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Abstract: This paper presented the assessment of cognitive load (as an effective real-time index
of task difficulty) and the level of brain activation during an experiment in which eight visually
impaired subjects performed two types of tasks while using the white cane and the Sound of Vision
assistive device with three types of sensory input—audio, haptic, and multimodal (audio and haptic
simultaneously). The first task was to identify object properties and the second to navigate and avoid
obstacles in both the virtual environment and real-world settings. The results showed that the haptic
stimuli were less intuitive than the audio ones and that the navigation with the Sound of Vision
device increased cognitive load and working memory. Visual cortex asymmetry was lower in the case
of multimodal stimulation than in the case of separate stimulation (audio or haptic). There was no
correlation between visual cortical activity and the number of collisions during navigation, regardless
of the type of navigation or sensory input. The visual cortex was activated when using the device,
but only for the late-blind users. For all the subjects, the navigation with the Sound of Vision device
induced a low negative valence, in contrast with the white cane navigation.
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1. Introduction

At the world level, approximately 2.2 billion people have a vision impairment or suffer
from blindness, caused primarily by uncorrected refractive errors, cataracts, age-related macular
degeneration, and glaucoma. The majority of people with vision impairments are over 50 years
old, originating especially from low and middle-income countries [1]. The purpose of the Sound
of Vision project (SoV) [2] was to develop an assistive system for the blind and visually impaired
users that would facilitate navigation and obstacle detection. In this paper, we presented a study of
cognitive load assessment and brain activation evaluation during an experiment in which eight visually
impaired subjects performed various object detection and navigation activities while using both the
white cane (a navigation aid they use on a daily basis) and the SoV device, which provided three
types of sensory input—audio cues delivered through headphones, haptic cues delivered as vibrations
applied on a vest that was placed on the user’s abdomen, and a combination of both audio and haptic
information, called the multimodal sensory input. We performed a metrics analysis, cognitive load,
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working memory assessment, brain activity, visual cortex evaluation, and the identification of emotions
during navigation in the real-world environment.

Section 2 presents an overview of mobility assistive devices, Section 3 introduces the biophysical
signals and cognitive load, Section 4 describes the Sound of Vision device, Section 5 details the method,
Section 6 presents the results and a discussion, and finally, Section 7 provides the final conclusions and
future research directions.

2. Overview of Mobility Assistive Aids

The absence of visual information in the case of blind individuals can be substituted by conveying
auditory and tactile stimuli, separately or simultaneously, through specialized assistive devices.

2.1. Auditory Vision Sensory Substitution

Auditory vision sensory substitution (AVSS) devices [3] map the image “seen” by the camera
into a matrix of active audio sources. The diversity of AVSSs is very large, ranging from optophone-like
systems [4] to devices that use spatialized 3D sounds. The optophone (or the piano transform device)
scans the image from left to right and converts the detected input into sound cues. The most
well-known optophone is the vOICe [5], where the pixels’ vertical position is mapped to frequency,
and their brightness is mapped to sound intensity. In other AVSSs [6,7], height is correlated to
frequency distribution in the horizontal plane to binaural loudness, and brightness is encoded as
sound intensity. In pitch transform systems [7,8], distance is related to sound frequency, while in
verbal transform systems [7,9], objects are assigned to synthetic voice recordings. A problem of most
optophone-like modern systems is that they overwhelm the users with too much output information,
increasing cognitive load, effort, and concentration. This drawback can be overcome by reducing
scene complexity, by maintaining only the salient characteristics and relevant objects, and by applying
an effective sonification technique in order to provide the users a natural, effective, and easy to
understand environmental representation. Modern AVSSs use binaural 3D sounds spatialized with
generic (prerecorded, stored in large databases) or individualized head-related transfer functions
(HRTFs). Individualized HRTFs are preferable for creating 3D sound as they are more accurate and fit
the user’s auditory characteristics.

2.2. Tactile Visual Sensory Substitution

Tactile visual sensory substitution (TVSS) systems use a matrix of controllable elements that
provide spatial and temporal environmental information on the skin, either through kinesthetic or
cutaneous sensations. In this type of device, a camera is used to acquire visual input that is consequently
transformed into a tactile rendering via the multi-dimensional pin array, facilitating reading, shape,
and face recognition [10–12]. One advantage of using TVSS devices is that the tactile sense, contrary
to the auditory one, is less used and demanded in everyday activities. Thus, the user can receive
cutaneous (awareness and stimulation of the outer surface of the body [13]) and kinesthetic (awareness
of the limb position and displacement [10]) cues, without hampering locomotion or auditory perception
at all [14]. On the other hand, a drawback lies in the fact that the capacity of the tactile channel
is restrained to a limited maximum number of actuators and patterns to be applied. In addition,
such devices cannot be used to a large extent because they are tiring and uncomfortable.

2.3. Auditory Tactile Visual Substitution Devices

When the scene is too difficult to be mapped onto the tactile array, the auditory channel is
additionally recruited in order to enhance environmental representation, creating auditory tactile
visual substitution (ATVS) devices. The first multi-sensory device was Nomad [15]. Tactile cues are
delivered through a touch-sensitive tablet, and the auditory information consists of synthesized voice
recordings. The Heard and Felt Vision Effects (HiFiVE) [16,17] system uses moving speech-like sounds
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(tracers—area tracers and shape tracers), binaural panning, and tactile effects in order to map visual
images to an audio-tactile representation.

3. Biophysical Signals and Cognitive Load

3.1. Electroencephalography

Electroencephalography (EEG) can provide neurophysiological markers of cognitive-emotional
processes induced by stress and indicated by changes in brain rhythmic activity [18,19]. EEG signal
processing techniques play a significant role in quantifying cognitive load [20–24]. Bos et al. [20]
showed that cognitive load was an indicator of the learning progress. Berka et al. [22] extracted features
from EEG signals for monitoring cognitive workload and task engagement. Nilsson et al. [23] showed
learning outcomes from the subjects when they navigated a hypermedia environment. Scott et al. [24]
also showed that a navigational map could create significantly more germane or extraneous cognitive
load. Therefore, EEG/ Electrodermal Activity (EDA) signals are used to measure cognitive load and
affective responses, and the overall process is explained in the following section.

Cognitive load and affective responses may impact the learning progress. The detection of reliable
cognitive load and affective responses would improve the design of emotional intelligent mobility
systems for the visually impaired people (VIPs). The complexity of the tasks is quantified in terms
of cognitive load index and affective index, considering two well-established metrics in the scientific
literature—the event-related desynchronization (ERD)/event-related synchronization (ERS) index and the
left-right asymmetry index.

Affective responses directly influence the processes of cognitive learning. However, the challenges
of learning can evoke negative affective responses [25]. Emotion assessment is a challenging and
demanding task because people are not always able to express their emotions verbally [26]. Bos [20]
showed that cognitive load could indicate changes in the learning process. He proposed an approach
to determine the optimal placement of a limited number of electrodes, and then these electrodes were
placed in an experiment aimed at determining arousal and valence. Left frontal inactivation is an
indicator of a withdrawal response, which is often linked to negative emotion. On the other hand,
right frontal inactivation is a sign of an approach response or positive emotion. High alpha activity
(8–12 Hz in the EEG frequency band) is known to be an indicator of low brain activity.

Researchers have addressed the intertwining role of affective responses, learning, and cognitive
load. Bower et al. [27] introduced the following hypothesis to study learning patterns: (1) a positive
emotion usually increases the learning process through attention and motivation, (2) a positive emotion
improves learning by enhancing cognitive load, and (3) a negative emotion decreases the learning
process. Cattaneo et al. [28] employed the cognitive load theory for the understanding of the perceptual
and neurocognitive mechanisms; however, there are still many open questions on how emotion and
cognitive load can ease the learning process of the visually impaired people.

3.2. Electrodermal Activity and Heart Rate

Electrodermal activity (EDA) is a well-known indicator of physiological arousal and stress
activation in affective computing [29,30]. It is more sensitive to emotion-related arousal variations
as opposed to physical stressors, which can be better reflected by heart rate (HR) measurements.
Blood volume pulse (BVP) patterns can also reflect transient arousal and cognition processes [31].
Two outdoor mobility studies from the early 1970s have suggested that some form of psychological
rather than physical stress is responsible for visually impaired people’s increased HR versus sighted
pedestrians [32,33]. However, certain mobility tasks (for example, stairs climbing) may result in
an interactive psychological stress effect and momentary physical workload; thus, cardiovascular
measures may be less suitable than EDA.
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4. The Sound of Vision Device

Spatial navigation is a category of spatial cognition related to performing tasks, such as following
paths, detecting obstacles, and reaching targets. It is based on developing, maintaining, and recalling
an internal representation of the environment [34,35]. This internal representation depends on the
spatial relation between entities and on the subject’s position, being classified into two categories:
egocentric—the navigator is in the center of the coordinate system, and allocentric—the reference
external to the navigator.

4.1. Technical Description

Sound of Vision is a wearable device that allows a visually impaired user to perceive and navigate
the environment. It works by permanently scanning the environment, extracting essential features,
and rendering them to the user through audio and haptic means.

The Sound of Vision final prototype includes an integrated custom hardware solution and a
complex software solution, supporting the real-time operation of the device, as well as training tools
and materials.

The hardware components of the system are:

− a headgear, including a 3D acquisition unit (depth camera for indoor or low light outdoor
conditions, stereo camera for outdoor or bright light conditions, head and body inertial
measurement unit (IMU) for body orientation) and an audio rendering unit (mounted on
the head);

− a haptic belt with a matrix of 60 vibrating motors (six rows and 10 columns, placed on the
abdomen);

− a processing unit: a small laptop with powerful CPU and GPU units (in a backpack);
− a wireless remote control (in the pocket).

When scanning the environment, the user can select from two different models for both audio
and haptic: the discrete model (which renders the objects sequentially) and the continuous model
(which provides real-time information at once about all the objects in the field of view). They are
divided into sub-models and have different variations, as well as additional features for safe and reliable
navigation: Danger mode—alerts about proximity objects and prevents collisions, Flashlight—enables
the rendering of an object’s distance in front of the user, texts and special signs detection and best free
space—which indicates a navigable opening between surrounding objects.

The user movement is guided solely by the Sensory Substitution Device (SSD) with no additional
feedback from the assistant or from other sources (i.e., maps from Google or GPS coordinates from a
GPS device). The SSD device generates audio and haptic signals that are an encoded representation of
the environment in the proximity of the user. Through intensive training, the user gains fluency in
understanding the audio and haptic encoded feedback issued by the SSD device, and then he/she can
make proper decisions for further movement in the environment.

Like any other person, the VIP wants to walk in the direction of the sound source. The SoV device
scans the environment, detecting the obstacles and their features, and sends audio or/and haptic stimuli
to users. These stimuli help the VIP to avoid obstacles and to find a secure path to the sound source.
Obviously, the real scene and the stimulation are changed/updated according to the VIP’s route, like in
a maze. Depending on their perception, the VIPs may choose different paths.

4.2. The Focus of the Study

In line with the SoV project overall goals, the aim of this study was to evaluate the VIPs’ cognitive
load and emotional stress in real-world mobility experiments, in two cases: navigation with white cane
and navigation relying on the SoV prototype with audio, haptic, or audio and haptic (multimodal)
codification. The research questions we pursued were based on the following comparative assessments
of cognitive load:
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• when using the Sound of Vision device with audio vs. haptic vs. multimodal input;
• when using the Sound of Vision device vs. white cane during a navigation task in the

real-world environment.

Based on some achievements presented in scientific papers and on the valuable previous
experience [36–39], the experiments were oriented to collect EEG and physiological (EDA and
HR) signals in five different mobility tasks in order to highlight the VIPs’ cognitive load and stress in
correlation with some events (collisions or total confusion) captured from the recorded videos.

As presented above, it has been proven by many studies that EEG is a promising and common
approach to measuring cognitive load (CL), working memory load, emotional states, and any cerebral
signals denoting cortex responses to specific stimuli. CL was an effective real-time index of task
complexity backed up by behavioral evidence. Complementary, the peripherical physiological
measurements reflected arousal and stress activation (EDA) and transient processes in arousal and
cognition (HR). The mobility tasks did not include a consistent physical effort, so HR could be also
considered in a multimodal approach.

An important aspect of this work was related to the VIPs’ preference and long-term accommodation
to navigating using the white cane, as they were educated to use it from the moment they lost sight
or from childhood. Although the SoV device offered much more information about the environment
(the number of nearby objects, their position and properties, the presence of specific objects, and so on),
it was expected that for the first tests, the VIPs would have lower cognitive load and better performances
during the benchmark task with the white cane than with audio or haptic stimuli. Obviously, the length
of the accommodation period with the SoV device depended on each VIP’s education and ability
to learn. It was important for this study to understand how easily the SoV stimuli were perceived
and processed by a VIP and which navigation modality (audio, haptic, or audio and haptic) was less
stressful and more quickly accepted. We expected that audio mobility would outperform the haptic
and fusion mobilities, knowing that blind people generally have a well-developed hearing sense.

Additionally, the VIPs’ visual cortex excitation by audio and haptic stimuli during navigation
was investigated, expanding the existing literature [40,41] that has reported brain activity in the visual
cortex during EEG measurements for blind people who have received visual information through
sensory substitution devices (SSDs).

To our best knowledge so far, this paper was the first one to present a comparative study regarding
VIPs’ stress, cognitive load, and visual cortex excitation while navigating in the real-world using a
common white cane vs. a sensory substitution device.

5. Materials and Methods

This experiment has been carried out using the Acticap EEG device with 16 electrodes, provided
by Brain Products GmbH from Germany and Shimmers Multisensory provided by the Shimmer
Sensing company from Dublin, Ireland.

5.1. Experimental Setup

The aim of the experiment was to obtain a dataset, as large as possible, with EEG and physiological
signals during the trials designed for traveling in fixed scenarios with the help of the SoV device [42].
There were two user setups. The first one was the virtual training environment (VTE) setup that was
used to train the subjects and accommodate them with the audio and haptic encoding models prior to
using the system in real-life scenarios [43,44]. The second setup (Figure 1) was the real-world (RW)
setup used in an indoor controlled environment and outdoors.
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Figure 1. Real-world setup. IMU- Inertial Motion Unit, EEG–Electroencephalography, GSR–Galvanic
Skin Response.

The difference between the VTE and RW setups consisted mainly of the video streaming sources
that feed the processing and control unit. For VTE, the video stream was provided by a virtual reality
serious game in which the VIP navigated using the keyboard or a joystick. In the VTE tests, the VIP
wore the headset consisting of a structure sensor stereo video camera and an IMU sensor [45,46],
but only the IMU signal was used in order to orient in the virtual environment by head movements.
For the RW setup, the video stream was provided by the structure sensor (indoor use of the system) or
stereo video camera (outdoor use of the system).

The SoV system used in the RW experiments is depicted in Figure 2 and consisted of two
computing systems: the first one was the processing and control unit (PCU) attached to the VIP,
and the second one (the tablet from Figure 2) was used by the assistant who controlled how the trial
was performed. Via a remote connection with the PCU, the assistant could adjust parameters, select
scenarios, and enable physiological signals recording. The PCU ran the SoV runtime application,
which sensed the environment and provided audio and haptic stimuli. It also recorded physiological
data from the user who performed the navigation tasks. The IMU signals were used to determine
the user’s body and head orientation that was further used to render the audio and haptic output in
accordance with the RW scene. The VIP had the opportunity to select the most appropriate audio or
haptic encoding by using a remote control connected to the PCU. During navigation, there was no
communication between the VIP and the assistant. The VIP walked autonomously based only on the
stimulation provided by the SSD. The test taker’s task during tests was to ensure that the system was
working and that the VIP received correct clues. He did this by using a tablet connected wirelessly to
the VIP’s laptop.Sensors 2020, 20, x FOR PEER REVIEW 7 of 31 
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We used a lightweight laptop (Dell XPS) and two cooling fans in order to cool down the laptop,
which are part of the SoV prototype for experimental purposes. The experimental system (laptop,
battery, fans, and EEG device) weighed no more than 3.5 kg, and the users did not feel uncomfortable
due to the weight and/or heat. Actually, a lighter version of the SoV system—more energy-efficient
and low cost—is under development.

A print screen from the serious game called “treasure hunt” (TH) is presented in Figure 3. The VIP
had to use the joystick in order to position himself in the virtual scene, exactly where the sound source
originates. In RW, the user had to navigate through an indoor environment in order to reach a target
sound source while avoiding cardboard box obstacles of various dimensions (Figure 4).
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We conducted EEG and EDA/HR recordings during experimentation in RW, under two conditions:
white cane only (for the participants who used this mobility aid on a regular basis) and SoV device
only. The scenes were tested using the audio encoding, the haptic encoding, and both the audio and haptic
encodings (multimodal) with the SoV device, 5 trials each. In order to minimize the required testing
resources, the users had the opportunity to choose the sonification model and tactile stimulation [47–49]
that best suited their level of perception and understanding.

The static scenes (1R) were tested with the discrete model, while the dynamic scenes (TH) were
tested with the continuous model in both virtual and real-world environments.

In the discrete (or iterative) model, the scene was rendered in a loop, one by one. A sphere was
constantly expanding its radius until 5.25 m with a speed of 2 m/sec. Auditory and tactile stimuli were
provided when this sphere intersected scene objects, allowing distance detection, as well as comparing
the distance between objects. The continuous model rendered an entire scene at once, providing
instantaneous information via audio and haptic.
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VTE tests were recorded automatically by the SoV system, while RW tests were recorded manually
by testing assistants. Furthermore, each trial in a test was videotaped for annotation purposes. The time
needed to finish every trial and the accuracy were saved: number of collisions between user and
obstacles, number of cane contacts with objects, time duration, together with path length followed.

Each test consisted of 5 trials, and each one was assigned to a fixed path/boxes arrangement for
TH, as it is presented in Figures 5–9.
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5.2. Data Collection

In this study, 15 VIPs were involved in training and testing tasks in the virtual environment and
real-world settings, using the SoV prototype and different releases of the SoV runtime. After each testing
stage, important improvements were made to the hardware and software resources, including audio
and haptic encodings based on the VIPs’ feedback. Finally, only 8 complete datasets (corresponding to
3 females and 5 males, aged 20–42) with fully validated data were retained and subsequently analyzed.
All the participants provided informed consent approved by the research ethics committee of the
institutions involved in the project (Approval number: 9083/15.05.2017). One hour before performing
the tests, the VIPs did not drink coffee nor black tea, and also smoking was forbidden before or during
the experiments.

For EEG and additional physiological measurements, the following equipment was used:

• a BrainProducts V-Amp 16 amplifier and an EasyCap helmet with 19 sintered Ag/AgCl miniaturized
passive electrodes for EEG signal acquisition with a sampling rate of 512 Hz;

• a Shimmer3 GSR+ unit sensor for measuring electrodermal activity/galvanic skin response
(EDA/GSR) and continuous HR;

• a video camera or smartphone for video recording in real-time.

The acquisition procedure used 16 electrodes, namely Fp1, F7, F3, C3, P3, P7, C4, O1, O2, Fp2,
F8, F4, C4, P4, T8, P8, and an ear reference, placed according to the 10-20 international system.
The sampling rate was 512 Hz, and the AFz electrode was connected to the ground. To ensure reliable
EEG raw data, the impedance of each electrode was maintained below 5 kΩ, by using a good abrasive
gel. The OpenVibe open source software was used for EEG acquisition. The OpenVibe server acquired
the EEG signals, and the OpenVibe client saved or sent the raw data as a stream. The Shimmer GSR
unit sent the acquired data via Bluetooth.

The data acquisition process is outlined in Figure 10. An important part of the acquisition process
is the usage of the lab streaming layer (LSL) protocol [50] so that each data component had to provide
a stream of data as output. For the components that do not natively provide LSL output streams,
simple adaptors had to be designed, as in the case of the data provided by the EDA/GSR device.
The EEG data was available as an LSL stream provided by the OpenVibe application. The applications
developed in this project (VTE and SoV runtime) provided LSL streams to source events that were
internally generated and of interest for later analysis. The data was stored in a tabular format inside
hdf5 files [51], together with a timestamp provided by the LSL.
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In what concerns video recording and annotations, the mp4 video files recorded during the
tests were annotated with Chronoviz [52]. The events: Start (beginning of the recording), Collision,
Find (find the source/treasure), Lost (lost control), TouchCane (only for the test with the white cane),
Stop (end of the recording) were considered. For each mp4 file, a CSV file with annotated events and
corresponding Unix timestamps was generated.

Alternatively, if Chronoviz could not be used due to system constraints (Chronoviz needs a system
with Mac OS X 10.6 or later), a Python script was designed to synchronize the data streams acquired by



Sensors 2020, 20, 5821 11 of 30

the processing unit with the video recordings of the experiment. The script aligned the timestamps of
the samples in the acquired data streams (provided as csv files) with the timing information found in
the video recording. The application ExifTool [53] was used for gathering timing information from the
movie files. The data streams were trimmed or padded in order to fit the movie length. The script
detected and reported any timing misalignments and provided means to fine-tune the synchronization
process. The resulting adjusted data streams and movies could be annotated later in a similar way as
in Chronoviz. The synchronization process is presented in Figure 11.
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5.3. Data Acquisition and Preprocessing

The acquired brain waves were pre-processed. We applied a band-pass filter for 0.5–100 Hz,
a notch filter to remove power line contamination at 50 Hz, and a band-pass filter to obtain frequency
bands of interest (delta, theta, alpha, beta, and gamma). The artifacts (involuntary eye blinks, muscle
movements, brief amplifier saturations) presented in the EEG signals were removed using an online
Savitzky-Golay filter. The EEG data obtained after pre-processing were baseline-normalized by
subtracting for each participant and for each channel the mean of the resting state recordings (recorded
in the laboratory during the VTE sessions).

The Shimmer software for EDA acquisition could not be efficiently used in the SoV setup (Figure 1),
and therefore the streams from the sensor were acquired over Bluetooth at 16 Hz. The skin resistance
values (y, µS) were computed from the Shimmer ADC values with the following linear function:

y = p1× x + p2 (1)

where p1 and p2 are parameters specific to the range setting and can be selected from the datasheet of
the sensor. If the electrodes are not tightly attached and lose contact with the skin, motion artifacts
(high-frequency noise) can be present in the acquired signals. A low pass filter was applied to remove
high-frequency noise, which can be attributed to movement artifact and other noise components.
A cutoff frequency of as low as 1–5 Hz could be used without affecting the data of interest due to the
slowly varying nature of the EDA responses.

5.4. Data Analysis

Within the broader framework of the SoV project, the aim of this study was to explore the VIPs’
brain activity during navigation tasks with the help of an SSD based on audio, haptic, and multimodal
encoding, compared to white cane navigation. The research was focused on assessing cognitive load,
visual cortex excitation, and emotions evaluation during RW navigation. For each exploration, the EEG
signals were selected according to the analyzed brain lobes and the power spectrum, and the asymmetry
between the two cortex hemispheres was calculated.

Usually, CL is investigated in the channels corresponding to the frontal lobe, which reflect the
activity of short-term memory and consists of calculating frontal-asymmetry, meaning the difference
between the logarithms of the power spectrum of the left and right hemispheres divided by the
logarithm of the total power spectrum of both hemispheres. There is no single standard way to
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calculate asymmetry, and some authors use the difference or the ratio between the spectral powers
of the signals on the right and the correspondents in the left hemisphere. Anyhow, higher asymmetry
reflects a strong workload, while lower asymmetry reflects avoidance and relaxation [54].

CL is strongly related to emotional well-being states. The “feeling good” aspect of well-being
deals with the balance of positive emotions vs. negative emotions. Well-being reflects a person’s ability
to identify and respond to the challenges of everyday life, even painful and unpleasant events [55].
Hawthorne presented an extensive study on how feeling good might contribute to cognitive load in
different ways [55].

Certain states can be more accurately investigated if the EEG waves are analyzed in the five
specific bands: delta, theta, alpha, beta, and gamma. The delta waves reflect the unconscious states,
and it is usually recorded in deep dreamless sleep. The theta waves are typically associated with the
subconscious mind, sleeping, dreaming, meditation, or even artistic creation. The alpha waves are
visible in all the cortex lobes and give valuable information regarding brain activation and the relaxed
(but yet aware) mental state. High alpha activity has been correlated to brain inactivation. The beta
waves are correlated to high mental activity, more prominent in the frontal cortex but visible over other
lobes as well. The alpha and beta waves are the most used to classify workload using EEG. The gamma
waves (>30 Hz) reflect hyper brain activity and have become more and more studied as the sampling
frequency of the acquisition systems has increased [56].

Regarding visual cortex (VC) excitation, it must be specified that it was not known before the
year 2000 whether the visual cortex could receive input from other sensory modalities besides the eyes
through the lateral geniculate nuclei. Afterward, the EEG measurements have revealed that the VC
activity is higher for blind subjects during rest or auditory/tactile tasks than in normal control. Without
a certain demonstration, Sadato et al. suggested that in blind subjects, the cortical areas normally
reserved for vision might be activated by other sensory modalities [57]. In 2003, Burton reviewed
various brain imaging studies, which investigated the visual cortex activity of VIPs during nonvisual
tasks, such as hearing messages, Braille reading, or even sensory discriminations of tactile or auditory
stimuli, and concluded that the loss of vision did not lead to a permanent inactivation of the visual
cortex [58]. A scientific report from Georgetown University Medical Center concluded in 2010 that
“people who have been blind from birth make use of the visual parts of their brain to refine their
sensation of sound and touch” [59]. In recent years, several studies have highlighted enhanced auditory
processing in blind persons to partially compensate their impairment, with greater sensitivity of the
other senses. It has been proved that the VC plasticity allows this cortical lobe to be colonized by the
auditory and somatosensory systems in the case of congenitally blind persons. The study conducted
by Campus et al. revealed that the occipital activation to sound was strong in sighted persons and
much lower in blind persons [60]. Another valuable conclusion was that the occipital lobe of sighted
subjects played a major role in the reconstruction of the environmental spatial metrics and that vision
loss blocked this process. Obviously, it is expected to remark differences in VC excitation between the
people who are blind from birth and those who lost their sight later and know what color, distance, or
shape mean. For this analysis, the O1 and O2 electrodes are the most important, but also the Oz and
the electrodes from parietal lobes should be considered in an extensive study.

In terms of evaluating emotions, it is well known that the amygdala is responsible for the perception
of emotions, such as anger, fear, and sadness. The pre-frontal cortex and the hippocampus (located in
the medial region of the temporal lobe) are highly correlated to emotional activity [56,61]. Because the
right hemisphere is associated with negative emotions (i.e., fear or disgust), and the left hemisphere
is highly activated by positive emotions and motivation (i.e., happiness and satisfaction), the EEG
asymmetries in the frontal and parietal lobes are relevant for valence and arousal assessment [56].
A thorough evaluation can be performed if the signal analysis is performed on the EEG frequency
bands of alpha, beta, and gamma. According to these findings and based on some other studies related
to efficient EEG channels selection for emotion recognition, Zhang and his coworkers recommended
the following set of electrodes: Fp1, Fp2, F7, F8, C3, FC5, FC2, AF4 (frontal lobe), T7, T8 (temporal



Sensors 2020, 20, 5821 13 of 30

lobe), O1, Oz (occipital lobe), and P3, P4, Pz, PO4 (parietal lobe) [62]. For emotions assessment in this
study, only the channels C3, C4, T7, T8, P3, P4, F3, and F4 were considered due to the limited number
of electrodes of the EasyCap helmet. The asymmetry in the pre-frontal lobe was presented in CL
evaluation, and O1 was not considered because the standard list refers to sighted people, and, in our
approach, the visual cortex was subjected to special attention.

6. Results and Discussion

6.1. Navigation Metrics Analysis

As mentioned above, the EEG, HR, and EDA (GSR) signals were acquired for the treasure hunt
tests, using the white cane or the SoV device with three spatial information encodings—audio, haptic,
and multimodal (audio and haptic). Besides the video recordings and the files containing the data
obtained during the experiments, important metrics regarding navigation were collected for each
user involved in the study: the time required to accomplish a trial, the length of the path, the number of
major or minor collisions, and also the numbers of white cane contacts with the obstacles. All these data are
summarized in Table 1 and reflect the cumulative performance of all the users for each scenario type.

Table 1. Cumulative experimental data for the treasure hunt (TH) tasks—navigation with the Sound of
Vision (SoV) device and white cane.

Codification Scenario
Type Collisions Total Number Path Total Distance (m) Total Time (s)

Audio

A 12 33.69 293
B 10 44.36 299
C 22 42.8 261
D 18 41.8 306
E 20 62.05 409

Haptic

A 13 28.3 179
B 11 39.1 221
C 17 41 261
D 20 44.1 255
E 34 54 440

Audio and Haptic

A 7 33.35 236
B 14 39 267
C 15 47.3 327
D 12 51.6 271
E 24 56.5 345

White cane

A 4 23.27 204
B 5 28.8 205
C 6 27.8 213
D 2 30.16 206
E 6 37.77 255

Figures 12–14 present the averages of time duration, number of collisions, and traveled distances
for RW navigation with the help of the white cane and SoV device, in case of all the five obstacle
arrangements (A to E). A+H stands for audio and haptic (multimodal). In the case of the short
and easy routes, the walking durations were very similar for audio stimulation and cane traveling,
while the haptic and multimodal stimulation required less time than the white cane. Only for the most
complicated test scenario (E), the cane and multimodal tasks were performed in a shorter time than
with haptic and audio input. It is known that the VIPs usually walk slowly, and it was encouraging
that the SoV device did not slow down the movement of the users.
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We noticed a higher number of collisions when using the SoV device in comparison to the white
cane navigation. This fact was expected because usually, the VIPs touch the objects with the cane
along their path, avoiding the great majority of collisions. The average distances did not differ too
much between cane and SoV navigation, except for the SoV audio mode, for which the routes were
significantly longer regardless of the testing scenario.

From Table 1 and Figures 12–14, it can be concluded that the required time, the length of the
path chosen by each VIP according to his/her perception of the SoV stimulation, and the number of
collisions depended on the complexity of the scene and on the user’s training and ability to adapt
to a new navigation aid. Obviously, the time, length of the path, and the number of collisions were
much higher for the scenes C, D, and F. Some VIPs had better results with the audio mode and others
with the haptic mode, but the number of collisions was higher for the haptic mode. As expected,
the metrics for the white cane navigation were better because the VIPs were accustomed to using it on
a daily basis. As a particular conclusion, the VIPs’ navigation performance with the SoV device was better in
the case of the multimodal encoding, in terms of duration and number of collisions. On the other hand, no
general conclusion could be drawn because the number of VIPs involved in the experiments was small,
and also a VIP could have learned the scenes during the first trials and performed better during the
last trial, even if the experiments were randomly conducted.

6.2. Cognitive Load Analysis

Figures 15 and 16 present the total cognitive load for all the validated experiments and the five
test scenarios, in the case of both the SoV device and white cane navigation. In the case of SoV
navigation, we computed the average of the audio, haptic, and multimodal stimulations. Regardless
of the difficulty of the test scenario (A is the easiest, and E is the most difficult), high values of CL
were observed for the electrodes related to the frontal cortex (O1 especially, in the vision area) if the
SoV device was used. The increase of frontal cortical activity was expected, but the activity of the
visual cortex (VC) was worth being investigated because it supports some previous opinions about VC
activation in the case of the VIPs who received various environmental sensory stimulation. It should
be noted that the brain activity corresponding to the O1 channel was significantly higher than for the
O2 channel for both types of navigation, resulting in an increased emotional state.
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In Figure 17, we present the total CL for the scenario treasure hunt (TH), configuration C. The main
conclusion was that there was a significant increase in the CL index (indicated as a negative fluctuation
according to the CL index definition) in the case of using the SoV device with audio, haptic, and multimodal
stimulation in comparison to white cane navigation. The conclusion was similar in the case of the other
testing scenarios (TH, configurations A, B, D, and E).
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In contrast to the CL values presented in Figures 15 and 16 for each electrode, the global CL index
was calculated on average for all brain waves for all users, aiming to have a general representation of the
brain activity. The short box related to cane traveling meant that the data consistently hovered around
the center value, denoting a similar effort for all users, and the whiskers indicated a quite limited
distribution as well. In the case of using the SoV device with audio, haptic, and multimodal stimulation,
the taller boxes indicated more variable data, and the whiskers showed a wider distribution, namely
more scattered data. The different ways in which the users perceived the haptic and sonification
models could explain this conclusion, which anyway was in accordance with the plots depicted in
Figures 12–14. The consistency of the experimental data and the preprocessing accuracy were proved by
the lack of outliers in the total CL indexes. Although the median value for haptic stimulation was closer
to the median for cane walking, the distribution of global CL was the widest one. It could be observed
that multimodal stimulation had the effect of reducing the spread of the global CL index. The tactile
and auditory stimuli were processed by distinct lobes of the cerebral cortex with significant differences
in CL, and this should explain the negative skewness in the case of cane and haptic stimulation and the
positive skewness in the case of audio and multimodal stimulation. The conclusion was similar for the
other testing configurations (A, B, D, and F) of the TH scenario.

6.3. Brain Activity Analysis

Besides this general evaluation of cognitive load, it was relevant to explore how the VIPs’ cortical
lobes were activated during walking on certain routes with the white cane or guided by the SoV
device using the three input encodings. Particular reactions were expected, depending on the type
of visual impairment and on the users’ training or education. For this, the analysis of the individual
frequency bands was performed according to the literature guidelines. First of all, the alfa waves
were investigated, especially in the frontal lobe, taking into account that there is an inverse relationship
between alpha power and cortical activity; namely, more brain activity (engagement) means less alpha
power [63]. A more detailed analysis should be done if the alpha-1 (lower alpha, 7–10 Hz) and the
alpha-2 (higher alpha, 10–13 Hz) frequencies were considered because it is well known that alpha-1
is related to response inhibition and attentional demands, and alpha-2 reflects task performance in terms of
speed, relevance, and difficulty [64]. It has been proved that people with relatively increased left-frontal
alpha activity are more motivated and focused in a positive way, and their related emotions are joy or anger.
In contrast, the increase of right-frontal activity denotes a more negative motivation accompanied by fear, sadness,
and disgust [63,65]. The asymmetry was calculated based on the difference between the logarithms of
the spectral powers from the left and right brain hemispheres.

For a more accurate assessment of brain activity related to users with different perceptions and
visual impairments, the envelopes of the alpha1 and alpha2 bands asymmetries were depicted for the
considered navigation tasks, and the collisions annotated with Chronoviz were marked with black
dots. It must be mentioned that the acquired signals for navigation with the cane or with the SoV
device had different lengths, according to the time required to perform the task and the path chosen by
the user, as it is presented in Table 1. The brain activity exploration was oriented towards analyzing
the late visual impaired users in a group and the subjects who were born blind in another group.

In Figures 18 and 19, the envelopes of the asymmetries depicted are related to a user who was
born blind (early-blind). He usually navigates using the cane, and he took part in all the training
sessions in the virtual environment and ego-static real-world tests. A significant difference between
navigation with the cane and the SoV device was observed only for the audio encoding, in terms of response
inhibition and attentional demands. Although SoV is a completely new device that implies a different way
of navigation, however, the consistent training in the virtual environment and the ego-static real-world
tests helped a lot the user to accommodate to the encodings. The greater attentional demand (reflected
by the alpha1 waves) was evident for audio stimulation, and it could be assumed that this was due to the
fact that the VIPs usually rely heavily on the environmental noise when they navigate. They also try
to perceive natural noises when the SSD sonification is conveyed to them. From the perspective of
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alpha2 frequencies, meaning speed and task difficulty, for this user, for all the encodings, the values obtained for
navigation with the SoV device were significantly higher than those obtained in the case of using the white cane.
Anyhow, this conclusion was expected, considering the novelty of the SoV system for the users and the
fact that the VIPs walked relying on the white cane in a natural style for a long time. The collisions
(marked with dark dots) were well correlated with the inflection points of the envelopes’ variations.Sensors 2020, 20, x FOR PEER REVIEW 19 of 31 
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Figure 18. The envelopes of the alpha1 asymmetries for a user who was born blind.
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Figure 19. The envelopes of the alpha2 asymmetries for a user who was born blind.

In Figures 20 and 21, the envelopes presented correspond to a user from the late-blind group.
He lost his sight at 17, has a good education, and usually navigates accompanied by a family member,
without using the white cane. He quickly got used to the SoV device and got good scores in the training
sessions. In this study case, the alpha1 asymmetry values (Figure 20) were higher for the cane navigation
(even the necessary time was shorter), compared to those obtained for SoV navigation, regardless of
how the environmental information was encoded. This demonstrated a higher concentration for the
cane navigation and good and fast accommodation with the SoV device. The alpha2 asymmetries (Figure 21)
highlighted increasing difficulties for the audio and multimodal encoding tasks. However, the range variations
of the alpha1 and alpha 2 asymmetries were similar for the two users considered. This suggested that
an early and a late VIP had the same cognitive load, but there were differences between the navigation
tasks: cane vs. SSD and between the different types of encodings (audio, haptic, and multimodal).

Besides the two particular cases presented above, an overview of the CL analysis is presented in
Figures 22–25. By averaging the results for all the VIPs (early- and late-blind), in case of the most difficult
trial (scenario E), it could be concluded that the alpha1 asymmetries for audio and multimodal codifications
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were a little higher (~0.2) compared to the cane and haptic modality (~0.1). The variations within the whole
asymmetries data set are displayed in the whisker plot from Figure 24.Sensors 2020, 20, x FOR PEER REVIEW 20 of 31 
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Figure 20. The envelopes of the alpha1 asymmetries for a late-blind user.
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Figure 22. The average of the alpha1 asymmetry for all the users.
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Figure 23. The average of the alpha2 asymmetry for all the users.
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Figure 24. The envelopes for all the users, for scenario E.Sensors 2020, 20, x FOR PEER REVIEW 22 of 31 
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Figure 25. Average envelopes’ asymmetries for all users, for scenario E.

6.4. Visual Cortex Activation Analysis

Some previous studies have revealed the presence of visual cortex activity in the case of the
VIPs if a sensory substitution system creates an “information map” of the environment. Therefore,
the total cognitive load (TCL) for electrodes O1 and O2 was investigated. Preliminary investigations
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of the experimental data showed that there was a major difference between the VC activity of the
late-blind persons and of those who were born blind. Thus, a general conclusion regarding all VIPs
could be drawn.

The asymmetries of TCL in the visual cortex for UserA (early-blind) and UserB (late-blind) were
calculated. In Figures 26 and 27, the upper envelopes for TCL values are represented for UserA and
UserB. UserA was a born blind person, and, in his case, the asymmetry of the cane task was twice greater
than the asymmetries of SoV tasks. In line with some previous research, it is possible to associate the
VC activity of the cane task with the fact that parts of his visual cortex were activated to refine his
sensations and usual activities. In contrast, the late-blind person’s VC activity in SoV tasks was much
higher than in the cane task (which was negative) and more than five times higher than UserA’s visual activity.
The limited number of VIPs from each group (five early- and three late-blind users) did not permit
to obtain valuable statistical results, but for all the late-blind persons guided by audio and haptic stimuli,
the average asymmetry of VC was around six times greater than that of the persons born blind, as can be seen
in Figures 28 and 29. Another important observation was that VC asymmetry was lower in the case of
multimodal stimulation than in the case of separate stimulation (audio or haptic). It must be emphasized
that there was no correlation between visual cortical activity and the number of collisions during navigation,
regardless of the type of navigation or sensory input.
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Figure 27. Visual cortex asymmetry for UserB (late-blind).
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6.5. Emotions Assessment During Real-World Navigation

As presented in the previous chapter, the emotional influence is a vast topic on which, from the
dimensional perspective, the valence and arousal dimensions are advocated by Russell [66]. Arousal
expresses calmness or excitement, whereas valence expresses a negative or positive effect. According to
the comprehensive literature, left frontal inactivation is an indicator of a withdrawal response, which is often
linked to a negative emotion, and right frontal inactivation is a sign of an approach response or positive
emotion. Therefore, the ratio of right and left asymmetry (valence state—VS) was computed with
the equation:

VS = log
(PSR

PSL

)
(2)

where PSR and PSL are the power spectrum values of the right and the corresponding left hemisphere
channels in a specific frequency band. The channels T7-T8, which are considered the most relevant for
emotions assessment, but also C3, C4, P3, P4, F3, and F4, were considered based on the theoretical
statements from the previous chapter [62].

In addition, the HR and EDA signals acquired during the tests were processed according to the
standard approaches described in the literature [65]. The root mean square of the successive differences
(RMSSD) values were calculated for the HR recorded using the Shimmer sensor. A low RMSSD value
means a high HR, denoting a strong concentration, emotion, or physical effort, whereas a high RMSSD
value corresponds to resting or to a relaxing activity. The HR values in the resting state for the involved
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users were different according to their age and personal rhythm. Therefore, the percentage of variation
of RMSSD compared to the resting state was calculated. By pre-processing the signals acquired with
Shimmer, the EDA signals (µS) were obtained. Then, the deconvolution performed using the Ledalab
software provided the phasic and tonic components and skin conductance responses (SCRs)—abrupt
increases in the conductance of the skin, measured in µS, were calculated.

Firstly, the global VS of all the users and all the performed tests was calculated for the chosen
pairs of electrodes. The result is graphically depicted in Figure 30. The C3 and C4 electrodes were
considered because their waves could be associated with hippocampus activity, together with T8-T7,
which obviously are the most relevant for assessing emotions [65]. The VS calculated using the T8-T7
pair (T8 in the right hemisphere denotes negative emotions and lack of motivation, in contrast to T7)
indicated a low positive valence for cane navigation and a negative valence for SoV navigation, in accordance
with the cumulative time, distance, and the number of collisions from Table 1. For the parietal lobe,
the P4-P3 pair indicated a moderate VS for cane navigation and low VS for SoV navigation. The pair C4-C3
reflected a low positive valance, close to the neutral state. The same observation applied for the F4-F4
pair, for which the low negative valence in the SoV navigation using the audio encoding must be taken
into account.
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The global percentage variation rate of RMSSD compared to the resting state decreased with: 21%
for cane navigation, 39% for SoV navigation using the audio encoding, 44% for SoV navigation using
the haptic encoding, and 41% for SoV navigation using the multimodal encoding. By computing the
global SCR index, the following values were obtained: 0.18 for white cane navigation, 0.61 for SoV
navigation using the audio encoding, 0.76 for SoV navigation using the haptic encoding, and 0.71 for
SoV navigation using the multimodal encoding.

The trials were performed randomly within the same navigation type (cane or SoV) and for the
same user, and no significant differences of the RMSSD values were remarked between the trials, even
if they had different durations. Moreover, a slight increase (corresponding to an HR decrease) was
observed towards the end of most of the tests. The users were not subjected to intense physical activity
because they walked on the plain ground; however, the average of HR values was a little bit increased
in comparison to the VTE tests. On the other hand, the EDA signals were sensitive to most of the
collisions, especially in the case of the SoV navigation.

In Figures 31 and 32, we present the VS values for the two special users (UserA and UserB). In the
case of UserA, who was intensively trained in the VTE and in the RW, the valence was positive but very
close to the neutral state for all the navigation types, with the remark that the valence for SoV navigation was a
little bit higher than for cane navigation. His RMSSD and SCR values did not differ significantly between
the navigation modes.
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Analyzing the results for UserB, who is usually guided by a family person, it is obvious that for
him, navigating using the white cane induced a neutral to low negative valence, and navigating using
the SoV device gave him more security, satisfaction, and a more comfortable state. This was underlined
by a decrease of the RMSSD percentages and an increase of SCRs for all navigation modes.

In Figures 33 and 34, the evolution in time of the VS for the T8-T7 pair is represented for UserA
and UserB in order to highlight the slow evolution of valence during a trial. In general, the collisions
did not essentially affect the valence changes, as in the case of the cognitive load assessment.Sensors 2020, 20, x FOR PEER REVIEW 26 of 31 
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6.6. Limitation of This Study

The limitations of the current study reside in the fact that we performed the tests with a small
number of users for both categories (early-blind and late-blind). Although the results were interesting
and in line with the existing literature, a more thorough evaluation should be realized. In addition,
the EEG recordings were performed using a limited number of electrodes. As future directions, we
plan to use a more advanced EEG recording device, with a higher number of electrodes, and to improve
the SoV device so that it would be lighter and more comfortable to be worn.

The results of real-world experiments were strongly influenced by a consistent training period,
similar to all users, which requires a great deal of time. Future work can extend the realistic scenarios
of RW traveling for enhancing the impact of the study.

7. Conclusions

This paper presented an experimental framework and a study based on EEG, HR, and GSR signal
analysis, aiming to assess the brain cortex activation and affective reactions of the visually impaired
persons to the stimuli provided by a sensory substitution device used for navigation in real-world
scenarios, compared to the white cane navigation. The study was focused on the evaluation of working
memory load, visual cortex activation, and emotional experience when the VIPs perceived audio,
haptic, and multimodal stimuli during a navigation task in five different types of scenarios.

The choice of the Brain-Computer Interface (BCI) equipment proved to be inspired because its
characteristics allowed a good acquisition of EEG signals simultaneously with the use of the SoV device.
The same BCI equipment has been employed successfully in other studies of our own concerning
multimodal neuromotor rehabilitation [67,68]. An important feature of the experimental setup is the
ability to synchronize the data streams and to align the acquired signals with the events extracted from
the video recordings. The training performed in the VTE and the ego-static tests performed indoors
had an essential role in preparing the users to perceive distances, positions, and object dimensions only
by means of the audio, haptic, and multimodal stimuli, giving confidence to all of them in using the
SoV device. The aim was to provide all users the ability to automatically understand the complexity of
a scene. Besides, during the VTE training, multiple resting sessions were recorded for all volunteers,
which had an important role in establishing a baseline.

The perception of audio and haptic stimuli using the SoV device was assessed in terms of cognitive
load, pleasantness, excitement, and events, for all the visually impaired users, as well as for the specific
categories (early-blind or late-blind). All in all, the haptic stimuli appeared to be less intuitive than the
audio stimuli.
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The analysis showed that navigating with the SoV device increased the cognitive load and the working
memory (lower accuracy and longer response times). The analysis of the EEG data revealed the usage of
verbal working memory in the posterior parietal cortices. The obtained results indicated that the left-right
asymmetry of the prefrontal cortex had distinguishable characteristics when the VIPs were navigating
in real-world environments with a wide range of obstacles.

The visual cortex exploration revealed a significant activation when using the SoV device, only for the
late VIPs. The low VC activity of congenitally blind persons during SoV navigation could be related to
brain plasticity, which allows the auditory and somatosensory systems to extend their functionality in
that part of the cortex.

Finally, we assessed the valence state of the users when navigating in unfamiliar indoor
environments based on mobile monitoring and a fusion of EEG and physiological (EDA and HR)
signals. For the generic VIP population, the use of the SoV device induced a low negative valence in contrast
with cane usage. But the findings differed for the specific categories of sight loss (early- and late-blind),
pointing out the particular needs/difficulties faced by each category of VIP.

This study proved once more that sensory substitution is an alternative method, which helps the
blind people to acquire information about the surrounding space and to navigate independently in
unknown real-world environments, safely and comfortably, after substantial training.

The findings hopefully empower the knowledge of how the visually impaired persons are stressed
and emotionally affected by SSD navigation and contribute to the development of the intelligent
navigation devices, aiming for the VIPs’ safety and well-being. The results of our work can inspire
researchers working in the field of IoT devices comprising sensors, antennas, and Bluetooth, which
have created navigation rules based on a fuzzy controller [69], GPS embedded in a stick with voice
recognition for obstacles detection [70], computer vision-based assistants [71], or assistive systems
relying on wearable smart glasses and mobile applications [72].

Valuable research projects have investigated the efficiency of intelligent sensory substitution
devices [73], and, in this context, our research brought an important contribution by analyzing
EEG and physiological signals in order to assess the cognitive effort and emotional state of users in
real-world navigation.
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