
Better Fewer but Better:
Community Search with Outliers

Francesco Bonchi
ISI Foundation, Turin, Italy

Eurecat, Barcelona, Spain

francesco.bonchi@isi.it

Lorenzo Severini
UniCredit Services

Rome, Italy

loseverini@gmail.com

Mauro Sozio
Telecom Paris, IP Paris

Paris, France

sozio@telecom-paris.fr

Abstract—Given a set of vertices in a network, that we believe
are of interest for the application under analysis, community
search is the problem of producing a subgraph potentially ex-
plaining the relationships existing among the vertices of interest.
In practice this means that the solution should add some vertices
to the query ones, so to create a connected subgraph that
exhibits some “cohesiveness” property. This problem has received
increasing attention in recent years: while several cohesiveness
functions have been studied, the bulk of the literature looks for
a solution subgraphs containing all the query vertices. However,
in many exploratory analyses we might only have a reasonable
belief about the vertices of interest: if only one of them is not
really related to the others, forcing the solution to include all
of them might hide the existence of much more cohesive and
meaningful subgraphs, that we could have found by allowing
the solution to detect and drop the outlier vertex. In this paper
we study the problem of community search with outliers, where
we are allowed to drop up to k query vertices, with k being an
input parameter. We consider three of the most used measures of
cohesiveness: the minimum degree, the diameter of the subgraph
and the maximum distance with a query vertex. By optimizing
one and using one of the others as a constraint we obtain three
optimization problems: we study their hardness and we propose
different exact and approximation algorithms.

I. INTRODUCTION

Community search is a fundamental graph mining problem

which has recently received a great deal of attention: given a

graph and a set of query vertices, we wish to find a subset

of vertices containing the query ones such that the induced

subgraph is connected and optimizes some cohesiveness mea-

sure. The extracted subgraph may provide useful insights on

the relationships existing among the query vertices and other

vertices in the graph. For instance, given a set of suspected

terrorists in a social networks, which other individuals in the

social network should we monitor? Given a set of proteins of

interest in a protein-protein interaction network, which other

proteins can participate in pathways with them? This is an

exploratory data analysis task: in most applications we might

be given some query vertices that we believe might have some

interesting connection or participate in some relevant pattern

or substructure. However, it might be the case that not all of
them are relevant for the discovery task at hand. By forcing the

solution to connect them all, we might produce much larger

and less cohesive solutions, hiding the really interesting ones

that we could instead find by just allowing some query vertices

not to belong to the solution. While several cohesiveness

functions have been studied, the bulk of the literature (briefly

surveyed next) enforce that all query vertices be present in

the output solution. Before presenting our contributions, we

provide some background definition and present the relevant

related literature.

Background and related work. Given a graph G = (V,E)
and a set of query vertices Q ⊆ V , a wide family of problems

requires to find a connected subgraph H of G, that contains

all query vertices Q, while exhibiting some nice properties

of cohesiveness, compactness or density. Several problems

fit under this framework, such as community search [2], [4],

[16], seed set expansion [13], and connectivity subgraphs
[1], [5], [15], [17]. Kloumann and Kleinberg [13] provide a

systematic evaluation of different methods for seed set expan-
sion on graphs with known community structure, assuming

that the seed set Q is made of vertices belonging to the

same community. Faloutsos et al. [5] address the problem of

finding a subgraph that connects two query vertices (|Q| = 2)

and contains at most b other vertices, optimizing a measure

of proximity based on electrical-current flows. Tong and

Faloutsos [17] extend [5] by introducing the concept of Center-
piece Subgraph dealing with query sets of any size. Sozio

and Gionis [16] developed a framework for solving a wide

range of community search optimization problems. The most

basic problem studied in [16] consists of finding a connected

subgraph containing Q and maximizing the minimum degree.

They developed an efficient algorithm for solving such a

problem optimally, however, it is well-known that such a

variant of the problem suffers from the free rider effect. To

alleviate such a problem other constraints on the output graph

can be enforced (so-called monotone functions). In our work,

we focus on the variant where a distance constraint between

the nodes in the graph and the query nodes is enforced,

additionally. We adapt such a variant to the case with outliers

while maintaining the nice property that it can be solved

optimally. More recently, Cui et al. [4] devise a local-search

approach to improve the efficiency of the method defined

in [16], but only for the special case of a single query vertex.

The case of multiple query vertices has instead been addressed

by Barbieri et al. [2], who exploit core decomposition as a

preprocessing step to improve efficiency. Ruchansky et al.

[15] introduce the parameter-free problem of extracting the

978-1-6654-1924-6/20/$31.00 ©2020 IEEE
DOI 10.1109/WIIAT50758.2020.00019

2
0
2
0
 I

E
E

E
/W

IC
/A

C
M

 I
n
te

rn
at

io
n
al

 J
o
in

t
C

o
n
fe

re
n
ce

 o
n
 W

eb
 I

n
te

ll
ig

en
ce

 a
n
d
 I

n
te

ll
ig

en
t

A
g
en

t
T

ec
h
n
o
lo

g
y
 (

W
I-

IA
T

)
| 9

7
8
-1

-6
6
5
4
-1

9
2
4
-6

/2
0
/$

3
1
.0

0
 ©

2
0
2
0
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/W

II
A

T
5
0
7
5
8
.2

0
2
0
.0

0
0
1
9

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

Minimum Wiener Connector, that is the connected subgraph

containing Q which minimizes the pairwise sum of shortest-

path distances among its vertices. Recent approaches also

introduce the flexibility of having query vertices belonging

to different communities [3], [19]. Finally, community search

has been formalized for attributed graphs [6], [11], spatial

graphs [7] and temporal graphs [8], [18]. All these approaches

look for a connected subgraph of the input graph containing all
the query vertices. Three recent approaches allow some forms

of outliers in community search. Akoglu et al. [1] study the

problem of finding pathways, i.e., connection subgraphs for

a large query set Q, in terms of the Minimum Description

Length (MDL) principle. According to MDL, a pathway is

simple when only a few bits are needed to relay which edges

should be followed to visit all of Q. Given a graph G and a

query set Q, Gionis et al. [9] study the problem of finding a

connected subgraph of G that has more vertices that belong to

Q than vertices that do not. Ruchansky et al. [14] introduce the

problem of finding the minimum inefficiency subgraph: they

show that the problem is NP-hard and develop an efficient

greedy algorithm. The minimum inefficiency subgraph is not

required to be connected: as such one could consider the query

vertices that ends up disconnected as outliers. None of these

three approaches enforces an upper bound on the number of

outliers that be dropped, while no theoretical guarantee is pro-

vided. Instead our work studies the general problem with the

input parameter on the maximum number of allowed outliers,

and presents algorithms with strong theoretical guarantees.

Problems studied and results. In this paper, we study the

community search with outliers problem where we are allowed

to drop up to k query vertices from the input graph, with

k being provided in input. We focus on the most widely-

used cohesiveness functions considered in the literature, such

as the diameter of the output graph [12], and its minimum
degree [16], while studying their generalization to the case

with outliers. By optimizing one measure and using the other

as a constraint we obtain two optimization problems. Our work

is the first one to propose algorithms with strong theoretical

guarantees for the problem of community search with outliers.

More in details:

• For the problem of minimizing the diameter under a

minimum degree constraint when at most k query vertex

can be dropped, we develop a 2-approximation algorithm.

When k is a constant and there is no constraint on the

minimum degree our algorithm boasts almost linear time

in the size of the input graph (modulo a logarithmic

factor). We then show that there is no algorithm with

an approximation guarantee better than 2, unless P=NP,

making our result tight.

• For the problem of maximizing the minimum degree

under a diameter constraint when at most k query vertex

can be dropped, we show that it NP-hard and we develop

a bicriteria algorithm with approximation guarantees.

• Finally, we also study a variant where, instead of a

constraint on the diameter (i.e., maximum distance among

any pair of vertices in the solution, regardless they are

query vertices or not), we have a constraint on the

maximum distance between a query vertex and any other

vertex in the solution subgraph H . We will show that a

solution for such a problem can be found efficiently in

polynomial time.

Our theoretical results are complemented with an extensive

experimental evaluation on real-world graphs, confirming the

fact that by allowing outliers to be removed, much more

cohesive solutions can be found. We also assess the running

time of our algorithms on large real-world graphs while we

show their effectiveness in identifying outlier query vertices.

II. PROBLEM DEFINITIONS AND COMPLEXITY

We are given an undirected graph G = (VG, EG), a set

of query vertices Q ⊆ VG, and a positive integer k < |Q|.
The shortest-path distance dG(u, v) between two vertices

u, v in G is defined as the length of the shortest path

connecting u, v in G. In the case when u, v are not in a

same connected component we let d(u, v) := +∞. The

diameter of a graph G, denoted with diam(G), is defined

as the maximum shortest-path distance between any two

vertices in G. In this section, we shall define the main

problems studied in the rest of the paper. We call our prob-

lems CSO-MAXMINDEG-DIAM, CSO-MAXMINDEG-DIST,

CSO-MINDIAM-MINDEG, where CSO indicates the general

problem (community search with outliers), the first part after

’-’ indicates the objective function (e.g. MINDIAM), while the

last part indicates the main constraint (e.g. MINDEG). We first

consider the variant where we wish to minimize the diameter

while satisfying a constraint on the minimum degree. The

problem of minimizing the diameter has been studied in [12]

(without outliers). In our work, we use a similar proof strategy,

while following the framework developed in [16].

Problem 1 (CSO-MINDIAM-MINDEG): Given a graph

G = (VG, EG), a set of query nodes Q ⊆ VG, an integer

k ≥ 0 such that k ≤ |Q| − 1, an integer δmin ≥ 0, find an

induced subgraph H = (VH , EH) of G such that:

1) H is connected;

2) |VH ∩Q| ≥ |Q| − k;

3) the minimum degree in H is at least δmin;

4) diam(H) is minimized among all subgraphs satisfying

1-3;

Theorem 1: CSO-MINDIAM-MINDEG (Problem 1) is NP-

hard even when δmin = 1.

Proof: We reduce the decision version of Maximum

Clique problem (MDC) to CSO-MINDIAM-MINDEG. Notice

that a graph is a clique if and only if its diameter is one. Given

a graph G = (VG, EG) and an integer h, we wish to determine

whether G contains a clique of size at least h. We construct

an instance of MDC problem with Q = VG and h = |Q| − k.

Let H = (VH , EH) be the solution of MDC in this instance.

By definition of MDC, VH ⊆ VG and |VH | ≥ |Q| − k. If

diam(H) = 1, since H is and induced subgraph of G, G
contains a clique of size h = |Q| − k. On the other hand,

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

consider the case when diam(H) > 1. Since, by definition,

H is the subgraph with size |Q| − k with minimum diameter,

this means that G does not contain any clique of size at least

h = |Q| − k.

From the fact that the diameter is an integer, it follows that

any approximation algorithm with an approximation guarantee

strictly better than 2 would compute an optimum solution to

the MDC. The following corollary follows.

Corollary 1: CSO-MINDIAM-MINDEG cannot be approx-

imated in polynomial time within a factor of (2 − ε) for any

ε > 0, unless P=NP.

We next consider the community search problem where the

objective is to find a subgraph with maximum minimum degree

while satisfying a constraint on its diameter and being allowed

to remove up to k query vertices. We provide the following

formal definition.

Problem 2 (CSO-MAXMINDEG-DIAM): Given a graph

G = (VG, EG), a set of query vertices Q ⊆ VG, an integer

k ≥ 0 such that k ≤ |Q| − 1, an integer diammax ≥ 1, find

an induced subgraph H = (VH , EH) of G such that:

1) H is connected;

2) |VH ∩Q| ≥ |Q| − k;

3) diam(H) ≤ diammax

4) the minimum degree is maximized among all subgraphs

satisfying 1-3;

Theorem 2: CSO-MAXMINDEG-DIAM (Problem 2) is

NP-hard even when diammax = 1.

We omit the proof due to the space limit: we will present it

in the extended version. For Problem 2 we provide a bicriteria

algorithm (Algorithm 3, Theorem 6) in Section III. Finally,

we also consider a variant where there is a constraint on

the maximum distance between a query vertex and any other

vertex in the solution subgraph H . We will show that a solution

for such a problem can be found efficiently in polynomial time.

Problem 3 (CSO-MAXMINDEG-DIST): Given a graph

G = (VG, EG), a set of query vertices Q ⊆ VG, an integer

k ≥ 0 such that k ≤ |Q| − 1, an integer dmax ≥ 1, find an

induced subgraph H = (VH , EH) of G such that:

1) H is connected;

2) |VH ∩Q| ≥ |Q| − k;

3) for any v ∈ VH , d(VH ∩Q, v) := minq∈VH∩Q d(q, v) ≤
dmax

4) the minimum degree is maximized among all subgraphs

satisfying 1-3;

For Problem 3 we provide a polynomial time exact algo-

rithm (Algorithm 2, Theorem 5) in Section III.

III. ALGORITHMS AND ANALYSIS

In this section we describe the algorithms for the three

problems described in the previous section.

Minimizing the Diameter with Degree Constraint. We

develop an algorithm for computing an approximate solu-

tion for CSO-MINDIAM-MINDEG, where the objective is to

minimize the diameter of the output graph while enforcing

a lower bound on the minimum degree of the vertices. Our

algorithm follows the framework developed in [16], however,

the variant with outliers has not been studied before, to the

best of our knowledge. The main procedure of our algorithm

(Algorithm 1) receives a vertex q ∈ Q in input and computes a

feasible subgraph (if any) containing q with “small” diameter.

In particular, we shall show that if q belongs to an optimum

solution O for CSO-MINDIAM-MINDEG then our algorithm

computes a 2-approximation for such a problem. It proceeds

as follows. Let G0 := G. At each step t ≥ 1 the graph Gt is

obtained from Gt−1 as follows. If there is a vertex violating the

constraint on the degree, then such a vertex and all its edges

are removed from Gt−1. Otherwise, a vertex at maximum

distance from q (and all its edges) is removed from Gt−1.

Ties are broken arbitrarily. The algorithm terminates as soon

as the set of edges is empty or more than k query vertices have

been removed, at which step it computes the graph H with

minimum diameter among all Gt’s that are feasible. If none

of the Gt’s is feasible, it returns “unfeasible”. A pseudocode

of our algorithm is shown in Algorithm 1.

Algorithm 1 ALGO-MINDIAM-MINDEG (q)

Input: G = (VG, EG), Q ⊆ V ,δmin ≥ 0, q ∈ Q
Output: a subgraph H ⊆ G

1: G0 ← G, t ← 0
2: while E(Vt) 	= ∅ and |Vt ∩Q| ≥ |Q| − k do
3: t ← t+ 1
4: if there is v in Gt−1 with δ(v) < δmin then
5: let v be such a node

6: If v = q break
7: else
8: let v be a vertex with maximum dGt−1(v, q)
9: Gt ← (Vt−1 \ {v}, E(Vt−1 \ {v}))

10: If there is no feasible graph among all Gt’s return unfea-
sible

11: else return a graph with min max distance from q among

all feasible Gt’s.

The following lemma proves the approximation guarantees

of our algorithm.

Lemma 3: If there is no feasible solution for CSO-

MINDIAM-MINDEG, Algorithm 1 returns unfeasible. Other-

wise, let O = (VO, EO) be an optimum solution for CSO-

MINDIAM-MINDEG. If q ∈ VO, then Algorithm 1 computes

a 2-approximation solution for CSO-MINDIAM-MINDEG.

We omit the proof due to the space limit. The following

theorem states our main result.

Theorem 4: Running Algorithm 1 for each of k + 1
query vertices chosen arbitrarily, while outputting a feasible

solution with minimum diameter computes a 2-approximation

algorithm for the CSO-MINDIAM-MINDEG, while requir-

ing O(k · max(|VG| + |EG|, |VG| log |VG|)) operations when

δmin = 1 and O(|VG|·(|VG|+|EG|)) operations in the general

case.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

Proof: The 2-approximation guarantee follows from

Lemma 3 and from the fact that at least one of the k+1 query

vertices considered by ALGO-MINDIAM-MINDEG(q) must

belong to an optimum solution (if any). To bound the number

of operations required by the algorithm, observe that we need

exactly one BFS for each of the k + 1 query vertices in the

case when there is no constraint on the minimum degree. This

follows from the fact that vertices are deleted in non-increasing

order of distance from q, which implies that the distance

between any remaining vertex and q is not affected. Therefore,

the vertices can be sorted upfront according to their distance

from q, requiring O(k · max(|VG| + |EG|, |VG| log |VG|))
operations in this special case and O(|VG| · (|VG| + |EG|))
operations in the general case.

Observe that the running time of our algorithm is almost

linear (modulo a logarithmic factor) when there is no con-

straint on the minimum degree and k is a constant. Otherwise,

O(|VG|·(|VG|+|EG|)) operations are needed in the worst case,

however, the actual number of operations required in real-

world graphs are significantly smaller since we can remove

in batch all the vertices v with δ(v) < δmin.

Maximizing Minimum Degree with Distance Constraint.
We develop an algorithm for computing an optimum solution

to CSO-MAXMINDEG-DIST. Let G0 := G. At each step

t ≥ 1 the graph Gt is obtained from Gt−1 as follows. For

any vertex v in Gt−1 := (Vt−1, Et−1), let Qv be the set

of query vertices in the same connected component of v in

Gt−1. If there is a vertex v such that |Qv| < |Q| − k or

dH(v,Qv) := minq∈Qv dH(v, q) > dmax, then remove v and

all its edges. Otherwise, remove a vertex v with minimum

degree in Gt−1, breaking ties arbitrarily. The algorithm termi-

nates when Gt becomes empty, at which step it computes the

graph H with maximum minimum degree among all feasible

connected components of all Gt’s. If there are several graphs

H with the same maximum minimum degree then it considers

the graph H with the largest number of query vertices. It then

produces in output a connected component in H . If none of

the Gt’s is feasible, it returns “unfeasible”. A pseudocode of

our algorithm is shown in Algorithm 2. The following theorem

proves the optimality of our algorithm.

Theorem 5: If there is no feasible solution for CSO-

MAXMINDEG-DIST, Algorithm 2 returns unfeasible. Oth-

erwise it computes an optimum solution for CSO-

MAXMINDEG-DIST.

Proof: If there is no feasible solution then the algorithms

outputs unfeasible, in that, the algorithm makes sure that only

feasible solutions are produced in output. If there is a feasible

solution, then there must be a smallest step t such that there is

v ∈ O with v ∈ Vt\Vt+1, as the algorithm eventually removes

all vertices in the graph. Let Qv be the set of query vertices

in the same connected component of v in Gt. It holds that

a) |Qv| ≥ |Q| − k and b) dGt(v,Qv) ≤ dmax. This follows

from the facts that O is an induced subgraph of Gt, dO(u, v) ≥
dGt(u, v) for all u, v in O, and any connected component in O
is also connected in Gt. As a result, every vertex in Gt satisfies

Algorithm 2 ALGO-MAXMINDEG-DIST

Input: G = (VG, EG), Q ⊆ V , dmax > 0
Output: a subgraph H of G

1: G0 ← G, t ← 0
2: while E(Vt) 	= ∅ do
3: t ← t+ 1
4: Let Qv be the set of query vertices in the same

connected component of v in Gt−1.

5: if there is a vertex v such that |Qv| < |Q| − k or

dGt−1(v,Qv) > dmax then
6: let v be such a node

7: else
8: let v be a vertex with minimum degree in Gt

9: Gt ← (Vt−1 \ {v}, E(Vt−1 \ {v}))
10: If there is no feasible graph among all Gt’s return unfea-

sible
11: else return a subgraph with maximum minimum degree

among all feasible connected components of all Gt’s

a) and b), for otherwise the algorithm would have removed a

vertex violating at least one such a constraint. Moreover, v has

minimum degree in Gt. Let C be the connected component in

Gt containing O. The following chain of inequalities proves

the optimality of C:

δmin(O) ≤ δO(v) ≤ δC(v) = δmin(C),

where the first inequality follows from v ∈ O, the second

inequality follows from the fact that O is contained in C,

while the equality follows from the way v is chosen.

Implementation Details. Our algorithm requires to compute

a BFS at each step, which might be cumbersome in the case

when the input graph is large. Such a problem can be alleviated

by a preprocessing step which proceeds as follows. First, we

run a BFS starting from each of the query vertices and compute

the minimum distance between every vertex in the input graph

and the query vertices. Then, all vertices violating the distance

constraints are removed all together. It is easy to see that

none of those vertices can be part of any optimum solution.

We shall refer to such a preprocessing step as pruning. After

that, Algorithm 2 is executed in the resulting graph. In most

cases of interest, the pruning phase allows to filter out a large

fraction of vertices in the input graph, allowing Algorithm 2

to be executed efficiently. Let H = (VH , EH) be the graph

obtained after the pruning phase. The running time of the

pruning phase is O(|Q|·(|VG|+|EG|)), while the running time

of our algorithm after pruning is O(|Q| · (|VH +EH |) · |VH |).
Our experiments on real-world data show that our algorithm

is much more efficient in practice than what the worst-case

analysis suggests.

Maximizing Minimum Degree with Diameter Constraint.
We develop an algorithm for CSO-MAXMINDEG-DIAM

where the objective is to maximize the minimum degree

subject to a constraint on the diameter of the graph. The

pseudocode of the main procedure is shown in Algorithm 3.

Similarly to the algorithm for CSO-MAXMINDEG-DIAM,

we run Algorithm 3 for each of k + 1 query vertices (chosen

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 ALGO-MAXMINDEG-DIAM(q)

Input: G = (VG, EG), Q ⊆ V ,diammax ≥ 1, q ∈ Q
Output: a subgraph H of G

1: G0 ← G, t ← 0
2: while E(Vt) 	= ∅ and |Vt ∩Q| ≥ |Q| − k do
3: t ← t+ 1
4: if there is v in Gt−1 with d(q, v) > diammax then
5: let v be such a node

6: else
7: let v be a vertex with minimum degree in Gt−1

8: if v = q break
9: Gt ← (Vt−1 \ {v}, E(Vt−1 \ {v}))

10: If there is no feasible graph among all Gt’s return unfea-
sible

11: else return a graph with max min degree among all

feasible Gt’s.

arbitrarily) and output the solution with max min degree. The

following theorem states the approximation guarantees of our

algorithm.

Theorem 6: If there is no feasible solution for CSO-

MAXMINDEG-DIAM, Algorithm 3 returns unfeasible. Oth-

erwise, let O = (VO, EO) be an optimum solution for CSO-

MAXMINDEG-DIAM and let H be the solution computed by

our algorithm for CSO-MAXMINDEG-DIAM. It holds that 1)

δmin(H) ≥ δmin(O), and 2) diam(H) ≤ 2 · diam(O).

The proof is similar to the proof of Theorem 4 and it

is omitted for space constraints. Our algorithm can be seen

as a bicriteria algorithm (see for example [10]). That is,

an algorithm for a problem with multiple objective func-

tions, which in our case are the minimum degree and the

diameter of the output graph. The worst case complexity is

O(k · |VG| · (|VG|+ |EG|)) since, for each deleted vertex we

should recompute all the distances from q, for each query

vertex q. However, if max{d(q, v)} > diammax, we can

speed up the computation removing in batch all the vertices v
such that d(q, v) > diammax.

IV. EXPERIMENTS

In this section we assess the efficiency and the effectiveness

of the three community search with outliers methods. In

particular we focus our analysis on the following main aspects:

1) the capability of CSO-MAXMINDEG-DIAM, CSO-

MAXMINDEG-DIST and CSO-MINDIAM-MINDEG to

detect query vertices that are outliers;

2) comparison with the Minimum Inefficiency Subgraph

proposed in [14] in the outlier classification task;

3) characteristics of the solution subgraphs produced, vary-

ing the parameter k, i.e., the number of query vertices

that we are allowed to drop, and varying the constraints;

4) characteristics of the solution subgraphs produced vary-

ing the query set Q w.r.t. its size, and the distance among

its vertices;

5) runtime.

For our purposes we use four real-world networks described

in Table I.

TABLE I
CHARACTERISTICS OF DATASETS USED.

|V | |E| density avg deg diam.
amazon 334,863 925,872 1.6e-5 5.5 44
dblp 317,080 1,049,866 2.1e-5 6.62 23

youtube 1,138,499 2,990,443 4.6e-6 5.27 21
ljournal 3,997,962 34,681,189 4.3e-6 17.3 16

TABLE II
OUTLIERS IDENTIFICATION CAPABILITIES OF THE THREE ALGORITHMS

ON THREE DATASETS, WITH n = 10 AND m = k ∈ [1, 4]. THE TABLE

REPORTS THE AVERAGE NUMBER OF OUTLIERS DETECTED (AND THE

PERCENTAGE W.R.T. THE TOTAL NUMBER OF OUTLIERS PRESENT). A
DASH REPORTS AN EXPERIMENT WHICH DOES NOT HAVE A FEASIBLE

SOLUTION IN AT LEAST 50% OF THE RUNS.

Problem
Dataset [Constraint] k = 1 k = 2 k = 3 k = 4
dblp 1 (100%) 1.9 (95%) 2.8 (93.3%) 3.8 (99%)

amazon CSO-MAXMINDEG-DIAM 0.9 (90%) 1.9 (95%) 2.9 (96.7%) 3.7 (97.9%)
youtube [diammax = 4] 0.6 (69%) 1.3 (65%) 1.6 (53.3%) 3.73 (93%)
dblp 0.5 (50%) 1.3 (65%) 1.8 (60%) 2.7 (67.5%)

amazon CSO-MAXMINDEG-DIST 0.9(90%) 1.9 (95%) 2.9 (96.7%) 3.9 (97.5%)
youtube [dmax = 2] 0.4 (40%) 0.6 (30%) 0.9 (30%) 1.4 (35%)
dblp 0.3 (30%) 0.8 (40%) 1.2 (40%) 1.8(45%)

amazon CSO-MINDIAM-MINDEG - 0.7(35%) 0.9 (30%) 1.4 (35%)
youtube [δmin = 3] 0.5(90%) 1.0 (50%) 1.5 (50%) 2.0 (50%)

Fig. 1. Average F1-Score and average Precision of the solutions on dblp
(top) and amazon (bottom) for CSO-MINDIAM-MINDEG (diammax =
3), CSO-MAXMINDEG-DIST (dmax = 2), CSO-MAXMINDEG-
DIAM (δmin = 3) and MIS.

All datasets are publicly-available, undirected and un-

weighted: youtube1 and ljournal 1 are social networks,

dblp 1 is a collaboration network and amazon 1 is a co-

purchasing network. All our datasets, come with auxiliary

ground-truth communities information. This information is

needed to create query workloads with known number of out-

liers (i.e., query vertices coming from a different community

w.r.t. the majority of the other query vertices), as it will be

described in details later. The largest dataset, ljournal, is

used only to report runtime. All algorithms are implemented

in C++, building on the open-source NetworKit framework2.

The experiments are conducted on a server equipped with 32

GB RAM and with a processor Intel 1.2 GHz CPU.

1http://snap.stanford.edu
2http://networkit.iti.kit.edu/

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

Capability to detect outliers. We first study the capability of

CSO-MAXMINDEG-DIAM, CSO-MAXMINDEG-DIST and

CSO-MINDIAM-MINDEG to detect outliers. We randomly

select ten vertices (i.e n = 10) inside the same community

(randomly chosen). Then, select m vertices at random from

different communities w.r.t. the one from which the first

n query vertices have been selected. As these communities

are ground-truth communities, we can consider the vertices

coming from different communities as unrelated, and if there

is a dominating group of vertices (the n vertices chosen from a

unique community) then the others can be considered ground-

truth outliers that we can control. In this experiment vary

m in the range [1, 4] and we set m = k: in this way, the

number of effective outliers (i.e. m) is equal to the number

of the query vertices that we are allowed to drop (i.e. k). We

generate 20 query sets following the process just described and

we report the average value. Since some query sets may not

have any solution for some problem and for some constraint,

we report the value only the first 10 sets return a solution.

Table II reports the average number of outliers detected (and

the percentage w.r.t. the total number of outliers present) for

the three algorithms under three datasets. We can observe how

in general, all the algorithms perform quite well in detecting

the outliers injected in the query sets, with values ranging in

between 30% and 100%.

Outliers classification task evaluation. We next compare

against the Minimum Inefficiency Subgraph (MIS) studied

in [14]. It is important to note that the problem in [14] is totally

parameterless, so that it decides automatically the number of

outliers. In particular, the formulation of [14] always requires

all the query vertices to be part of the solution, but on the

other hand, it allows the solution subgraph to be disconnected.

This way, query vertices which are not in the largest con-

nected component (LCC) are considered outliers. We select

n = 10 query vertices inside the same community (with

maximum distance among them equal to 4) and m = 5 out-

liers. We run the Minimum Inefficiency Subgraph and CSO-

MINDIAM-MINDEG (diammax = 3), CSO-MAXMINDEG-

DIST (dmax = 2), CSO-MAXMINDEG-DIAM (δmin = 3) on

dblp and amazon varying the parameter k ∈ [4, 7] . We

repeat the experiment 10 times. From every MIS solution, we

extract the largest connected component (LCC) to identify the

query vertices which are not in the LCC and mark them as

outliers. We compute the average F1-score and the average

precision varying the parameter k and we report the results

in Figure 1. Since MIS does not require any parameter in

input, its score is constant for every k. We notice that, for

k ≥ 5, CSO-MINDIAM-MINDEG and CSO-MAXMINDEG-

DIST achieve a better F1-score and a better precision on both

dblp and amazon. On the other hand, CSO-MAXMINDEG-

DIAM has worst performance since it returns larger solutions

than the other methods due to the fact that amazon and

dblp networks have a low average degree. For k = 4 CSO-

MINDIAM-MINDEG and CSO-MAXMINDEG-DIST does not

return any solution for at least one query set of vertices:

Fig. 2. Characteristics of the solution on youtube (left) and amazon (right)
for CSO-MINDIAM-MINDEG with k ∈ {4, 6, 8} and the minimum degree
threshold δmin in the range [3, 6].

however in this case it is easy to see that the average F1-

score is greater or equal to 0.5 since every vertex is classified

as outlier.

Characterization varying constraints and k. We next study

how the solutions change varying the number of allowed

outlier vertices k. In this set of experiments we no longer

set k to the known number of outliers in the query set. The

query workload generation is as follows. We randomly pick

a community and we select randomly n = 10 vertices from

the community, with distance at most 4 from each other. Then

we select m = 4 outliers randomly in the whole network. As

before, we generate 20 query sets and we report the average

value of the first 10 query sets. In particular we report three

measures:

1) the number QH of query vertices contained in the

solution subgraph H;

2) the relative size of H (i.e the ratio between the number

of vertices in H (|H| = |VH |) divided the number of

vertices in G (|G| = |VG|);
3) the minimum degree within H .

The results are reported in Figure 2 for CSO-MINDIAM-

MINDEG, Figure 3 for CSO-MAXMINDEG-DIAM, and Fig-

ure 4 for CSO-MAXMINDEG-DIST, over two datasets:

youtube and dblp. For CSO-MINDIAM-MINDEG we

vary the minimum degree threshold δmin in the range [3, 6];

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Characteristics of the solution on youtube (left) and amazon
(right) for CSO-MAXMINDEG-DIAM with k ∈ {4, 6, 8} and the maximum
diameter threshold diammax in the range [2, 4].

for CSO-MAXMINDEG-DIAM we vary the maximum di-

ameter threshold diammax in the range [2, 4]; for CSO-

MAXMINDEG-DIST we vary the threshold on the maximum

distance to the query vertices in [1, 4]. The first high-level

observation is that, for all the three problems studied and

under all settings, increasing the number of allowed outliers
produces “better” (i.e., more cohesive) solutions: smaller in

size, denser, with higher minimum degree. This was the start-

ing motivation at the basis of this work. Similar observations

can be done w.r.t. the selectivity of constraints. For instance,

for CSO-MINDIAM-MINDEG (Figure 2), the higher is the

minimum degree threshold δmin the more cohesive the solu-

tions found: i.e., denser and smaller. For CSO-MAXMINDEG-

DIAM (Figure 3), the smaller is the maximum diameter

threshold diammax, the more cohesive the solutions found.

Finally for CSO-MAXMINDEG-DIST (Figure 4) imposing a

smaller maximum distance to the query vertices, produces

more cohesive solutions.

Characterization with different query sets. We next study

how the solutions change varying the characteristics of the

query set Q: in particular the number of query vertices and the

distance among query vertices. In Figure 5 we select n = 10
vertices in the same community and m = 5 outliers and we

varying the distance among the query vertices. We set the input

parameter k = 5. We notice that the increase the distance has

Fig. 4. Characteristics of the solution on youtube (left) and amazon (right)
for CSO-MAXMINDEG-DIST with k ∈ {4, 6, 8} and the threshold on the
maximum distance to the query vertices in [1, 4].

Fig. 5. Characteristics of the solution on amazon (left) and dblp (right)
graphs with k = 5 varying the maximum distance among the query vertices
inside the same community for CSO-MINDIAM-MINDEG with δmin = 4,
CSO-MAXMINDEG-DIAM with diammax = 4, and CSO-MAXMINDEG-
DIST with dmax = 4.

Fig. 6. Characteristics of the solution on amazon (left) and dblp (right)
graphs with k = 5 varying the number of query vertices inside the same com-
munity for CSO-MINDIAM-MINDEG with δmin = 4, CSO-MAXMINDEG-
DIAM with diammax = 4, and CSO-MAXMINDEG-DIST with dmax = 4.

a low effect on the value of QH . In Figure 6 we set m = 5
and we vary the parameter n selecting different sets of query

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

CSO-MINDIAM-MINDEG CSO-MAXMINDEG-DIAM

Fig. 7. Runtime on amazon graph with n = 5 and m = k ∈ [0, 4] for
different values of the constraints.

CSO-MAXMINDEG-DIST

Fig. 8. Runtime on amazon (left) and dblp (right) graph with n = 5 and
m = k ∈ [0, 4] for different values of the constraints.

vertices (without any distance constraint): in particular we use

n ∈ {10, 15, 20, 25}. On the x-axis we report the size of the

query set |Q| = n + m. In this case the number of query

vertices in the solution grows linearly with respect to the total

number of query in input.

Runtime and parallelization Finally, we report runtime per-

formance of the three algorithms in Figure 7 and in Figure 8.

We can observe that the runtime generally grows with the

value of k. Moreover, for all the three problems as the

constraints are more selective (and thus the solutions more

compact), the runtime decreases. We also tested runtime on the

largest dataset, i.e., ljournal, containing approximatively

4M vertices and 34M edges. For all problems we produce

the same workload of 20 query sets using n = 5 vertices

belonging to the same community, m = 4 vertices belonging

to different communities, and setting the input parameter k =
4. For CSO-MINDIAM-MINDEG (δmin = 20) the runtime

was 8333.5 seconds (slightly more than 2 hours), while for

CSO-MAXMINDEG-DIAM (diammax = 2) the runtime was

56.8 seconds, and for CSO-MAXMINDEG-DIST (dmax = 2)

was 21.63 seconds. We can improve the scalability of the

algorithms for CSO-MINDIAM-MINDEG (respectively, CSO-

MAXMINDEG-DIAM) by straightforward parallelization of

the subgraph extraction in the following way: we assign to

each processor a query vertex, run ALGO-MAXMINDEG-

DIAM (respectively ALGO-MINDIAM-MINDEG) in parallel

on each processor and compute the best solution among all

the processors.

V. CONCLUSIONS

We study several variants of the community search problem,

where we are allowed to drop up to k query vertices. We adopt

three measures of cohesiveness: the minimum degree, the

diameter, and the maximum distance with a query vertex. This

leads to the formulation of three natural optimization prob-

lems, for each of which we either develop an efficient exact

algorithm or prove its hardness and develop an approximation

algorithm. Our work is the first one to propose algorithms with

strong theoretical guarantees for the problem of community

search with outliers. Our experimental evaluation shows the

effectiveness of our approach in identifying outlier query

vertices, while showing that much more cohesive solutions

can be found when we are allowed to remove outliers.

Acknowledgments. Francesco Bonchi acknowledges support

from Intesa Sanpaolo Innovation Center. Lorenzo Severini is

with UniCredit Group. Mauro Sozio has been working in the

frame of a cooperation between Huawei Technologies France

SASU and Telecom Paris (Grant no. YBN2018125164). The

content of this paper and the views expressed here, are solely

responsibility of the authors. The funders had no role in study

design, preparation of the manuscript or decision to publish.

REFERENCES

[1] L. Akoglu, D. H. Chau, C. Faloutsos, N. Tatti, H. Tong, J. Vreeken,
and L. Tong. Mining connection pathways for marked nodes in large
graphs. In SDM, 2013.

[2] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Efficient and
effective community search. DAMI, 29(5), 2015.

[3] Y. Bian, Y. Yan, W. Cheng, W. Wang, D. Luo, and X. Zhang. On
multi-query local community detection. pages 9–18, 2018.

[4] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities
in large graphs. In SIGMOD, pages 991–1002, 2014.

[5] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs. In KDD, 2004.

[6] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu. Effective and efficient
attributed community search. 26(6):803–828, 2017.

[7] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective community
search over large spatial graphs. 10(6):709–720, 2017.

[8] E. Galimberti, M. Ciaperoni, A. Barrat, F. Bonchi, C. Cattuto, and
F. Gullo. Span-core decomposition for temporal networks: Algorithms
and applications. TKDD, 2020.

[9] A. Gionis, M. Mathioudakis, and A. Ukkonen. Bump hunting in the
dark: Local discrepancy maximization on graphs. In ICDE, 2015.

[10] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. A primal-dual
bicriteria distributed algorithm for capacitated vertex cover. SIAM J.
Comput., 38(3):825–840, 2008.

[11] X. Huang and L. V. Lakshmanan. Attribute-driven community search.
10(9):949–960, 2017.

[12] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng. Approximate
closest community search in networks. PVLDB, 9(4):276–287, 2015.

[13] I. M. Kloumann and J. M. Kleinberg. Community membership identi-
fication from small seed sets. In KDD, 2014.

[14] N. Ruchansky, F. Bonchi, D. Garcı́a-Soriano, F. Gullo, and N. Kourtel-
lis. To be connected, or not to be connected: That is the minimum
inefficiency subgraph problem. In CIKM 2017.

[15] N. Ruchansky, F. Bonchi, D. Garcı́a-Soriano, F. Gullo, and N. Kourtellis.
The minimum wiener connector problem. In SIGMOD, 2015.

[16] M. Sozio and A. Gionis. The community-search problem and how to
plan a successful cocktail party. In KDD, pages 939–948, 2010.

[17] H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition
and fast solutions. In KDD, pages 404–413, 2006.

[18] I. Tsalouchidou, F. Bonchi, and R. Baeza-Yates. Adaptive community
search in dynamic networks. In In IEEE BigData 2020.

[19] Y. Yan, Y. Bian, D. Luo, D. Lee, and X. Zhang. Constrained local graph
clustering by colored random walk. pages 2137–2146, 2019.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on September 09,2021 at 13:25:14 UTC from IEEE Xplore. Restrictions apply.

