data (Fig. 1), both topological and weighted, including highly
nontrivial correlations between topology and weights. Fig. 4 in
particular explores how the weight wij of a link is correlated with
its extremities’ degrees ki and kj. The peculiar shape of the curve
can be understood within our framework. First, the broad
distribution in l is responsible for the plateau �1 at small values
of kikj, because it corresponds to long RWs that occur rarely and
visit nodes that will be typically reached a very small number of
times (hence small weights). Moreover, wij � (kikj)a at large
weights. Denoting by fi the number of times node i is visited, wij �
fifj in a mean-field approximation that neglects correlations. On
the other hand, ki is by definition the number of distinct nodes
visited together with node i. Restricting the RWs to the only
processes that visit i, it is reasonable to assume that such
sampling preserves Heaps’ law, so that ki � f i

�, where � is the
growth exponent for the global process. This leads to wij � (kikj)a

with a � 1/�. Because � � 0.7–0.8, we obtain a close to 1.3–1.5,
consistently with the numerics.

Strikingly, the synthetic cooccurrence networks reproduce
also other, more subtle observables, such as the distribution of
cosine similarities between nodes. In a weighted network, the
similarity of 2 nodes i1 and i2 can be defined as

sim� i1, i2� �
� j wi1 jwi2 j

�� � wi1�
2 � � wi2�

2
, [1]

which is the scalar product of the vectors of normalized weights
of nodes i1 and i2. This quantity, which measures the similarities
between neighborhoods of nodes, contains semantic information
that can be used to detect synonymy relations between tags or to
uncover ‘‘concepts’’ from social annotations (20). Fig. 5 shows
the histograms of pairwise similarities between nodes in real and
synthetic cooccurrence networks. The distributions are very
similar, with a skewed behavior and a peak for low values of the
similarities. In the SI, we report the similarity distributions for
other tags and provide a more detailed discussion on their
properties.

Fig. 2. (Left) Illustration of the proposed mechanism of social annotation. The semantic space is pictured as a network in which nodes represent tags, and a
link corresponds to the possibility of a semantic association between tags. A post is then represented as a RW on the network. Successive RWs starting from the
same node allow the exploration of the network associated with a tag (here pictured as node 1). The artificial cooccurrence network is built by creating a clique
between all nodes visited by a RW. (Right) Empirical distribution of posts’ lengths P(l). A power-law decay �l�3 (dashed line) is observed.
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Whereas the data shown in Figs. 3 and 4 correspond to a
particular example of underlying network (a Watts–Strogatz
network, see ref. 23 and SI), taken as a sketch for the semantic
space, we investigate in the SI the dependence of the synthetic
network properties on the structure of the semantic space and on
the other parameters, such as nRW or the distribution of the RW
lengths. Interestingly, we find an overall extremely robust be-
havior for the diverse synthetic networks, showing that the
proposed mechanism reproduces the empirical data without any
need for strong hypotheses on the semantic space structure. The
only general constraints implied by the mechanism proposed
here are the existence of an underlying semantic graph with a
small diameter and a finite average degree (RWs on a fully
connected graph would not work, for instance) and a broad
distribution of post lengths. This lack of strong constraints on the
precise structure of the underlying semantic network is actually

a remarkable feature of the proposed mechanism. The details of
the underlying network will unavoidably depend on the context,
namely on the specific choice of the central tag t*, and the
robustness of the generative model matches the robustness of the
features observed in cooccurrence networks from real systems.
Of course, given an empiric cooccurrence network, a careful
simultaneous fitting procedure of the various observables would
be needed to choose the most general class of semantic network
structures that generate that specific network by means of the
mechanism introduced here. This delicate issue goes beyond the
goal of this article and raises the open question of the definition
of the minimal set of statistical observables needed to specify a
graph (25).

Conclusions
Investigating the interplay of human and technological factors in
user-driven systems is crucial to understand the evolution and
the potential impact these systems will have on our societies.
Here, we have shown that sophisticated features of the infor-
mation networks stemming from social annotations can be
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Fig. 3. Synthetic data produced through the proposed mechanism. (A)
Growth of the number of distinct visited sites as a function of the number of
RWs performed on a Watts–Strogatz network (see SI) of size 5 	 104 nodes and
average degree 8, rewiring probability P � 0.1. Each RW has a random length
l taken from a distribution P(l) � l�3. The dotted line corresponds to a linear
growth law, whereas the continuous line is a power-law growth with expo-
nent 0.7. (Inset) Frequency-rank plot. The dashed and dotted line have slope
�1.3 and �1.5, respectively. (B and C) Properties of the synthetic cooccurrence
network obtained for nRW � 5 	 104, to be compared with the empirical data
of Fig. 1.
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captured by regarding the process of social annotation as a
collective exploration of a semantic space, modeled as a graph,
by means of a series of RWs. The proposed generative mecha-
nism naturally yields an explanation for the Heaps’ law observed
for the growth of tag vocabularies. The properties of the
cooccurrence networks generated by this mechanism are robust
with respect to the details of the underlying graph, provided it
has a small diameter and a small average degree. This mirrors the
robustness of the stylized facts observed in the experimental
data, across different systems.

Networks of resources, users, and metadata such as tags have
become a central collective artifact of the information society.
These networks expose aspects of semantics and of human
dynamics, and are situated at the core of innovative applications.
Because of their novelty, research about their structure and
evolution has been mostly confined to applicative contexts. The
results presented here are a definite step toward a fundamental
understanding of user-driven information networks that can

prompt interesting developments, because they involve the ap-
plication of recently developed tools from complex networks
theory to this new domain. An open problem, for instance, is the
generalization of our modeling approach to the case of the full
hypergraph of social annotations, of which the cooccurrence
network is a projection. Moreover, user-driven information
networks lend themselves to the investigation of the interplay
between social behavior and semantics, with theoretical and
applicative outcomes such as node ranking (i.e., for search and
recommendation), detection of nonsocial behavior (such as
spam), and the development of algorithms to learn semantic
relations from a large-scale dataset of social annotations.
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22. Hotho A, Jäschke R, Schmitz C, Stumme G (2006) BibSonomy: A Social Bookmark and
Publication Sharing System, eds de Moor A, Polovina S, and Delugach H (Aalborg Univ
Press, Aalborg, Denmark).

23. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘‘small-world’’ networks. Nature
393:440–442.

24. Steyvers M, Tenenbaum JB (2005) The large-scale structure of semantic networks:
Statistical analyses and a model of semantic growth. Cognit Sci 29:41–78.

25. Mahadevan P, Krioukov D, Fall K, Vahdat A (2006) Systematic topology analysis and
generation using degree correlations in Proceedings of the 2006 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tions (Assoc Comput Machinery, New York), pp 135–146.

Cattuto et al. PNAS � June 30, 2009 � vol. 106 � no. 26 � 10515

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S


