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Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a

quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive

model systems: the Wikipedia and an entire country’s Web space. We find that the dynamics of popularity

are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed

distributions of magnitude and interevent time. We propose a minimal model combining the classic

preferential popularity increase mechanism with the occurrence of random popularity shifts due

to exogenous factors. The model recovers the critical features observed in the empirical analysis

of the systems analyzed here, highlighting the key factors needed in the description of popularity

dynamics.
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The dynamics of information and opinions has been
deeply affected by the existence of Web-mediated brokers
such as blogs, wikis, folksonomies, and search engines,
through which anyone can easily publish and promote
content online. This ‘‘second age of information’’ is driven
by the economy of attention, first theorized by Simon [1].
Sources receiving a lot of attention become popular and
have formidable power to impact opinions, culture, and
policy, as well as advertising profit. TheWeb 2.0 and social
media [2] not only modify traditional communication pro-
cesses with new types of phenomena, but also generate a
huge amount of time-stamped data, making it possible for
the first time to study the dynamics of online popularity at
the global system scale.

In this Letter, we focus on the dynamics of popularity of
Wikipedia topics and Web pages. As popularity proxies we
have chosen the traffic of a document, expressed by the
number of clicks to that page generated by a specific
population of users and the number of hyperlinks pointing
to a document. It is well documented that the statistical
properties of these variables in the Web are very heteroge-
neous, with distributions characterized by fat tails roughly
following power-law behavior [3–6]. Such distributions
have been explained with models based on the rich-get-
richer mechanism [7–9], but their validation from the point
of view of the dynamical behavior is problematic, mainly
due to the difficulty to gather relevant data. The data sets
utilized here, however, contain temporal information that
makes it possible to observe the growth in popularity of
individual topics or pages and allows us to statistically
characterize the microdynamics by which online docu-
ments gather popularity.

Prior work on popularity dynamics has focused on news
[10,11], videos [12,13], and music [14]. Here, we analyze
three large scale data sets that we assembled about two
information networks: the entire Wikipedia and the

Chilean Web. Wikipedia is a large collaborative online
encyclopedia with millions of articles and hundreds of
thousands of registered contributors [15]. By mining the
full edit history of every article, we were able to recon-
struct the entire Wikipedia structure at any past point in
time. The raw data were available until March 2007 [16].
Traffic data with hourly temporal resolution were obtained
by cross-referencing with a separate data set originating
from Wikipedia proxy server logs [17]. Our third data
source is a yearly sequence of crawls of the Chilean
Web, made available by courtesy of the TODOCL search
engine [18]. These data consist of one complete crawl of
the .cl top-level domain for each of the years 2002–2006.
Basic statistics on each data set are shown in Table I. The
representative graphs of these data sets have an approxi-
mately power-law distribution of indegree [19–21], like the
Web graph at large.
In order to gauge quantitatively the popularity of docu-

ments, we consider the number of hyperlinks pointing to a
page (indegree k in the graph representation of the Web
[3]) and the traffic s of the page, expressed by the number
of clicks to it. Given either of these two popularity proxies
xt at time t, we study its logarithmic derivative ½�x=x�t ¼
ðxt � xt�1Þ=xt�1, which represents the relative variation of
the measure in the time unit.

TABLE I. Descriptions of the data sets constructed for our
study. The two Wiki collections refer to indegree (1) and traffic
(2) of Wikipedia topics, while the Chile collection refers to
indegree of Chilean Web pages.

Temporal

Vertices Period resolution

Wiki1 3 293 102 Jan 2001–Mar 2007 1 second

Wiki2 3 490 740 Feb 2008–current 1 hour

Chile 3 252 779 2001–2006 1 year
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Figure 1 shows the logarithmic derivative of the inde-
gree vs time for an example page in the English Wikipedia.
Despite a roughly exponential growth, the logarithmic
derivative provides a signature by which different topics
can be compared on the same scale. Almost all pages
experience a burst in �x=x near the beginning of their
life. Many pages receive little attention thereafter. While
some pages maintain a nearly constant positive logarithmic
derivative indicating an exponential growth, a number of
pages continue to experience intermittent bursts in �x=x
later in their life as in the example.

The distribution of magnitude�x=x for the two popular-
ity measures at representative time resolutions is illustrated
in Figs. 2(a)–2(c). In all cases and at every granularity we
observe a heavy-tail behavior. Such heavy-tailed burst mag-
nitude distributions suggest a dynamics lacking a character-
istic scale. This is typical in a wide range of ‘‘critical’’
physical, economic, and social systems, such as avalanches,
earthquakes, stock market crashes, and human communi-
cation [22–26]. Further evidence comes from the study of
the distribution of the length of interevent intervals. For
each document we record the time stamp of each event for
which �x=x > 1 and measure the interevent times �t. The
probability distributions of �t in the different data sets
[Fig. 2(d)] are not distributed following a Poissonian, as
expected by queueing theory in traditional systems, but in a
power-law fashion with a finite size cutoff, as in Omori’s
law of earthquakes [27] and other self-organized criticality
phenomena [28].

The clear evidence for the bursty behavior of online
popularity dynamics calls for a stylized model able
to explain the observed features in terms of the already

acquired popularity of each page and the shifts in collective
attention triggered by exogenous events.
The rich-get-richer mechanism can be simulated with

the classic linear preferential attachment model [9], in its
directed version [29], or with the ranking model by
Fortunato, Flammini, and Menczer [30]. In the latter, items
are ranked according to their popularity x, and the proba-
bility that an existing item i receives a unit (e.g., a click) is
PðiÞ � r��

i , where ri is the rank of i and � > 0 is a free
parameter that tunes the power-law popularity distribution
PðxÞ � x��, such that � ¼ 1þ 1=�. Both preferential at-
tachment and ranking models, however, fail to reproduce
the long tails observed in the distributions of both �x=x
and �t [Figs. 3(a) and 3(b)]. Neither model accounts for
the occurrence of exogenous factors that shift the attention
of users and suddenly increase the popularity of specific
topics because of events such as an actor winning a prize,
political elections, etc. The minimal assumption in model-
ing exogenous perturbations consists in considering
external stochastic events interfering with the basic rich-
get-richer mechanism by suddenly changing the popularity

FIG. 1 (color online). Time series of indegree k and its loga-
rithmic derivative �k=k for the Wikipedia topic page about the
artist Jennifer Hudson. Topics typically experience a burst in
their early life. Here we observe later fluctuations as well.
Jennifer Hudson became popular through a television show
leading to her first burst. Another occurred when she won an
Academy Award; degree popularity doubled as many other pages
linked to the article (inset). The size of each circle shows another
popularity measure; it is proportional to the log-derivative of the
number of times the article is revised. The article receives more
edits when it attracts more links.
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FIG. 2 (color online). (a)–(c) Distributions of popularity burst
size. The gray areas highlight the events for which �k > k
(hence �k=k > 1). Maximum likelihood methods [34] in con-
junction with the Kolmogorov-Smirnoff (KS) statistic rule out
log-normal fits. In each case the KS statistic suggests that the
power-law curve is the better fit for the tail. For the distribution
of �k=k in Wikipedia (a) the parameters are � ¼ 2:6 for the
exponent of the power law, with a lower cutoff of 12 and a KS
statistic of 0.005. For the Web (b) we find � ¼ 1:9 for the
exponent of the power law, with a lower cutoff of 42 and a KS
statistic of 0.007. For the distribution of �s=s (c) the parameters
are � ¼ 2:1 with lower cutoff 90 and KS statistic 0.007. The
slopes of the best fit power laws are shown as a guide to the eye.
These behaviors are consistent across a wide range of temporal
resolutions, as observed by using time units from a day to a year.
(d) Distribution of the time interval �t between consecutive
indegree bursts of Wikipedia articles. We consider bursts such
that �k=k > 1 after January 1st, 2003. The three curves corre-
spond to different time resolutions of months, weeks, and days,
aligned on the x axis for ease of visualization. As we increase the
resolution, the tail of the distribution extends further, an indica-
tion that the cutoff is a finite size effect. As a guide to the eye we
show a power law Pð�tÞ � ð�tÞ�� with � � 0:8.

PRL 105, 158701 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

8 OCTOBER 2010

158701-2



of a topic. The simplest way to implement this mechanism
consists in introducing in the ranking model a reranking
probability �, such that at each iteration every item is
moved to a new position toward the front of the list, chosen
randomly with equal probability between 1 (the top posi-
tion) and the node’s current rank j. We call this the rank-
shift model [31].

In Figs. 4(a) and 4(b), we show the indegree distribution
of the rank-shift model for several values of �: � ¼ 1
(a) and � ¼ 1:5 (b). The ranking model (� ¼ 0) yields
the slope 1þ 1=� indicated by the dashed line. The re-
ranking probability introduces an exponential cutoff in the
distribution, which becomes relevant for � � 10�2 and
larger (but we used 10�5 < �< 10�3 in our simulations).

The distribution of �k=k shows two distinctive features,
which are remarkably found in the empirical distributions:
a maximum located in the range 0.01–0.1 and a fat tail.
Since the reranking probability is low, to understand the
existence and the location of the maximum it is convenient
to consider the model in the absence of the reranking
mechanism. At a large time T, the expected value of the
degree of the node with rank r is proportional to Lr��,
where L is the number of links present in the network at
time T. Let �L be the number of links added during the
interval�T at whose extremes the ratio�k=k is computed.
Let �L � L, an assumption verified in our calculations.
Therefore, one can safely assume that in the period �T the
addition of new links does not affect significantly the

degree of nodes and their relative ranking. So one can
regard the growth process as a multinomial process with
probabilities pðrÞ / r��. The expected number �k of new
links acquired by a node of rank r is therefore pðrÞ�L.
The assumption of (almost) stationarity also provides that
kðrÞ � pðrÞL. We therefore expect �k=k for a node to
be distributed around �L=L, regardless of the node. In
Fig. 4(c), we compare the simulation of the ranking model
with the one of the multinomial process with pðrÞ / r��,
by using the parameters relative to the Wikipedia data set
of January 2003, which represents an ideal trade-off be-
tween the needs of having a sufficient number of bursts and
a system size not too large for the model to run. The
number of nodes or pages was N � 1:3� 105, and the
number of hyperlinks L � 1:3� 106 and �L � 8� 104.
Based on the above discussion we expect to observe a
maximum in the distribution of �k=k located at �L=L �
0:06. This is exactly where the maxima of the empirical
distributions of popularity bursts are located [see Fig. 2(a)].
The ranking model cannot reproduce the fat tail ob-

served in the real data. This is the reason why we intro-
duced the reranking mechanism in our model. Here, it is
the nodes that are suddenly promoted to a higher rank that
are responsible for the high values of �k=k in the simula-
tions. We consider a node that at time T (the reference time
at which we start measuring �k) has rank r1 and is imme-
diately promoted to rank r2, with r2 chosen uniformly in
1 � r2 � r1. Under the same assumption of stationarity
that we made above, the expected degree of the node
before promotion is kðr1Þ � Lpðr1Þ / r��

1 . Let us further

assume that � � 1 and that �L � L, which hold for the
parameters used in our model. Since the reranking proba-
bility is small, we can safely assume that no node is
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FIG. 3 (color online). (a) Comparison of the empirical burst
size distributions with what would be expected from a prefer-
ential attachment (PA) process. Extensive numerical tests and
maximum likelihood fitting [34] show that PA generates an
approximately log-normal distribution (defined inside the gray
area) inconsistent with the long tail observed in the empirical
data. (b) The empirical interburst time distributions overlap
when time is expressed in terms of the same unit (in the figure,
the common time unit is one day). The distribution generated by
PA is much narrower and fits an exponential Pð�tÞ � e��t=�

with � ¼ 0:8. (c),(d) The rank-shift model, despite its simplicity,
reproduces quite well the distributions of both event size (c) and
interevent time (d).
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FIG. 4 (color online). Rank-shift model. (a),(b) Indegree dis-
tribution: � ¼ 1 (a) and � ¼ 1:5 (b). (c) Comparison of the
distribution of popularity bursts for the ranking model [30]
(circles) and a stylized model built upon the simple assumptions
of growth described in the text. (d) Comparison of the distribu-
tion of popularity bursts with the expected slope derived by
assuming that nodes are reranked at most once.
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reranked more than once during the observation time �T.
The expected number of links collected during the period
�T is then �k ¼ �Lpðr2Þ / r��

2 . We expect therefore
�k=k / ðr2=r1Þ��. It is straightforward to derive the
distribution Pð�k=kÞ for a generic node that is promoted
at the beginning of �T by considering all pairs of values
r1; r2 uniformly distributed in 1 � r2 � r1 � N. We find

Pð�k=kÞ / ð�k=kÞ�ð1þ1=�Þ. In Fig. 4(d), we highlight the
tail of the distribution Pð�k=kÞ as produced by the rank-
shift model and our expectation for its slope: The match is
surprisingly good.

Simulations of the rank-shift model were performed by
using parameters matching those from the empirical data
(e.g., N ¼ 2:8� 105 nodes for the Wikipedia in 2003); the
free model parameters were set to fit the empirical distri-
butions: 1 � � � 1:2 and 10�5 � � � 10�3. For � ¼ 0
we recover the original ranking model, which yields a log-
normal distribution of �x=x, like the preferential attach-
ment [Fig. 3(a)]. For � > 0 numerical simulations show
that the tail of the popularity burst magnitude distribution
shifts from a log-normal to a power law. The popularity
distribution itself remains a power law; its exponent re-
mains � ¼ 1þ 1=� but with an exponential cutoff de-
pending on �.

Such a parsimonious model is able to reproduce the most
relevant features observed in the empirical data. Not only
does rank shift predict the distributions of both popularity
measures in our data sets, but also the long tails of the
distributions of indegree and traffic burst size [Fig. 3(c)].
Furthermore, it naturally accounts for the maxima of the
empirical distributions. Remarkably, the model captures
the long-range distribution of interburst intervals as well
[Fig. 3(d)]. The random rank-shift mechanism is therefore
able to capture the way in which Web sites and pages gain
and accumulate popularity: not by a gradual proportional
process but by a sequence of bursts that move them to the
forefront of people’s attention. Such bursts are different
from those observed in news-driven events [10], where
attention fades rapidly and overall popularity is log-
normal-distributed. We also found that smaller rank shifts
are unable to capture the critical burst behavior observed in
the data [31].

At the present stage, our model is mostly descriptive and
simply aims at reproducing at the coarsest level the dis-
tributions that characterize popularity changes. Possible
refinements may include the effect of search engines,
external events, news, word of mouth, social media, mar-
keting campaigns, or any combination of them. The study
of traffic patterns and models [6,32,33] may help shed
empirical light on this question.
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