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Change points, memory and 
epidemic spreading in temporal 
networks
Tiago P. Peixoto1,2 & Laetitia Gauvin2

Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can 
potentially affect processes that take place on the network. However, most data-driven approaches 
used to model time-varying networks attempt to capture only a single characteristic time scale in 
isolation — typically associated with the short-time memory of a Markov chain or with long-time abrupt 
changes caused by external or systemic events. Here we propose a unified approach to model both 
aspects simultaneously, detecting short and long-time behaviors of temporal networks. We do so by 
developing an arbitrary-order mixed Markov model with change points, and using a nonparametric 
Bayesian formulation that allows the Markov order and the position of change points to be determined 
from data without overfitting. In addition, we evaluate the quality of the multiscale model in its 
capacity to reproduce the spreading of epidemics on the temporal network, and we show that 
describing multiple time scales simultaneously has a synergistic effect, where statistically significant 
features are uncovered that otherwise would remain hidden by treating each time scale independently.

Recent advances in the study of network systems — usually with social, technological and biological origins — 
have been moving beyond the more traditional approach of considering them as static or growing entities, and 
instead have been introducing more realistic descriptions that allow them to change arbitrarily in time1,2. This 
effort includes modeling of the time-varying network structure3,4, as well as processes that take place on this 
dynamic environment, such as epidemic spreading5–8. Further recent works9–11 have highlighted the role of mem-
ory, burstiness and time ordering as key features of empirical temporal networks that affect dynamical processes 
taking place on it.

Most approaches, however, rely on a characteristic time scale on which they describe the dynamics. These 
can be divided, roughly, into approaches that model temporal correlations via Markov chains relating short-time 
memory with future behavior12,13, and those that model the dynamics at longer times, usually via network snap-
shots14–19 or discrete change points20–22. For example, in Refs.12,13 the time evolution of a network is represented 
as a static Markov chain where the placement of new edges is conditioned on the last few edges placed. Since the 
transition probabilities themselves do not change in time, the system eventually reaches equilibrium and cannot 
maintain any kind of long-term memory. Conversely, the approaches of Refs.14–22 do not attempt to model any 
kind of short term memory, and simply divide the temporal evolution into discrete intervals, according to how 
large is the change in the network structure between these intervals. In so doing, these approaches focus only on 
a larger temporal scale, describing only abrupt changes in the large-scale network structure. In reality, however, 
most systems exhibit both kinds of dynamics, and focusing on a single aspect comes at the expense of ignoring the 
other. In this work, we introduce a data-driven modeling approach that includes both aspects simultaneously, and 
is capable of uncovering both the short-time Markov properties as well a the long-time abrupt changes.

We develop a Bayesian formulation that allows both the change points and the Markov order to be inferred 
from data in a principled manner, prevents overfitting and enables model selection. As an extraneous evaluation 
of our approach, we investigate the behavior of epidemic spreading both in the original data and in artificial 
ones generated from our inferred models. We show that the most plausible models tend to mix both short-time 
memory and many change points, and those tend to capture well the nontrivial epidemic behavior observed in 
the original data. Importantly, the inferred models with change points typically uncover higher-order memory 
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than the simpler stationary variants, demonstrating that the mixed approach is more powerful than considering 
individual ones in isolation.

This paper is divided as follows. In Sec. 2.1 we present the epidemic models that will be used for the model 
comparison. In Sec. 2.2 we describe our modeling and inferring approach, and apply it to empirical data. In Sec. 
4 we finalize with a conclusion.

Results
Proximity networks and epidemic dynamics.  In the interest of simplicity, we will consider a minimal 
model of temporal networks and epidemic dynamics that takes place on it. The most central simplification we will 
make is that the dynamics takes place in discrete time, so that the placement of edges forms a temporal sequence, 
where only one edge is placed at any given time. Real dynamical networks and epidemic spreading occur in 
continuous time, but our objective here is not to construct a detailed realistic model, but rather to illustrate how 
multiple time scales can be described simultaneously. More realistic features can then be added to the model at 
a later stage.

More specifically, we consider temporal networks composed of N nodes, where the placement of the edges 
occurs sequentially in time, i.e. they define a sequence s = {xt}, where xt = (u, v)t is an edge between nodes u and v  
observed at time t, with t = {1, 2, …, E}, where E is the total number of edge occurrences, and the number of 
nodes N remains constant. Although this formulation is general, we focus in particular on proximity networks, 
obtained by tracking volunteers with wearable sensors over a period of time23–26, so that an edge (u, v)t is recorded 
if the respective people came closer than a given radius at time t. Data recorded in this manner possess enough 
time resolution for our analysis, and also serve as a plausible scenario for epidemic spreading27.

In the above scenario, we assume that an infection can only occur at time t over the current “active” edge (u, v)t.  
If the epidemics follows the Susceptible-Infected-Recovered (SIR) model, and σu(t) ∈ {S, I, R} is the state of node 
u at time t, we have at each time step t:

	 1.	 If (u, v)t is the current edge, with (σu(t − 1), σv(t − 1)) = (S, I) or (I, S), the infection spreads with probabili-
ty β, so that (σu(t), σv(t)) = (I, I).

	 2.	 For every infected node u with σu(t − 1) = I, it becomes recovered σu(t) = R with probability γ.

The parameters β and γ control the infection and recovery probabilities, respectively. We also consider the 
Susceptible-Infected-Susceptible (SIS) model, which is a variation of the above, where in the second step the 
infected nodes become susceptible, σu(t) = S, instead of recovered. In both cases, we consider the total number of 
infected nodes at given time t, X(t). For any positive recovery probability γ > 0, the long-time behavior of the SIR 
model is always =→∞X tlim ( ) 0t , as the outbreak invariably dies out, whereas in the SIS model it can persist for 
arbitrarily long times in large systems. In the following, we will use the behavior of X(t) as a proxy for the compar-
ison between data and model in capturing the underlying network dynamics.

When considering epidemics on dynamical networks, there are two properties that are believed to be crucial 
for the spreading process10,11: 1. The distribution of number of contacts per link, i.e. the frequency of token x in 
sequence s, and 2. The distribution of waiting (or inter-event) times, i.e. the time between two occurrences of the 
same edge. Although a link that occurs frequently is likely to have shorter inter-event times, the latter tends to 
vary in ranges that cannot be explained fully by the former, and represents temporal correlations that go beyond 
the mere frequency of occurrence of edges10,11. We will have these two aspects in mind when elaborating our 
models.

Models for temporal networks.  Our objective is to construct a generative model for temporal networks 
that includes both short-term memories and abrupt change points. We begin by formulating a stationary version, 
without change points, and show how it is insufficient to capture many features in the data. We then extend the 
model to include change points, and perform a comparison.

Stationary Markov chains.  We consider sequences of discrete tokens, i.e. edges, s = {xt} with t ∈ {1, …, E} being 
by definition both the time and the number of edges that have been placed, and xt ∈ {1, …, D} the set of unique 
edges with cardinality D, which are generated from a stationary Markov chain of order n, i.e. they occur with 
probability
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n tokens xt−1 = {xt−1, …, xt−n} in the sequence, and ax,x is the number of observed transitions from memory x to 
token x. This serves a simple model for temporal networks, where each possible token corresponds to an edge in 
the network, i.e. xt ≡ (i, j)t, as we considered previously. Despite its simplicity, this model is able to reproduce 
arbitrary edge frequencies, determined by the steady-state distribution of the tokens x, as well as causal temporal 
correlations between edges. This means that the model should be able to reproduce properties of the data that can 
be attributed to the distribution of number of contacts per link, which are believed to be important for epidemic 
spreading10,11. However, due to its Markovian nature, the dynamics will eventually forget past states, and converge 
to the limiting distribution (assuming the chain is ergodic and aperiodic). This latter property means that the 
model should be able to capture nontrivial statistics of waiting times only at a short time scale, comparable to the 
Markov order.
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Given the above model, the simplest way to proceed would be to infer transition probabilities from data using 
maximum likelihood, i.e. maximizing Eq. 1 under the normalization constraint ∑ =p 1xx x , . This yields

p
a
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where = ∑k ax xx x ,  is the number of transitions originating from x. However, if we want to determine the most 
appropriate Markov order n that fits the data, the maximum likelihood approach cannot be used, as it will overfit, 
i.e. the likelihood of Eq. 1 will increase monotonically with n, favoring the most complicated model possible, and 
thus confounding statistical fluctuations with actual structure. Instead, the most appropriate way to proceed is to 
consider the Bayesian posterior distribution
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which involves the integrated marginal likelihood28
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where the prior probability P(p|n) encodes the amount of knowledge we have on the transitions p before we 
observe the data. If we possess no information, we can be agnostic by choosing a uniform prior
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which assumes that all transition probabilities are equally likely. Inserting Eqs. 1 and 5 in Eq. 4, and calculating 
the integral we obtain
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The remaining prior, P(n), that represents our a priori preference to the Markov order, can also be chosen in 
an agnostic fashion in a range [0, N], i.e.

P n
N

( ) 1
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Since this prior is a constant, the upper bound N has no effect on the posterior of Eq. 3, provided it is suffi-
ciently large to include most of the distribution.

Differently from the maximum-likelihood approach described previously, the posterior distribution of Eq. 3 
will select the size of the model to match the statistical significance available, and will favor a more complicated 
model only if the data cannot be suitably explained by a simpler one, i.e. it corresponds to an implementation of 
Occam’s razor that prevents overfitting.

When applying this approach to empirical data, we observe that it favors n = 0 for all datasets we considered 
(not shown), indicating that a higher-order model is not statistically justified, as can be seen in Fig. 1. However, if 
we generate temporal networks from the fitted models, i.e. sequence of edges using the transition probabilities 

Figure 1.  Posterior distribution of the Markov order P(n|x) (Eq. 3) for a temporal network between students in 
a high school36.
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p xx ,
ˆ  = ax,x/kx, they exhibit epidemic dynamics that are very different from what we observe on the empirical 
time-series, as can be seen in Fig. 2: for the original data, the epidemic spreading is marked by abrupt changes in 
the infection rate, which are not reproduced by the model for any value of Markov order n — even those that 
overfit. Therefore, these patterns in the epidemic dynamics seem to stem from changes in the underlying structure 
of the temporal network that are not captured by the above Markov model. Among other things, this means that 
the behavior cannot be explained by a heterogeneous distribution of edge frequencies, as this is well described by 
the model. As we show in the next section, the situation changes considerably once we generalize the model to 
incorporate heterogeneous Markov chains with change points.

Markov chains with change points.  We attempt to model the abrupt changes observed in the previous section by 
non-stationary transition probabilities px,x that change abruptly at a given “change point,” but otherwise remain 
constant between change points. The occurrence of change points is governed by the probability q that one is 
inserted at any given time. The existence of M change points divide the time series into M + 1 temporal segments 
indexed by l ∈ {0, …, M}. The variable lt indicates to which temporal segment a given time t belongs among the M 
segments. Thus, the conditional probability of observing a token x at time t in segment lt is given by
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where p xx
l
,
t  is the transition probability inside segment lt and q is the probability to transit from segment l to l + 1. 

The probability of a whole sequence s = {xt} and l = {lt} being generated is then
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where a xx
l

,  is the number of transitions from memory x to token x in the segment l. Note that we recover the sta-
tionary model of Eq. 1 by setting q = 0. The maximum-likelihood estimates of the parameters are
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Figure 2.  Number of infected nodes over time X(t) for a temporal network between students in a high-
school36 (N = 126), considering both the original data and artificial time-series generated from the fitted 
Markov model of a given order n, using (a) SIR (β = 0.41, γ = 0.005) and (b) SIS (β = 0.61, γ = 0.03) epidemic 
models. In all cases, the values were averaged over 100 independent realizations of the network model (for the 
artificial datasets) and dynamics. The shaded areas indicate the standard deviation of the mean. The values of 
the infection and recovery rates were chosen so that the spreading dynamics spans the entire time range of the 
dataset.
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where k ax x
l

x x
l

,= ∑  is the number of transitions originating from x in a segment l. But once more, we want to 
infer the model the segments l in a Bayesian way, via the posterior distribution
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where the numerator is the integrated likelihood
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being the prior for the alphabet dl of size Dl inside segment l, sampled uniformly from all possible subsets of the 
overall alphabet of size D. Performing the above integral, we obtain
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Like with the previous stationary model, both the order and the positions of the change points can be inferred 
from the joint posterior distribution
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in a manner that intrinsically prevents overfitting. This constitutes a robust and elegant way of extracting this 
information from data, that contrasts with non-Bayesian methods of detecting change points using Markov 
chains that tend to be more cumbersome29, and is more versatile than approaches that have a fixed Markov 
order30.

The exact computation of the posterior of Eq. 11 would require the marginalization of the above distribution 
for all possible segments l, yielding the denominator P(x|n), which is unfeasible for all but the smallest time series. 
However, it is not necessary to compute this value if we sample l from the posterior using Monte Carlo. We do 
so by making move proposals l → l′ with probability P(l′|l), and accepting it with probability a according to the 
Metropolis-Hastings criterion31,32
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which does not require the computation of P(x|n) as it cancels out in the ratio. If the move proposals are ergodic, 
i.e. they allow every possible partition l to be visited eventually, this algorithm will asymptotically sample from the 
desired posterior. Here we use the following move proposal scheme, choosing between one the following actions 
with equal probability:

	 1.	 We select a segment randomly and split it in a random point in the middle.
	 2.	 We merge two adjacent segments.
	 3.	 We move a randomly chosen boundary to a random position between the two enclosing ones.

We perform this algorithm many times, starting from a single segment, and waiting sufficiently long for equi-
libration — determined by observing if the likelihood value no longer changes significantly — and we choose the 
partition with the largest probability across runs. For all datasets we investigated, we observed a fast convergence 
of this algorithm, which typically shows very little variation between runs.

Note that it is also possible to change the Markov order during the algorithm, by proposing moves n → n′, and 
using the Metropolis-Hastings criterion to accept or reject them. However, we found that Markov order typically 
settles very early in the algorithm, and no longer changes during the remaining run, as it incurs a macroscopic 
change in the likelihood. Since changing the Markov order is an expensive operation of order O(E), we have found 
it is best to leave it fixed during the MCMC, and select it later according to the likelihood value.

Once a fit is obtained, we can compare the above model with the stationary one by computing the posterior 
odds ratio
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Figure 4.  (Above) Number of infected nodes over time X(t) for a temporal network between students in a 
high-school36 (N = 126), considering both the original data and artificial time-series generated from the fitted 
nonstationary Markov model of a given order n, using (a) SIR (β = 0.41, γ = 0.005) and (b) SIS (β = 0.61, 
γ = 0.03) epidemic models. The vertical lines mark the position of the inferred change points. In all cases, the 
values were averaged over 100 independent realizations of the network model (for the artificial datasets) and 
dynamics. The shaded areas indicate the standard deviation of the mean. (Below) Network structure inside 
the first ten segments, as captured by a layered hierarchical degree-corrected stochastic block model16 using 
the frequency of interactions as edge covariates33 (indicated by colors), where each segment is considered as a 
different layer. The values of the infection and recovery rates were chosen so that the spreading dynamics spans 
the entire time range of the dataset.

Figure 3.  Integrated joint likelihood P(x, l|n) (Eq. 16) for a temporal network between students in a high 
school36, for the stationary (i.e. zero change points) and nonstationary models. For all values of n the likelihoods 
are higher for the nonstationary model (yielding a posterior odds ratio Λ > 1).
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where l0 is the partition into a single interval (which is equivalent to the stationary model). A value Λ > 1 [i.e. P(x, 
l|n) > P(x, l0|n0)] indicates a larger evidence for the nonstationary model. As can be seen in Fig. 3, we observe 
indeed a larger evidence for the nonstationary model for all Markov orders. In addition to this, using this general 
model we identify n = 1 as the most plausible Markov order, in contrast to the n = 0 obtained with the stationary 
model. Therefore, identifying change points allows us not only to uncover patterns at longer time scales, but the 
separation into temporal segments enables the identification of statistically significant patterns at short time 
scales as well, which would otherwise remain obscured with the stationary model — even though it is designed 
to capture only these kinds of correlations.

The improved quality of this model is also evident when we investigate the epidemic dynamics, as shown in 
Fig. 4. In order to obtain an estimate of the number of infected based on the model, we generated different 
sequences of edges using the fitted segments and transition probabilities p a k/x x xx

l
x
l l

, ,ˆ =  in each of the segments 
estimated with Markov orders going from 0 to 3. We simulated SIR and SIS processes on top of the networks 
generated and averaged the number of infected over many instances. Looking at Fig. 4, we see that the inferred 
positions of the change-points tend to coincide with the abrupt changes in infection rates, which show very good 
agreement between the empirical and generated time-series. For higher Markov order, the agreement improves, 
although the improvement seen for n > 1 is probably due to overfitting, given the results of Fig. 3. We note also 
that the fact that n = 0 provides the worse fit and agreement with epidemic dynamics shows that it is not only the 
existence of change points, but also the inferred Markov dynamics that contribute to the quality of the model in 
reproducing the epidemic spreading.

In order to examine the link between the structure of the network and the change points, we fitted a layered 
hierarchical degree-corrected stochastic block model16,33 to the data, considering each segment as a separate edge 
layer. From the figure Fig. 4) we can see that the density of connections between node groups vary in a substantial 
manner, suggesting that change point marks an abrupt transition in the typical kind of encounters between students 
— representing breaks between classes, meal time, etc (see Fig. 4). This yields an insight as to why these changes in 
pattern may slow down or speed up an epidemic spreading: if students are confined to their classrooms, contagion 
across classrooms is inhibited, but as soon they are free to move around the school grounds, so can the epidemic.

Figure 5.  Distribution of waiting times Δt between the same edge for the empirical dataset and fitted (a) 
stationary and (b) nonstationary models (a single instance of each), for a temporal network between students in a 
high school36. The vertical line shows the average length of inferred stationary segments between change points.
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We explore further the match between data and model by measuring the distribution of waiting times between 
temporal edges, i.e. the time interval between the occurrence in the time series of the same edge in the network, 
shown in Fig. 5 for both Markov models. For the empirical dataset, the waiting time distribution shows a char-
acteristic peak at short times, and a broad decay for longer ones. For the stationary model, the distributions 
obtained with the fitted models show significant discrepancy — for both long and short times — except when the 
Markov order is increased to n = 3, which, according to our Bayesian analysis cannot be used as an explanation 
for the data, as it represents an overfit. However, for the nonstationary model with change points, we observe a fair 
agreement between data and model for the most-likely model with n = 1, across all time scales. The nonstationary 
model also provides an explanation to the shape of the distribution at longer times, which shows a separation 
of time scales inside individual stationary segments, from larger ones across change points (marked as vertical 
line in Fig. 5). In addition to this, the fact that the n = 0 model does not reproduce the short time behavior of the 
distribution shows that the Markov property inside each stationary segment is indeed a necessary ingredient of 
the model. The model that best fits the data is able to reproduce with a quite good degree of approximation the 
distribution of waiting times, across all time scales. This point is in agreement with previous results highlighting 
the importance of the heterogeneity of inter-event times for dynamical processes34, but here we see how two dif-
ferent time scales are sufficient to reproduce a large fraction of the observed behavior.

In Sec. 3 we show that the same behavior is obtained for a variety of different datasets.

Other datasets
Here we show that very similar results to those described above are also encountered for other proximity datasets. In 
Fig. 6(I) we show the analysis for the temporal behavior of students in a primary school24, which shows a very clear 
correlation of the change in infection rate and the inferred change points. If we inspect the network structure inside 
each temporal segment, we see that amounts to periods of time where the students are either confined into classes, or 
mingling in larger groups. A similar behavior is seen if Fig. 6(II) for people (staff and patients) in a hospital ward25.

Figure 6.  (Above) Number of infected nodes over time X(t) for temporal networks between (I) students in a 
primary school24 (N = 242) and (II) patients and staff of a hospital25 (N = 75), considering both the original data 
and artificial time-series generated from the fitted nonstationary Markov model of a given order n, using (a) SIR 
[(I) β = 0.9, γ = 0.001; (II) β = 0.001, γ = 0] and (b) SIS [(I) β = 0.84, γ = 0.01; (II) β = 0.81, γ = 0.015] epidemic 
models. The vertical lines mark the position of the inferred change points. In all cases, the values were averaged 
over 100 independent realizations of the network model (for the artificial datasets) and dynamics. The shaded 
areas indicate the standard deviation of the mean. (Below) Network structure inside the first eight segments, as 
captured by a layered hierarchical degree-corrected stochastic block model16 using the frequency of interactions 
as edge covariates33 (indicated by colors), where each segment is considered as a different layer. The values of the 
infection and recovery rates were chosen so that the spreading dynamics spans the entire time range of the dataset.
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Discussion
In this work we presented a data-driven approach to model temporal networks that is based on the simulta-
neous description of the network dynamics in two time scales: 1. The occurrence of the edges according to 
an arbitrary-order Markov chain, 2. The abrupt transition of the Markov transition probabilities at specific 
change-points. We developed a Bayesian framework that allows the inference of the change points and Markov 
order from data in manner that prevents overfitting, and enables the selection of competing models.

We have applied our approach to a variety of empirical proximity networks, and we have evaluated the inferred 
models based on their capacity to reproduce the epidemic spreading observed with the original data. We have 
seen that the nonstationary model accurately reproduces the highly-variable nature of the infection rate, with 
changes correlating strongly with the inferred change points. Furthermore, we showed that the inferred model 
also accurately reproduces the waiting time statistics in the empirical data, both at small and large time scales, 
neither of which are accurately captured if the different time scales are analyzed in isolation.

We argue that, ultimately, the incorporation of such temporal heterogeneity is indispensable for the evaluation 
of the speeding up or slowing down of processes taking place on dynamic networks12,35, and the development of 
mitigating strategies against epidemics27.

Although our model successfully captures key properties of real dynamic networks, it can still be made more 
realistic in a variety of ways. For instance, it can be extended to continuous time via the incorporation of waiting 
time distributions between events, as done in ref.13. Furthermore, it remains also to be seen how the approach pre-
sented here can be extended to scenarios where edges are allowed both to appear and disappear from the network, 
so that its dynamics can no longer be represented simply by a sequence of edges. And lastly, it would be desirable 
to provide a more direct connection between the edge probabilities and change points with large-scale network 
descriptors, such as community structure.

Data Availability
The datasets generated during analysed during the current study are available in the sociopatterns website, at 
http://www.sociopatterns.org.
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