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We study avalanches in a model for a planar crack propagating in a disordered medium. Due to long-range
interactions, avalanches are formed by a set of spatially disconnected local clusters, the sizes of which are
distributed according to a power law with an exponent �a=1.5. We derive a scaling relation �a=2�−1 between
the local cluster exponent �a and the global avalanche exponent �. For length scales longer than a crossover
length proportional to the Larkin length, the aspect ratio of the local clusters scales with the roughness
exponent of the line model. Our analysis provides an explanation for experimental results on planar crack
avalanches in Plexiglas plates, but the results are applicable also to other systems with long-range interactions.
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I. INTRODUCTION

Driven elastic manifolds in disordered media have been
used to model a number of physical systems ranging from
crack propagation in solids �1–8� to dynamics of magnetic
domain walls in ferromagnets �9� and vortices in type-II su-
perconductors �10�, and to charge density waves �11�. Such
systems exhibit nonequilibrium phase transitions as an exter-
nal driving force f is varied, so that below the depinning
threshold fc the system is pinned by the disorder, while for
f � fc the system moves at a finite average velocity. For f
close to but above fc, such motion typically occurs as a se-
quence of avalanches with a broad distribution of sizes. A
large class of such systems—including advancing crack
fronts in solids �1,4–8�, contact lines in wetting �12�, mag-
netic domain walls with dipolar interactions �9�, and plasti-
cally deforming crystals �13�—is characterized by a long-
range interaction kernel. The peculiarity of these systems is
that due to the long-range interactions governing the ava-
lanche dynamics, the area swept over by an avalanche is not
necessarily simply connected in space as it would be the case
if the interactions were only short ranged. Instead, global
avalanches are formed by a set of spatially disconnected lo-
cal clusters.

The propagation of a planar crack confined in a weak
plane represents an ideal system to realize experimentally the
depinning transition predicted by the crack line model �1–3�.
Yet, the first experimental results for the crack front rough-
ness �4,5� and for the avalanche size distribution �6� dis-
agreed with the theory. The roughness exponent of the crack
front was found in the range �=0.55–0.6 �4,5�, instead of the
theoretical value �=0.39 �14�, while the avalanche sizes de-
fined by the waiting time matrix �WTM� �6�, measuring only
spatially connected parts of the avalanches, were found ex-
perimentally to be power-law distributed with an exponent
much higher than the value predicted by the long-range line
model for avalanches extracted by considering the global
velocity signal of the crack front. These earlier claims have
been revised recently: by testing a larger range of length
scales it was shown that the roughness exponent would cross
over to the theoretical value at sufficiently large scales

�15,16�. Furthermore, in Ref. �7� it was shown that the crack
line model can reproduce the avalanche statistics of the ex-
periment, if also the numerical data are analyzed using the
waiting time matrix introduced in �6�, while a smaller expo-
nent value is obtained when considering avalanches ex-
tracted from the global velocity signal of the crack front
model. Still, a complete understanding of the origin of the
different scaling exponents is lacking.

Here, we clarify these issues by studying the statistics of
global avalanches and their spatially connected parts, the lo-
cal avalanches �or clusters�, for a long-range elastic string
moving in a disordered medium under quasistatic external
driving. Both the avalanche and cluster size distributions are
found to exhibit scaling, but with different power-law expo-
nents. In particular, by studying the model with a larger
range of length scales, we obtain a more accurate description
of the scaling behavior, and therefore a better estimate of the
related exponents than in previous numerical studies �7�.
These numerical results are compared with data from experi-
ments on Plexiglas plates �6�, and excellent agreement is
found. Moreover, we propose a scaling relation between the
power-law exponents of the avalanche and cluster size dis-
tributions by considering the avalanche breakup process,
supported by our numerical results. We finally study the mor-
phology of the local clusters and find that their aspect ratio
scales with the roughness exponent of the line model above a
crossover length proportional to the Larkin length of the
crack front. Previous studies �7� using a continuous time ver-
sion of the crack line model have presumably been sampling
the short length scale regime. Thus, our results explain and
clarify a number of open issues related in particular to planar
crack front propagation, such as the different scaling of glo-
bal avalanches and local clusters, as well as the connection
between roughness and avalanche morphology. However, the
implications of our study extend beyond crack front propa-
gation, as the results can be immediately extended to a num-
ber of other systems described by the same model, such as
contact line dynamics in wetting �12� and low angle grain
boundaries in crystalline solids �17�. Furthermore, a number
of other driven systems in which the avalanche dynamics is
governed by long-range interactions, ranging from domain
walls in ferromagnets with dipolar interactions �9� to plasti-
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cally deforming crystalline solids �13�, are expected to obey
similar scaling laws. The paper is organized as follows. In
the next section, the simulation model and the methods used
to extract the local clusters from the simulations and the
experiments are presented. These are then followed by the
results of the numerical simulations along with a direct com-
parison with experimental results from Plexiglas plates in
Sec. III. Section IV finishes the paper with conclusions and
discussion.

II. MODEL AND METHODS

A. Quasistatic model of crack front propagation

The model of the propagating planar crack front, intro-
duced in Ref. �2�, is represented by a vector of integer
heights hi, i=1, . . . ,L, with L as the system size. Crack
propagation is driven by the local stress intensity factor �SIF�
Ki, which represents the asymptotic prefactor of the 1 /�r
divergence of the stress field near the crack tip. To model the
different contributions of the local SIF Ki acting on a front
element i, it is taken to be of the form Ki=Ki

elastic+Ki,hi

random

+Kext, where

Ki
elastic = �0�

j�i

L
hj − hi

b�j − i�2
�1�

represents the first-order variation of the stress intensity fac-
tor due to a first-order perturbation of the front position; b is
the front segment spacing and �0 tunes the strength of the
elastic interactions �1�; Ki,hi

random is a time-independent Gauss-
ian random variable of zero mean and unit variance, with

�Ki,hi

randomKj,hj

random	 = ��i − j���hi − hj� , �2�

representing random toughness of the material; and Kext is
the contribution of the external load. Notice that the long-
range kernel in Eq. �1� is identical in many other problems,
such as contact lines �12� and low angle grain boundaries
�17�. Periodic boundary conditions are imposed. The dynam-
ics is defined in discrete time t by setting

vi�t� = hi�t + 1� − hi�t� = ��Ki� , �3�

where vi is the local velocity of the front element i, and � is
the Heaviside step function. During a single time step, the
front elements with vi�0 are advanced by a unit step, hi�t
+1�=hi�t�+1, and new random forces are generated for those
elements. The local forces are then computed again for each
element, and the process is repeated until vi=0 for all i and
the avalanche stops. The size s of the avalanche is the total
number of elementary moves during such an avalanche.
Then the external stress is increased, so that exactly one of
the elements becomes unstable, and a new avalanche is ini-
tiated. While such a discretization of the dynamics neglects
the fact that the local velocity of the crack front should be
proportional to the local SIF, this is a standard technique
employed in models of the depinning transition, going back
to the work of Leschhorn �18�, and is known to have no
influence on the scaling behavior we study here. Moreover,
this procedure is essential to be able to drive the system

quasistatically. Such quasistatic driving has the advantage
over continuous time models with a finite driving velocity
�7� that avalanches and clusters can be defined without am-
biguity also for a zero threshold. As the crack front advances,
the applied SIF Kext decreases at a rate proportional to the
instantaneous average velocity v�t�=1 /L�i=1

L vi�t� of the
front, with a proportionality constant k. Thus, the cutoff of
the avalanche size distributions is expected to scale with k
�9�.

B. Methods to extract the local clusters

To extract the clusters from an avalanche, we use two
methods. The first is the avalanche map �AM�, based on a
two-dimensional array A�x ,y� such that a unique value is
assigned to all points �x ,y� over which an avalanche has
swept. We then define the local cluster size aAM as the area of
spatially connected regions with the same value of A�x ,y�
�see Figs. 1�a� and 1�c��. The second approach is the recently
proposed WTM, W�x ,y�, defined by the time the interface
has spent within a pixel corresponding to the location �x ,y�
�6,7�. The local velocity matrix is then given by V�x ,y�
=1 /W�x ,y�. Clusters are defined as spatially connected re-
gions of area aWTM within which the local velocity exceeds
some threshold value vth �see Figs. 1�b� and 1�d��. Here, we
study the model in the quasistatic limit, which allows us to
use effectively a zero threshold, by setting the waiting time
of the pinned configurations separating avalanches to be
much longer than the maximum avalanche duration. When
using the WTM approach to record the motion of the crack
front during an avalanche, only n−1 steps are recorded when
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FIG. 1. �a� An example of the avalanche map A�x ,y�, for k
=0.05 and �0=1, with the area swept over by different avalanches
denoted by different shades of gray �time is running from black to
white�. �b� The same data as in �a� represented by the velocity
matrix V�x ,y�=1 /W�x ,y� with a zero threshold. The crack front is
moving to the positive y direction. Black corresponds to zero ve-
locity, while regions of finite velocity are shown in white. �c� An
example of a structure of a single avalanche as identified by the AM
method. �d� The same avalanche as in �c� extracted by using the
WTM method.
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a line element moves n steps, as both the initial and final
pinned configurations are classified as immobile. Thus, the
avalanche in Fig. 1�d� is a bit thinner in the y direction as
compared to the one in Fig. 1�c�, and parts of the avalanche
involving motion of a single step forward only are lost com-
pletely. However, our results suggest that this does not affect
the statistical properties of the clusters. In the case of the
discrete line model, another issue is that for soft lines ��0
�0.75�, in which the height difference between neighboring
segments of the line can be two or more pixels of the WTM,
two consecutive avalanches can be recorded as one. In the
following we use WTM only for large enough �0. Notice that
the AM does not suffer from such problems.

III. RESULTS

A. Avalanche and cluster size distributions

The probability distributions of avalanches and cluster
sizes for L=2048, �0=1, and various values of k are shown
in Figs. 2 and 3, respectively. The sizes s of the avalanches
�Fig. 2, open symbols� are distributed according to a power
law with a k-dependent cutoff,

P�s� = s−�fk�s/k−1/�k� , �4�

with fk�x� as a scaling function describing the shape of the
cutoff, �=1.25	0.05, and 1 /�k=0.725	0.08. The value of
� is in good agreement with results from simulations �7� and
unpublished experiments �19�. However, the scaling of the
cutoff was not considered in Ref. �7�. Notice that the scaling
function fk�x� displays a bump around the cutoff of the dis-
tribution �20�, and thus the true power-law exponent can be
seen directly only for s well below the cutoff scale. The
exponent values we quote are obtained by optimizing the

data collapse of the distributions. To demonstrate the robust-
ness of our results with respect to changing the values of
various parameters of the model, we also show the avalanche
size distributions for a fixed k but varying �0 in Fig. 2 �filled
symbols�: the distributions turn out to be virtually indepen-
dent of �0 in the range 0.4
�0
1.0 considered in Fig. 2.
Analogously, the cluster sizes or areas aAM �top panel of Fig.
3� and aWTM �bottom panel of Fig. 3� extracted by the AM
and WTM methods, respectively, are both observed to scale
according to

P�a� = a−�agk�a/k−1/�k� , �5�

but with an exponent �a significantly different from �, i.e.,
�a

AM =1.52	0.05 and �a
WTM =1.53	0.05. Thus, the two

methods to define the clusters give the same �a exponent
within error bars. In this case the scaling function gk�x� does
not exhibit a bump, and the scaling of the distributions ex-
tends all the way to the cutoff scale. Also for the cluster size
distributions similar results are obtained for different values
of �0 �not shown�. The observed exponent value is somewhat
lower than that quoted in Refs. �6,7� for the WTM approach,
but our analysis below indicates that also the data presented
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FIG. 2. �Color online� The main figure shows the size distribu-
tions of the avalanches for �0=1 and various values of k �open
symbols�, as well as the size distributions of the avalanches for a
fixed k=0.0125 and various values of �0 ranging from �0=0.4 to
�0=1.0 �filled symbols, with the latter set of distributions displaced
vertically for clarity�. The solid line is a guide to the eye and cor-
responds to �=1.25. The inset shows a data collapse of the distri-
butions with �0=1 and various values of k, with �=1.25 and
1 /�k=0.725.
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FIG. 3. �Color online� Top: the size distributions of the AM
clusters for �0=1 and various values of k. The solid line is a guide
to the eye and corresponds to �a=1.52. The inset shows a data
collapse with �a=1.52 and 1 /�k=0.7. Bottom: the size distributions
of the WTM clusters for �0=1 and various values of k. The solid
line is a guide to the eye and corresponds to �a=1.53. The inset
shows a data collapse with �a=1.53 and 1 /�k=0.8.
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in �6,7� are perfectly consistent with �a
WTM 
1.5. This is

because in Refs. �6,7� also the region of the cutoffs of the
distributions was included in the fits, thus overestimating the
true exponent value. Notice also that the cutoff of the cluster
size distributions scales with k as k−1/�k, with 1 /�k
=0.7	0.08 for the AM approach, while we obtain 1 /�k
=0.8	0.08 for the WTM. The different 1 /�k exponents
have the same value within error bars, and we suspect that
the small variation observed might be related to a finite-size
effect.

B. Comparison with experimental results

In order to compare directly our results to the experiments
�6�, we study WTM clusters as a function of a finite velocity
threshold vth. The threshold introduces a cutoff in the distri-
bution that scales as

P�a� = a−�agv�a/vth
−1/�v� , �6�

with �a=1.53	0.05 and 1 /�v=1.8	0.1 �see Fig. 4�. There,
we compare the simulation results with experimental data on
planar crack propagation in Plexiglas plates �6�. Both sets of
data can be collapsed by using exponent values �a
1.5 and
1 /�v
1.8. By shifting the two data collapses on top of each
other, we observe perfect agreement between the simulations
and the experiment. Notice again that in Refs. �6,7�, the cut-
offs of the distributions were included in the power-law fits,
thus overestimating the true exponent value.

C. Link between global avalanches and local clusters

To explain these results, we consider the breakup process
of an avalanche into a number of clusters. When an ava-
lanche grows by 1 unit �i.e., when a single element of the

line moves forward by 1 unit�, there are three possibilities of
how this can affect the number N�s� of distinct clusters
within an avalanche: �i� a new cluster is initiated �N→N
+1�, �ii� two existing clusters are merged into a single cluster
�N→N−1�, or �iii� an existing cluster grows by 1 unit �N
→N�. We associate probabilities p1, p2, and 1− p1− p2, re-
spectively, to these events. These probabilities are dynamic
variables as they depend on the instantaneous structure of the
avalanche. On the average, however, p1= p2 as p1� p2 would
clearly indicate an increase in p2 and a subsequent tendency
for p1 to decrease again: when the number of clusters grows,
there is less and less space to create more clusters and the
probability to merge existing clusters should increase. Simi-
larly, p1� p2 would imply that sooner or later most of the
clusters would have merged, and consequently the probabil-
ity p2 for further cluster merging decreases. Thus, for large
enough avalanches, the number N�1 of clusters during the
growth of an avalanche follows a random walk up to s steps,
with a reflective boundary at N=1 �as each avalanche con-
sists of at least one cluster�. Assuming for simplicity that the
process is not correlated indicates that for s�1, �N�s�	�s,
with =1 /2. Our numerical results confirm this relation, and
a scaling form

�N�s�	 = sÑ�s/k−1/�k� , �7�

with Ñ�x� as a scaling function, =0.47	0.05, and �
=0.76	0.08 �see Fig. 5, i.e., the cutoff scales with k again
with the same exponent 1 /�k
0.75�. Thus, the cluster sizes
scale as a�s / �N�s�	 or s�a2. P�a�da= P�s�ds then implies
that P�a��a−�a, with

�a = 2� − 1. �8�

In the present case, the value of the avalanche exponent �

1.25 yields �a
1.5 for the clusters, in good agreement
with our numerical and recent experimental results �6,19�.
Notice that Eq. �7� implies that s�a2 holds only for s
smaller than the cutoff scale. For larger avalanches one has
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FIG. 4. �Color online� The scaled size distributions of the WTM
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a�s �as evidenced by the crossover to a plateau in Fig. 5�,
consistent with the observation that the cutoffs of the ava-
lanche and cluster size distributions scale with the same ex-
ponent 1 /�k. Notice also that while deriving Eq. �8� we did
not make assumptions about the precise form of the long-
range kernel nor the spatial dimension of the system, and we
thus expect Eq. �8� to be valid for a wide class of avalanch-
ing systems where the avalanche dynamics is governed by
long-range interactions. Notice that if the avalanche breakup
process is correlated such that �N�s�	�s with �1 /2, Eq.
�8� can be generalized to read �a= ��−� / �1−�.

D. Cluster morphology and roughness of the crack front

In experiments �6� and simulations �7� it was found that
the aspect ratio of the clusters was scaling as ly � lx

�, with �
�0.6 and where lx and ly are the linear sizes of the cluster in
the x and y directions, respectively. This result is in agree-
ment with the roughness of the crack front measured in early
experiments, but disagrees with the known value of the
roughness exponent of the crack line model �=0.39 �14,21�.
Moreover, by investigating a larger range of length scales, a
recent experimental work on roughness of the crack front has
shown a crossover from a roughness exponent of around 0.6
to a lower value corresponding to the line model prediction
of around 0.39 �15,16�. This is surprising since we have just
shown that the experimental avalanche statistics is in perfect
agreement with the predictions of the model. This puzzle can
be resolved, noticing that �=0.39 is expected to hold only for
length scales larger than the Larkin length Lc �22�, which for
our model scales like Lc��0

2� /R2, where � and R are the
correlation length and the amplitude of the disorder �here,
�=R=1�, respectively �17�. Below Lc, the crack line rough-
ness should scale with an exponent �L=1 /2.

In the top panel of Fig. 6 we report the scaling of ly with
lx for different values of �0. By rescaling lx by Lc��0

2, we
observe a crossover for the scaling exponent going from �L
=0.55	0.05 at small scales to �=0.39	0.03 at large scales.
In the top panel of Fig. 6 we also report the scaling of the
root-mean-square height fluctuations ��h���2	1/2 �with
�h���=hi+�−hi� of the crack front, expected to scale like
��h���2	1/2���. Again, by rescaling � by �0

2, we observe a
crossover from a small-scale regime with �L=0.48	0.05 to
the large-scale value �=0.37	0.03. The bottom panel of
Fig. 6 shows that similar conclusion can be made by consid-
ering the power spectrum S�q� of the line profile, expected to
scale as S�q��q2�+1. Rescaling the data by Lc��0

2 according

to S�q�=�0
2S̃��0

2q�, we observe a crossover for the scaling
exponent going from 2�L+1=1.96	0.05 for large q to 2�
+1
1.76	0.04 for small q, in agreement with the analysis
of root-mean-square height fluctuations. We have verified
that in the present model, where the crack front is con-
strained to move along the y direction, there is no multiscal-
ing �23�. Notice that while we observe different crossover
scales for the roughness of the line and the scaling of the
morphology of the clusters, both sets of data scale with the
Larkin length Lc, and thus the crossover length is propor-
tional to Lc in both cases. However, the fact that these two
length scales are not the same implies that there is a range of

scales for which the roughness of the line appears to scale
with the asymptotic exponent �
0.39, while the cluster as-
pect ratio is still characterized by the larger �L
0.55. It is
probably this range of scales that has been investigated in
earlier numerical studies �7�.

IV. CONCLUSIONS

To summarize, we have demonstrated how avalanches are
broken into spatially disconnected clusters in systems with
long-range interactions. Both the avalanches as a whole and
their localized parts or clusters exhibit scaling, but with dif-
ferent power-law exponents, related by a scaling relation de-
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FIG. 6. �Color online� Top: the scaling of the aspect ratio of the
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tuations ��h���2	1/2 of the line �filled symbols�, for k=0.0125 and
different values of �0. For large clusters their aspect ratio scales as
ly � lx

�, with �=0.39	0.03 �solid line�, while smaller clusters are
characterized by �L
0.55 �dashed line�. Also the roughness of the
line, scaling like ��h���2	1/2���, exhibits two distinct scaling re-
gimes, with �L
0.48 for small scales and �=0.37	0.03 for large
scales. Both sets of data have been collapsed by rescaling lx and �
by the Larkin length Lc��0

2. Bottom: the power spectra of the line
profiles for different values of �0. The main figure shows a collapse

of the spectra, according to S�q�=�0
2S̃��0

2q�, while the inset displays
the unscaled power spectra. The power spectra scale as S�q�
�q−�2�+1�, with a crossover separating regimes with 2�L+1
1.96
for short length scales and 2�+1
1.76 for long length scales.

AVALANCHES AND CLUSTERS IN PLANAR CRACK FRONT… PHYSICAL REVIEW E 81, 046116 �2010�

046116-5



rived from a simple random-walk argument for the avalanche
breakup process. We also showed that large enough clusters
exhibit aspect ratio scaling with an exponent consistent with
the roughness exponent of the crack line model �14,21�. Due
to the general nature of both the model considered as well as
our arguments, we expect these results to be applicable in a
large class of avalanching systems with long-range interac-
tions, ranging from crack propagation to contact lines in wet-
ting to domain walls in ferromagnets.

Of particular interest here is our explanation of the differ-
ent scaling exponents observed for global avalanches and
local clusters in the crack line model �7�, and its potential
implications for further studies of avalanche phenomena in
systems with long-range interactions. An interesting prospect
would be to explore the possibilities to explain the observed
acoustic emission exponents in peeling of paper sheets �8�
with similar arguments. The observation that the avalanche
breakup process in the line model can be described by a
simple random walk will be interesting to test in experiments
not only on crack front propagation in Plexiglas plates, but
also in other avalanching systems with long-range interac-
tions, such as for domain-wall dynamics in ferromagnetic
thin films �9�, as well as for imbibition �24�.

An important point regarding the roughness of the crack
front and the related cluster morphology is that their scaling
properties depend on the range of length scales considered:
the asymptotic scaling is observed only for length scales
larger than a crossover scale proportional to the Larkin
length of the crack line. Earlier simulations �7� as well as
experiments �6� have most likely been probing the regime
below this crossover scale, possibly explaining the different

exponent values observed in those cases. However, for these
small length scales additional complications arise due to the
overhangs observed in the experimental crack profiles, which
are excluded by construction in the present line model. Such
overhangs might be responsible for the multiscaling ob-
served for the experimental crack profiles for short length
scales �16�. We are working to extend the crack front line
model to include the possibility to form overhangs and are
planning to check if such an extension is sufficient to repro-
duce the experimentally observed short length scale scaling
properties of the crack fronts.

The connection between avalanches and clusters in ava-
lanching systems with long-range interactions opens up also
interesting possibilities to understand the observed spa-
tiotemporal correlations between avalanches in a number of
systems, such as the space-time coupling of avalanches ob-
served in plastically deforming crystals �25�, and even the
foreshock and aftershock sequences of earthquakes: one pos-
sibility that worth further studies would be to check if such
correlated avalanches could in fact be local clusters, with the
observed correlations arising naturally from the fact that the
localized clusters are parts of the same global avalanche.
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