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Avalanche spatial structure and multivariable scaling functions:
Sizes, heights, widths, and views through windows
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We introduce a systematic method for extracting multivariable universal scaling functions and critical exponents
from data. We exemplify our insights by analyzing simulations of avalanches in an interface using simulations
from a driven quenched Kardar-Parisi-Zhang (qKPZ) equation. We fully characterize the spatial structure of
these avalanches—we report universal scaling functions for size, height, and width distributions, and also local
front heights. Furthermore, we resolve a problem that arises in many imaging experiments of crackling noise and
avalanche dynamics, where the observed distributions are strongly distorted by a limited field of view. Through
artificially windowed data, we show these distributions and their multivariable scaling functions may be written
in terms of two control parameters: the window size and the characteristic length scale of the dynamics. For
the entire system and the windowed distributions we develop accurate parametrizations for the universal scaling
functions, including corrections to scaling and systematic error bars, facilitated by a novel software environment
SloppyScaling.
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I. INTRODUCTION

Systems that have crackling noise and avalanches exhibit
scale invariance and power laws, which point to the notion of
underlying universality [1]. These systems include many of the
best-studied examples of nonequilibrium critical phenomena,
and much progress has been made in a renormalization group
context [2,3]. The renormalization group implies that the long
length and time behavior near critical points is governed
by universal exponents and scaling functions. However, the
predictive power of these theoretical studies has hitherto
been underutilized; the primary focus of experiments and
numerical simulations has been on precise estimates of critical
exponents, rather than on the universal joint predictions
of properties involving several control parameters and/or
measured quantities.

A wide variety of materials and natural systems have been
studied in the context of nonequilibrium critical phenomena.
Many of these systems exhibit avalanches which have power
law size distributions. These include Barkhausen noise in fer-
romagnets [4–8], fluid imbibition into porous media, flux-line
depinning [3,9–13], and martensitic transformations [14,15],
to name a few. In the first three of these systems, avalanches
are the result of the jerky motion of an interface (domain wall,
fluid front, flux line) in a disordered environment, and can be
described by the same family of front-propagation models.

In this paper, we study the spatial structures of avalanches in
a front-propagation model in two dimensions, developing tools
and methods needed for systematic study and extraction of
these multiparameter universal scaling functions. To illustrate
the utility and importance of these functions, we apply them
systematically to a practical experimental problem—the size

distributions of avalanches seen through a viewing window.
This problem illustrates (a) the complexity and sophisti-
cation of the different emergent size distributions, (b) the
relationships amongst the probability distributions of heights,
widths, and sizes and their utility in generating predictions for
windowed avalanches, and (c) the use of functional forms and
least-squares fits to analyze and report on these multiparameter
scaling functions.

Imaging experiments have been used in recent years to
study a wide variety of systems exhibiting crackling noise
or similar dynamics. Barkhausen noise is measured making
use of the magneto-optical Kerr effect [5,6,16], allowing one
to examine the domain wall motion in two-dimensional (2D)
thin films in real time. In experiments on superconducting
vortices [17], a magneto-optical (MO) setup is also used.
In experiments of fracture [18], fluid imbibition [19], and
granular systems [20,21], the dynamics are also followed with
a camera.

These visualization experiments provide an unusual op-
portunity: we now can study the universal properties of the
spatial morphology—various distributions of heights, widths,
angles, local heights, etc., of either the avalanches or the
fronts. However, the measurements of these properties are
often distorted by a limited field of view. We hereby take
this problem and develop the scaling theory for the universal
functions needed to characterize the results of a generic
imaging experiment—the distribution of avalanche sizes seen
through windows.

The limited field of view in experiments distort the size
distributions of avalanches, and cause difficulties in character-
izing the critical exponents. Naturally, there is a bias toward
small avalanches; large ones are cut off by the boundaries of
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the window. It can also distort the size distribution if pieces of
large avalanches cut off by window boundaries are counted as
small ones. Experiments have taken a variety of approaches to
deal with such windowing effects: “Laser reflectometry” [16]
on Barkhausen noise uses the magneto-optical Kerr effect, but
lacking spatial resolution, lumps fragments and avalanches
together; meanwhile, other optical Kerr experiments have
shown [6] that the effective size exponent τ for this lumped
distribution depends strongly on the window width. Work
by Kim et al. [22] report quite striking distributions but do
not specify whether their data includes avalanches that touch
the boundary. In experiments on superconducting vortices, or
magnetic flux avalanches [17], avalanches exceeding a certain
size are discarded. In fluid imbibition [19], the edges of the
system are purposely left out to avoid any distortion produced
by side walls. In granular systems, where avalanche dynamics
in piles of rice are studied with real-time reconstruction
[20,21], and fracture experiments [18], where the dynamics
are followed with a high-speed camera, boundary effects are
not considered but may also be important.

We will show comprehensively how to analyze all of
the size data lying within a window, and how to use the
different classes of avalanches to get independent measures of
various critical exponents. Indeed, window-width finite-size
effects need not be avoided, but properly treated may provide
additional measures of the critical exponents and the spatial
structure.

Characterizing spatial structures of avalanches must go
far beyond the traditional focus on critical exponents. Many
experiments report power laws, however, through this study
we emphasize that one can make predictions about both power
laws and scaling shapes from data, as has been demonstrated
in a previous study of avalanche temporal shapes [23]. Indeed,
traditional scaling collapse methods fail for functions of more
than two variables. To optimally extract the behavior and
estimate errors, we need to do simultaneous analysis of many
different properties. We thus introduce a software environ-
ment, SloppyScaling [24], which facilitates the exploration
and development of simultaneous fits of multiple data sets
with parametrized forms of universal scaling functions. With
this approach we are taking the first steps toward the use of
scaling methods as a practical engineering tool.

II. SUMMARY OF KEY RESULTS

Since our theme is multifaceted, readers may be interested
in focusing on different aspects of this work. In this section we
present an overview of key results in this paper and a summary
of their corresponding sections.

A. Universal spatial structures of avalanches in directed
percolation depinning

We provide a substantive analysis of the universal spatial
morphology of avalanches in the quenched KPZ (qKPZ)
model in 1+1 dimensions (the model is discussed in Sec. III).
Figure 1(a) shows avalanches in a typical simulation of this
model. Analogous to magnetic systems, we have added a “de-
magnetization factor” k that parametrizes the restoring force,
which allows us to access many metastable configurations of

the front near the depinning transition, and controls the typical
width of an avalanche, Lk ∼ k−νk . Figure 2 shows examples
of these resulting avalanches from simulations of various
k. In Sec. IV, we thoroughly examine the spatial structure
of the avalanches, including sizes s (the total area covered
between pinned fronts, which would correspond to the total
magnetization change in magnets, or the avalanche size of a
rice pile), and also widths w and heights h (which measure the
length of an avalanche in directions perpendicular and parallel
to the direction of the motion of the front; this corresponds to
studying the shapes of the magnetic domains or flux lines). We
examine and fit the distributions of these sizes, heights, and
widths in Sec. IV.

B. Avalanches in windows

As mentioned in the Introduction, in many imaging ex-
periments the limited field of view distorts the avalanche
size distribution. This is illustrated in Figs. 1(b) and 1(c). In
Fig. 1(b) most of the avalanches are cut off by the left and right
boundaries—if one were to count the area of these avalanches,
we would count large ones as smaller ones. The resulting size
distribution inside the window [dashed line of Fig. 1(c)] has
a very different power law and shape compared to the full
system distribution [solid line of Fig. 1(c)].

In Sec. V, we show in detail how avalanches which cross
boundaries exhibit distinctly different size distributions and
critical exponents. For simplicity, we consider a strip geometry
where only the left or right boundaries are relevant (since
avalanches in our system are flat and wide, few touch the
top or bottom). We can therefore separate avalanches into
four different categories, 00, 01, 10, and 11, depending on
whether avalanches touch (1) or do not touch (0) the left or
right boundaries: internal avalanches (00) [Fig. 1(d)], split
avalanches (10 and 01) [Figs. 1(e) and 1(f)], and spanning
avalanches (11) [Fig. 1(g)]. The internal (00) avalanches
share the same power law as that of the full distribution,
with a cutoff controlled by both the system size Lk and
the window size W . The split (10 or 01) avalanches have a
modified power law—a smaller exponent as larger avalanches
are counted as smaller halves [see Fig. 1(c)]. The spanning
avalanches also exhibit a smaller exponent, although this is
not obvious in the shape of its scaling function. We can
see that it has both an outer cutoff due to Lk and an inner
cutoff due to the window size W , since avalanches must
be large enough to span the window [purple dash-dotted
line in Fig. 1(c)]. The internal and spanning avalanches
also have distinct universal scaling functions with a cutoff
controlled predominately by the window size for windows
comparable to or smaller than the size of Lk . In Secs. V
and VI we give a thorough analysis of these modified power
laws, the different scaling shapes, and the results of fits to
data.

Having established a sophisticated method of analyzing
both experimental and simulation data, we can utilize this
analysis to enhance the collection of data in visualiza-
tion experiments. Section VII has some suggestions for
how to collect data and simultaneously analyze the scaling
behavior of different magnifications, and extract multiple
exponents.
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FIG. 1. (Color online) Windowed distributions. (a) The full system of avalanches. This figure shows a qKPZ simulation with avalanches.
(b) A limited field of view: we can only see part of the system. The avalanches inside the artificial viewing window are brightly colored, and
those outside are washed out. Notice that the avalanches within the window are cut off at top and bottom, and (more importantly for short wide
avalanches with roughness exponent ζ < 1) on the two sides. (c) The size distributions for the different types of avalanches, (d) internal 00
avalanches, (e) split 10 avalanches, (f) split 01 avalanches, and (g) spanning 11 avalanches.

C. Functional forms

A main emphasis of our work is that we fit an entire
functional form instead of power laws [25]; this includes
the shape of the scaling function, and analytic and singular
corrections to scaling. The benefit of approaching a scaling
problem this way is that it allows us to account for both
universal and nonuniversal effects in a consistent way. Writing
down the functional form that is given by the data for a
certain universality class will also be useful for identifying
and characterizing other systems that are thought to belong to
the same universality class.

We have found that, to analyze the windowed distributions,
we need to first thoroughly examine the spatial structure
of avalanches for the full system. In particular, in order
to analyze the avalanche pieces left inside the window,
we need to define height and width distributions and also
joint distributions of sizes and widths. Section IV discusses
these and also the results of fits for such distributions for
the qKPZ model we are studying. To focus on the scaling
region, and minimize lattice effects, we will discuss these
distributions in terms of fractional area distributions, A(S) ∝
SP (S), the average fraction of the system that a given size
takes up.

A remarkable result is that size, height, and width distribu-
tions can be fitted with a nearly identical functional form. For

example, the size distribution is

A(S|Lk) = (
S
/
L

1+ζ

k

)2−τASk

(
S
/
L

1+ζ

k

)
/S

= S2−τ
k exp

[(
USS

1/2
k − ZSS

δS

k

)]
/S. (1)

Here we have the shorthand Sk = S/L
1+ζ

k . The width
A(w|Lk) and height A(h|Lk) distributions are similar, with
the form of 1

X
YαA(Y ), where X = {S,h,w} and Y =

{S/L
1+ζ

k ,h/L
ζ

k ,w/Lk}. A(Y ) is identical in form to the one
quoted above in Eq. (1).

Fitting the size, height, and width distributions at once,
we can extract multiple exponents—not only the commonly
measured size distribution exponent τ , but also the exponent
νk which, as mentioned in Sec. II A, relates the typical width
of an avalanche to k, and also the roughness exponent ζ . The
roughness exponent ζ , which measures the fluctuations of the
interface, is typically quoted for front propagation models
as a means of characterizing the universality class. [In our
analysis, we have found a range for the roughness exponent
ζ (from 0.62 to 0.72) that differs from the literature value
0.63 [13]; we discuss this in Appendix B.] One must note
that the functional forms we choose are a practical tool to
summarize existing information. While they may be inspired
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(a) (b) (c) 

FIG. 2. (Color online) Scale invariance in crackling noise. Three
simulations of crackling noise, with different “demagnetization
fields” k. (a) k = 10−5, (b) k = 10−6, (c) k = 10−7 (k is what controls
the typical avalanche sizes in a given system, giving a characteristic
width Lk). Larger demagnetization fields stop avalanches more
strongly, hence large k corresponds to smaller avalanches. The colored
regions represent avalanches. The fronts are moving from bottom to
top. Notice that the two simulations are statistically similar to one
another apart from a rescaling of heights and widths. Note that most
of the area is covered by the largest avalanches.

by analytical calculations, and chosen to be consistent with
known asymptotics, they should be trusted only in the ranges
over which they have been measured.

D. Multivariable scaling problems

The size distribution in Eq. (1) has a scaling form with one
scaling variable. However, in this paper we will consider many
scaling forms with more than one variable, such as a joint size
and width distribution (Sec. IV), or the windowed distributions
(Secs. V and VI). In these cases, two or more scaling variables
are important for describing the shape of the distribution [as
seen in Fig. 1(c)]. For example, the general form for the 11
windowed distributions is

A11(s|W,Lk) = 1

s

(
sk

Wk

)(2−τ )(1+ζ )/ζ

A11(sk,Wk). (2)

Here the scaling functions become distributions with two
scaling variables, the rescaled size sk and rescaled window
width Wk . The traditional “scaling collapse” methods become
problematic when multiple scaling variables are simultane-
ously important; this has hitherto retarded the effective study
and use of these powerful universal joint distributions.

We present a systematic method for analyzing scaling
problems with multiple control variables. In our problem,
the two control parameters are the demagnetization factor k,
and the window width W . We will show that the interplay
between k and W is important for determining the shape of the
avalanche size distributions. In particular, we can write scaling
functions for the distributions of the avalanche pieces in terms
of these two scaling variables sk = s/L

1+ζ

k and Wk = W/Lk

[as seen in Fig. 1(c)]. For example, the scaling function for the

11 distribution is

A11(sk,Wk) = exp −
[
T11 + U11s

1/2
k + Z11s

δ11
k

+D11

(
sk

Wk

)m1

+ C11

(
sk

W
n11
k

)−m2
]
. (3)

Section VI discusses in detail the functions A00(sk,Wk),
A10(sk,Wk), and A11(sk,Wk) that we consider. One may also
find the results of fits (figures and tables of parameters) in
Sec. V.

E. SloppyScaling

The analysis in this paper is done in the software envi-
ronment SloppyScaling and includes a Bayesian analysis of
systematic error bars, which are explained in Appendix A4.
SloppyScaling allows us to fit data without collapses, which,
as mentioned above, is problematic when there is more than
one scaling variable involved. Included in the software setup
are automatic fits of data to theory functions with nonlinear
least-squares and ease of visualizing results. This software may
be applied to many different multivariable scaling problems,
making full use of universality and the predictions of the
renormalization group. All of the fits in this paper and their
corresponding figures (including axis labels) were generated
directly and automatically using SloppyScaling.

III. MODEL

We use a model for imbibition fronts to produce avalanches.
The reason for using this model is that it is extensively studied,
with well-established critical exponents. We simulate crack-
ling noise using a quenched KPZ model in 1+1 dimensions
(see Appendix A1 for details on the implementation) [10], with
dynamics given by

∂h(x,t)

∂t
= F − k〈h〉 + γ∇2h + λ(∇h)2 + η(x,h), (4)

where h(x,t) is the height of the front, F is the driving force
increasing quasistatically, linear and nonlinear terms for the
KPZ model controlled by the parameters γ and λ, respectively,
and η Gaussian quenched disorder. In the spirit of magnetic
avalanche models [26], we have added a term analogous to a
demagnetization field −k〈h〉, which allows us to have pinned
fronts at many metastable configurations. Models like these
have been simulated [9] mostly near the depinning transition
(and with k = 0). With k �= 0, we define the area between each
pinned front as an avalanche of size S. Avalanches produced
by this model are thought to belong to the directed percolation
depinning (DPD) universality class [13,27]. The avalanches
are self-affine, long and wide, with ζ < 1. The roughness
exponent ζ characterizes the ruggedness of the front, and also
governs the scaling of avalanche heights h with widths w,
h ∝ wζ [9,28]. In our model, k controls the typical size of
the avalanche (Fig. 2), the larger the k the smaller the typical
size of an avalanche. We define the characteristic width of an
avalanche in the full, unwindowed system to be Lk = k−νk .
We will write all the scaling forms in terms of the length Lk

rather than the demagnetizing factor k directly to emphasize
the analogies to finite-size scaling, as we are also studying
finite window sizes compared to the size of Lk .
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(a)Size distribution (probability) (b)Area-weighted size distribution

FIG. 3. (Color online) A(S) vs P (S). Here you can see the difference between the more traditional P (S) and the area-weighted A(S). (a)
P (S): most of the area under the curve is from small avalanches, where nonuniversal lattice effects are important. (b) A(S): the normalization
is dominated by large avalanches, avoiding the lattice effects, so that we can focus instead on the dependence on the large scale cutoffs—Lk

and, in later sections, the window size. The data here are from qKPZ simulations of different k with different simulation size L. The lines in (b)
are a result of a joint fit with the maximum height and width distributions. The fitting function and fitting parameters are shown in Table I.

IV. AVALANCHE SHAPES AND DISTRIBUTIONS
OF THE FULL SYSTEM

In this section we will introduce various avalanche spatial
distributions and their scaling forms. These forms will allow
us to motivate the windowed distributions, and also serve as an
example where traditional collapses may lead to questionable
results.

A. Area-weighted size distributions

Traditionally, to describe an avalanche size distribution,
we write the probability distribution as a power law times a
universal scaling function. For example,

P (S|Lk) = S−τP
(
S
/
L

1+ζ

k

)
. (5)

Lk is the characteristic width of an avalanche, and h ∼ L
ζ

k is
the typical largest height, and therefore the appropriate scaling
variable to describe the area of an avalanche is Sk = S/L

1+ζ

k .
When studying the spatial properties as in our case, the

probability distribution P (S) [Eq. (5)] is not the best choice, as
its normalization is highly affected by nonuniversal effects at
the lattice spacing (Fig. 3). In fact, for τ > 1, the normalization
integral

N−1 =
∫ ∞

a2
P (S|Lk) dS ∼

∫ L
1+ζ

k

a2
S−τ dS

∼ a2(1−τ ) − L
(1−τ )(1+ζ )
k (6)

diverges at its lower (ultraviolet) limit a → 0, but not for Lk →
∞. Although we could study scaling functions that include
a lattice cutoff, it is more interesting to focus on the large
(infrared) avalanche cutoff, which depends on Lk in a universal
way. To this end, it is more appropriate to make use of the

first moment of P (S), and to consider the area-weighted size
distribution A(S)

A(S) ∼ SP (S). (7)

A(S)dS has a natural physical interpretation: it is the fraction of
the full system area covered by avalanches with sizes between
S and S + dS. Its scaling form is thus

A(S|Lk) = L
(τ−2)(1+ζ )
k S1−τASk

(
S
/
L

1+ζ

k

)
= (

S
/
L

1+ζ

k

)2−τASk

(
S
/
L

1+ζ

k

)
/S

= S2−τ
k ASk(Sk)/S. (8)

We use the subscripts Sk to distinguish the scaling of the
size distributions governed by k from those governed by other
control variables. The power of Lk we pull out of the scaling
function is needed to normalize A(S) to 1, since A(S) is
sensitive to the long-distance cutoff. In particular,

N−1 =
∫ ∞

a2
A(S|Lk)dS =

∫ ∞

a2
S2−τ

k ASk(Sk)/SdS

=
∫ ∞

a2/L
1+ζ

k

S2−τ
k ASk(Sk)/SkdSk =

∫ ∞

a2/L
1+ζ

k

S1−τ
k ASk(Sk)dSk

=
∫ ∞

0
S1−τ

k ASk(Sk)dSk −
∫ a2/L

1+ζ

k

0
S1−τ

k ASk(Sk)dSk

≈ 1 − ASk(0)
(
a2/L

1+ζ

k

)2−τ ≈ 1,

where the last integral converges for τ < 2,1 and becomes
small as Lk becomes large. Notice that the normalization of
a power law must either diverge at the lower or at the upper
limit. By studying avalanches weighted by their first moment,

1All of the front propagation models have 1 < τ < 2, but we would
need to use the second moment S2 for the 3D nucleated random-field
Ising model (RFIM) [29], which has τ ∼ 2.06.
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the normalization depends explicitly on Lk , the infrared cutoff.
This is the regime we are mainly interested in, since we
would like to study the finite-size effects imposed by both
k and the window size W . Alternatively, as done in [30],
one may also define a scale Sm = 〈S2〉

2〈S〉 , redefine the sizes as
S/Sm and a corresponding p(S/Sm) which has normalization∫ ∞

0 dssp(s) = 1. Here p(s) is universal, but is also not
a probability distribution in the conventional sense. This
definition has an effect equivalent to what we do here: to make
the function universal and insensitive to nonuniversal lattice
effects on normalization. Namely, our definitions are related
in the following way: A(S) = S

S2
m
p(S/Sm) and ASk(S/Sm) =

(S/Sm)2p(S/Sm). Here we use Sm ≡ Sk = S/L
1+ζ

k , which is
consistent with their definition of Sm up to a constant factor.
We prefer to focus on the more directly interpretable fractional
area distribution A(S).

Furthermore, notice that we have been unorthodox in
writing the scaling form (8) for A(S|Lk) with a power of both
Lk and of S outside the scaling function. Normally one factors
out a single variable from the scaling function. For example,
one could in principle write

A(S|Lk) = 1

S
BSk(Sk). (9)

In this form, A(S|Lk) dS is invariant under rescaling, and
also clearly preserves normalization. However, B(Sk) =
S2−τ

k A(Sk) vanishes as Sk → 0, so this form of the scaling
function disguises the power law behavior of the avalanche
size distribution. By choosing the form ASk , which is defined
to be finite and nonzero as S → 0, we make manifest
both the avalanche size dependence and the system size
dependence.

B. Maximum height and width distributions

In addition to the size distributions, we can also study
the avalanche height and width distributions. We define

height along the direction of front propagation, measuring the
maximum height of an avalanche, and width perpendicular to
heights, measuring the maximum width of an avalanche.

How do the height and width distributions scale? An
avalanche of height h has size S ≈ h w ∼ h h1/ζ = h(1+ζ )/ζ ,
so the system area A(h|Lk)dh covered by avalanches with
heights between h and h + dh scales as

A(h|Lk)dh ∼ A(S|Lk) dS

= L
(τ−2)(1+ζ )
k S1−τASL

(
S
/
L

1+ζ

k

)
dS

∼ L
(τ−2)(1+ζ )
k h(1−τ )(1+ζ )/ζAhL

(
h
/
L

ζ

k

)
dS (10)

and since dS/dh ∼ h1/ζ ,

A(h|Lk) = L
(τ−2)(1+ζ )
k h(2−τ )(1+ζ )/ζ−1Ahk

(
h
/
L

ζ

k

)
= (

h
/
L

ζ

k

)(2−τ )(1+ζ )/ζAhk

(
h
/
L

ζ

k

)
/h

= h
(2−τ )(1+ζ )/ζ
k Ahk(hk)/h, (11)

where hk = h/L
ζ

k is the appropriate scaling variable to
describe the avalanche height.

Similarly, we can write the scaling form for the width
distributions as

A(w|Lk) = (w/Lk)(2−τ )(1+ζ )Awk(w/Lk)/w

= w
(2−τ )(1+ζ )
k Awk(wk)/w, (12)

where wk = w/Lk is the scaling variable for widths.
Notice the pattern in all these formulas: A(X|L) is a

function with A(Y ) of scaling variables (combinations of X

and L invariant under the renormalization group rescaling)
multiplying a power of the scaling variable, divided by the
independent variable X, making A(X|L)dX invariant under
rescaling, allowing it to be universal.

C. Joint fit of size, height, and width distributions

In Figs. 3(b), 4(a), 4(b) we show the size, height, and width
distributions for our qKPZ simulations at various k, and at

(a)Maximum heights (b)Maximum widths

FIG. 4. (Color online) Area-weighted avalanche distributions of (a) maximum heights, and (b) maximum widths for qKPZ simulations
at different k, and simulation sizes L (dots are binned data). The critical exponents were jointly fit with the size distributions A(S|Lk) of
Fig. 3, using the scaling forms of Eqs. (11)–(13). The best fit values for the critical exponents, parameters for universal scaling functions, and
non-universal corrections are given in Table I.
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TABLE I. Best fit exponents and parameters. Here are the results
of our joint fit for the size A(S|Lk), width A(w|Lk), and height
A(h|Lk) distributions. The corresponding universal scaling forms
which were fit are quoted in the table alongside the parameter results;
on the bottom of the table are multiplicative corrections for each
distribution, with x equal to either S, w, or h. Here systematic
error bars which account for errors in the theory (see Appendix A4
for explanation) are given. The traditional standard error bars are
typically ∼64 times smaller than the systematic error bars quoted;
however, they are a gross underestimate of the actual errors expected
since our theory is both highly nonlinear and sloppy [35]. We quote
each parameter to the significant figure indicated by its standard
error; since the parameters are strongly correlated, truncating each
parameter to its significant figure would yield a poor fit.

Standard errors
Parameter Best fit in linear approx. Systematic errors

Universal exponents
Shared exponents

τ 1.2414 ±0.0006 ±0.04
νk 0.4513 ±0.0001 ±0.008
ζ 0.6155 ±0.0004 ±0.02

ASk(Sk) = exp(USS
1/2
k − ZSS

δS

k )

US 0.173 ±0.003 ±0.2
ZS 0.0099 ±0.0002 ±0.01
δS 1.832 ±0.004 ±0.3

Ahk(hk) = exp(Uhh
1/2
k − Zhh

δh

k )

Uh 0.94 ±0.01 ±0.9
Zh 0.307 ±0.004 ±0.3
δh 1.255 ±0.003 ±0.2

Awk(wk) = exp(Uww
1/2
k − Zww

δw

k )

Uw 0.401 ±0.005 ±0.6
Zw 0.0291 ±0.0004 ±0.2
δw 2.202 ±0.005 ±0.9

Nonuniversal exponents
exp(Ax

1/x + Ax
2/x

2)

As
1 −0.36 ±0.03 ±2

As
2 −0.35 ±0.06 ±4

Ah
1 2.30 ±0.04 ±2

Ah
2 −1.90 ±0.04 ±2

Aw
1 −0.99 ±0.03 ±2

Aw
2 −0.06 ±0.03 ±1

different simulation sizes L. The curves are theoretical fits
using a functional form of the type

A(Y ) = exp(UxY
1/2 − ZxY

δx ) exp
(
Ax

1/x + Ax
2/x

2
)
, (13)

where x ={S,h,w}, and Y ={Sk,hk,wk}, and Ux,Zx,δx,A
x
1,A

x
2

are (5 × 3) fitting parameters (results are listed in Table I). The
first exponential term is the universal scaling function, while
the second accounts for nonuniversal analytic corrections at
small x due to lattice effects [29] (see Appendix A5).

One may ask why we choose this particular scaling form.
When fitting data to a function, there are many parametriza-
tions we could use to describe the data. This form is motivated
from a functional renormalization group expansion by Le
Doussal and Wiese for static avalanche size distributions in a

linear model [31]. Our model differs in that there is a nonlinear
KPZ term leading to anisotropy, so that our avalanches belong
to a different universality class, the DPD universality class.

Le Doussal and Wiese find the avalanche size distribution
for the linear model, for all static universality classes (random-
bond, random-field, and random-periodic), to leading order in
d = 4 − ε (where d is the dimension of the interface), to be

P (S) ∝ S−τ exp

(
C(S/Sm)1/2 − B

4
(S/Sm)δ

)
. (14)

Here their scaling form includes the large scale cutoff Sm.
Le Doussal and Wiese claim that their results for both static
and dynamic avalanches agree up to one loop for systems
with ζ < 1. Static avalanches are separated by equilibrium
configurations (or ground states), and dynamic avalanches
are connected through a sequence of metastable states. Our
avalanches result from a moving interface near the depinning
transition, so they belong to a dynamic universality class. We
thus use Eq. (14) as inspiration for the scaling form of Eq. (13).
However, one may note that there is no theoretical basis that it
should work, since it is from a distinctly different universality
class.

One cannot determine the values of νk and ζ independently,
if we fit the size, height, or width distributions with Eqs. (8),
(11), and (12) separately. For example, in the size distribution
we can only determine the combination νk(1 + ζ ). We deter-
mine the three critical exponents τ , νk , and ζ , by jointly fitting
the size, height, and width distributions.

The results of our fits are reported in Table I and shown
in Figs. 3(b) and 4. In particular, we find ζ = 0.62 ± 0.02,
which is close to the highly precise value of ζ = 0.63 found
in the literature [12,28,32–34]. We note that the parameters
δx , which in principle control the asymptotic decay of the
scaling function, are estimated here from a fit to the entire
distribution. The quoted errors do not represent a confidence on
the asymptotic decay—merely a confidence in the predictions
over the range where data have been fit.

FIG. 5. (Color online) Size distribution A(S|Lk) scaling collapse.
We collapse the size distribution data using the universal exponents
of τ = 1.24, νk = 0.45, and ζ = 0.62, the best fit values of the joint
fit between A(S|Lk), A(h|Lk), and A(w|Lk).
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FIG. 6. (Color online) Height distribution A(h|Lk) scaling col-
lapse. We collapse the simulation data using the universal exponents
of τ = 1.24, νk = 0.45, and ζ = 0.62, the best fit values of the joint
fit between A(S|Lk), A(h|Lk), and A(w|Lk).

Finally, the respective scaling collapses for the size, height,
and width distributions are shown in Figs. 5–7. Although
scaling collapses are very useful in verifying critical behavior,
we argue that they may be problematic for the purpose of
determining critical exponents, and one should fit and make use
of functional forms. In Appendix A5 we will show how scaling
collapses are unable to incorporate the effects of corrections
to scaling, and how these corrections may cause a drift in the
critical exponents.

D. Local height distributions

In our analysis of the next section, we will make use of
another scaling function of the same form: not the maximum
height of an avalanche, but the distribution of heights given by
random cross sections of avalanches. Let A(hx |Lk) dhx be the
fraction of the system area consisting of points (x,y) where

FIG. 7. (Color online) Width distribution A(w|Lk) scaling col-
lapse. We collapse the width distribution data using the universal
exponents of τ = 1.24, νk = 0.45, and ζ = 0.62, the best fit values
of the joint fit between A(S), A(h), and A(w).

FIG. 8. (Color online) Here are the area-weighted local height
distributions, the fraction of area taken up by a cross sectional height
hx . The fits shown in the figure were with the form of Eq. (15),
where Ahxk is the scaling function of the fit to 11 spanning avalanches
Eq. (32), which cross both window boundaries, taking W = 0. Details
for this function are explained in Sec. V.

the enclosing avalanche has vertical cross-sectional height at
x in the range (hx,hx + dhx), then,

A(hx |Lk) ∼ (
hx

/
L

ζ

k

)(2−τ )(1+ζ )/ζAhxk

(
hx

/
L

ζ

k

)
/hx. (15)

This distribution gives a different measure of the typical shape
of an avalanche. The local height distribution is shown in Fig. 8.
Here the curves show a fit we have generated with a scaling
function of the fit to 11 spanning avalanches Eq. (32), which
cross both window boundaries, taking the limit of W = 0.
Our best measure of the local heights is equivalent to a 11
distribution with window size 1. Details for how this works
are provided in the Sec. V C.

E. Joint distributions and multivariable scaling functions

Once we have distributions for the measures of size S,
width w, and height h, we can also explore the forms of joint
distributions. The area A(w,S|Lk) dS dw of avalanches in the
range of size (S,S + dS) and widths (w,w + dw) will go to
zero strongly if the size S becomes either much larger than or
much smaller than the typical size w1+ζ of an avalanche of
width w—so we may factor out any combination of powers of
w and S without changing the singularity. It still makes sense,
though, to factor out the Lk dependence. If we choose to factor
out powers of S therefore we find

A(w,S|Lk)

=
(

S

L
1+ζ

k

)2−τ

AwSk

(
w

S1/(1+ζ )
,
w

Lk

)
1

S S1/(1+ζ )

= L
(τ−2)(1+ζ )
k S1−τ−1/(1+ζ )AwSk

(
w

S1/(1+ζ )
,
w

Lk

)
, (16)

where again we have a power of a dimensionless scaling
variable, times a scaling function, divided by Sw ∼ SS1/(1+ζ )

since A(w,S|Lk) is multiplied by dS dw in its invariant form.
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The last joint distribution that will be useful is related to
right-most pieces of an avalanche. Consider the right-most
piece of width x of an avalanche of total width w and total size
S; let this segment have size s (this will be the size measured
by a window that cuts the avalanche at the left-hand window
boundary at x). Let A(s,w,S|x,L) be the fraction of the system
covered by such avalanche pieces. Then, in the same logic as
before, this five-variable distribution can be written as a power
law times a universal function of four variables:

A(s,w,S|x,L) = L
(τ−2)(1+ζ )
k s−τ−1/(1+ζ )

×AswSxk

(
x

s1/(1+ζ )
,
S

s
,

w

S1/(1+ζ )
,
w

Lk

)
.

(17)

One can clearly work out scaling forms for joint distribu-
tions of several variables and other combinations. The ones
we have discussed here will be needed in our analysis of
windowing effects.

V. WINDOW EFFECTS

Now that we have laid the groundwork for exploring the
shapes of avalanches, we focus on analyzing avalanches
inside a viewing window. In this section, we focus on how to
define the right power laws and scaling; we also give results
for fits, extracting critical exponents. In the next section,
we go into more detail about the scaling shapes of these
distributions—the universal scaling functions for avalanche
sizes viewed through windows.

In imaging experiments one often runs into the problem of
not being able to see the whole system, distorting the avalanche
size distribution. In particular, for Barkhausen noise, typical
magnetic avalanches span many decades in size, far beyond
the spatial resolution of optical microscopes. The natural
solution is to take measurements at a variety of magnifications.
Even though at the weakest magnifications the window size
W > Lk and most avalanches avoid the window boundaries,
the effects of the boundaries will always dominate at the
highest magnifications. The analysis in this section not only
provides a method to correct for finite-size-like window effects
on exponents, but allows us to actively make use of all the data
for a range of magnifications.

We show in detail in this section and the next how the
avalanches which cross different boundaries exhibit distinctly
different size distributions and critical exponents (Fig. 1). As
described in Sec. II, we consider the avalanches measured in
an infinite strip of width W [Fig. 1(b)], for a system with
characteristic length Lk . We separate avalanches into different
categories: internal avalanches (00), split avalanches (10 and
01), and spanning avalanches (11). Let us call A00(s|W,Lk) ds

the area fraction covered by such avalanches with sizes in the
range s,s + ds. (For A00, the segment size equals the total
size.) The split (10 or 01) avalanches will have area fraction
A10(s|W,Lk) ds for each s. The distribution A01 [Fig. 1(f)] of
avalanches touching the right boundary naturally equals A10

on average. A11(s|W,Lk) ds is the fraction of the strip spanned
by 11 spanning avalanches. We mentioned in Sec. II that the
00 avalanches have a power law that matches the full system,
whereas the 10, 01, 11 avalanches all have modified power
laws with a smaller exponent τ .

Besides different power law scaling, the universal scaling
functions for these different avalanche distributions are also
distinct. In particular, the cutoff dependence on window size is
different for internal avalanches and split avalanches, while the
spanning avalanches have both an outer and an inner cutoff due
to the window size (since avalanches must be large enough to
span the window). We present the fits of these universal scaling
functions in this section and discuss their shapes in more detail
in the next.

We know that all avalanches in the window are of one of
the 00, 10, 01, 11 types, so∫

dsA00(s|W,Lk) + 2A10(s|W,Lk) + A11(s|W,Lk) = 1.

(18)

As in the previous section, consider how each of these
distributions Azz rescales under a coarse graining by a factor
b. The zz denote our indices for the various windowed
distributions (00, 10, 01, 11). Each Azzds, being a geometrical
quantity (a fractional area), must be invariant under rescaling
(with two invariant scaling variables):

Azz(s|W,Lk) ds = Azz(s/b
1+ζ |W/b,Lk/b)ds/b1+ζ

= (1/s)Bzz

(
s
/
L

1+ζ

k ,W/Lk

)
ds. (19)

However, this is clearly not the form which makes the size and
window-width dependence of the avalanche sizes manifest. We
are allowed to factor powers of the invariant scaling variables
W/Lk and s/L

1+ζ

k out of the scaling function B:

Azz(s|Wk,Lk)

= 1

s

(
s

L
1+ζ

k

)2−τzz (
W

Lk

)−υzz

Azz

(
s

L
1+ζ

k

,
W

Lk

)

= L
(τzz−2)(1+ζ )+υzz

k W−υzz s1−τzzAzz

(
s

L
1+ζ

k

,
W

Lk

)
. (20)

The appropriate powers of s, Lk , and W to pull outside depend
upon which of the three distributions we are considering. For
the distributions A00 and A10, A01, we choose τzz and υzz

(powers of the invariant scaling variables X = s/L
1+ζ

k and
Y = W/Lk) to make the resulting scaling function go to a
constant at small X and/or Y . This way the power laws we pull
out describe the behavior of the limit of small s, and the way
in which the avalanches are cut off by the window size (as s

approaches W 1+ζ ) are described by the scaling function. On
the other hand for A11 there are no small avalanches (they have
to be large enough to span the window), and as Lk → ∞, all
avalanches span the window and become 11 avalanches, and
in this limit the distribution will not go to zero, so for this
distribution we instead pull out powers of W and s.

A. Internal avalanches

First let us consider A00(s|W,Lk)ds, the window area
spanned by avalanches of sizes in (s,s + ds) that do not
touch the boundaries. This can be computed explicitly from
the function A(w,S|Lk) [Eq. (16)], which gives the area
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covered by avalanches of width w and size S (note that for
00 avalanches, the segment pieces s = S):

A00(s|W,Lk) =
∫ W

a

W − w

W
A(S,w|Lk)dw

=
∫ W

a

dw
W − w

W
L

(τ−2)(1+ζ )
k S1−τ−1/(1+ζ )

×AwSk

(
w

S1/(1+ζ )
,
w

Lk

)

= L
(τ−2)(1+ζ )
k S1−τ−1/(1+ζ )

∫ W

a

dw
W − w

W

×AwSk

(
w

S1/(1+ζ )
,
w

Lk

)
, (21)

where (W − w)/W is the probability that an avalanche whose
center lies within the window is entirely contained in the
window (i.e., the avalanche center lies within (W − w)/2
of the center of the window). Changing variables from w to
 = w/s1/(1+ζ ),

A00(s|W,Lk) = L
(τ−2)(1+ζ )
k s1−τ

∫ W/s1/(1+ζ )

a/s1/(1+ζ )
d

W − s1/(1+ζ )

W

×AwSL

[
,

(
s

L
1+ζ

k

)1/(1+ζ )]
,

= L
(τ−2)(1+ζ )
k s1−τA00(s/W 1+ζ ,W/Lk), (22)

with no explicit dependence on the window width W (so υ00 =
0), and the same critical exponent τ00 = τ that is given by the
nonwindowed distribution. Note that Eq. (22) is of the general
form given by Eqs. (19) and (20). This scaling equation is
also consistent with our numerics: the normalization of the
distribution for small avalanches is independent of W , and
τ00 = 1.26 ± 0.02 is consistent with the bulk τ = 1.24 ± 0.04.

Using this scaling form, we fit the 00 data (jointly with 11
and 10 data) with a scaling function given by a parametrized
functional form :

A00(s|W,Lk)=L
(τ−2)(1+ζ )
k s1−τ exp

{
−

[
T00 +U00s

1/2
k +Z00s

δ00
k

+C00

(
sk

W
n00
k

)m00
]}

exp
(
A00

1

/
s + A00

2

/
s2

)
(23)

with sk = s/L
(1+ζ )
k . Our fit for the parameter n00 is 1.62, which

we believe to be 1 + ζ (see the next section). This makes the
term sk/W

n00
k = s/W 1+ζ , which is another natural invariant

scaling variable.
Figure 9 shows the results of a nonlinear least squares fit,

with shaded areas as estimations of fluctuations in the theory
corresponding to systematic error bars on our parameters. In
Eq. (23), τ and ζ (and νk which is hidden in Lk) are universal
exponents shared amongst the three different distributions,
A00

1 and A00
2 are (nonuniversal) analytic corrections to scaling

reflecting lattice effects on small avalanches, and the other
parameters encapsulate the shape of the universal scaling
function A00. The fitted results for the other universal and
nonuniversal parameters are quoted in Table II. We describe the
scaling shapes and their motivation in more detail in Sec. VI.

FIG. 9. (Color online) Internal avalanches data and fit. Shown
here are the area-weighted size distributions for internal (00)
avalanches. The lines are the joint best fit of A00, A10, and A11

to the functional forms of Eqs. (23), (26), and (32), whereas
the shaded areas are the fluctuations in theory corresponding to
the systematic covariant errors on our exponents and parameters
(individual parameter best fit values and errors are quoted in Table II).

One may note that the exponent ζ in our fits is fixed to the
literature value of 0.63. If we allow for a free fit on all the
parameters, it shifts to ζ = 0.68 ± 0.02. Although the free fit
is 2.5σ away from the accepted value of ζ , the fit with fixed
ζ = 0.63 has only a 50% higher cost than the free fit minimum,
suggesting an average of 0.5σ drift on the parameters instead
of 2.5σ as seen in Table II. This suggests three cautions:
(1) The estimate on our systematic error (0.02) is a lower bound
estimate, and in fact the systematic error should be higher.
(2) The fact that our systematic error should be higher also
implies that the scaling functions are imperfect and may
be improved upon. (3) There could be corrections due to a
crossover that depends on both λ and k, which we have not
accounted for, which are distorting the fit. The subtleties and
nuances in measuring the exponent ζ , and the possible origins
of this drift are discussed in more detail in Appendix B.

B. Split avalanches

Next, consider the avalanches that are split by one side of the
window, say the left side, with the distribution A10(s|W,Lk).
Physically, for small avalanches s and large Lk/W this is
clearly proportional to 1/W : the small avalanches extend only
a small distance into the window (smaller than the window
width), so the fractional area covered by them is proportional
to 1 over the width of the window. This leaves us with a scaling
form
A10(s|W,L)

= 1

W
L(τ ′−2)(1+ζ )s1−τ ′+1/(1+ζ )A10

(
s
/
L

1+ζ

k ,W/Lk

)
(24)

with τ ′ to be determined. Note again that Eq. (24) is of form
Eq. (20).

061103-10



AVALANCHE SPATIAL STRUCTURE AND MULTIVARIABLE . . . PHYSICAL REVIEW E 84, 061103 (2011)

TABLE II. Best fit exponents and parameters for windowed distributions. Here are the results of our joint fit for the windowed A00, A11,
A10 distributions. The corresponding scaling forms which were fit are quoted in the table alongside the parameter results. Here systematic error
bars which account for errors in the theory (see Appendix A4 for explanation) are given. The traditional standard error bars are typically ∼ 30
times smaller than the systematic error bars quoted. The last column is the drift in parameters seen when allowing ζ to be a free parameter.
Notice that these numbers are more or less similar or smaller than the estimated systematic error, except for ζ . (The problems in measuring
ζ are discussed in Appendix B) As in Table I, we quote several digits more than the error bars warrant for individual parameters, because the
errors are strongly correlated; truncating each parameter to its significant figures would yield a poor fit.

Standard errors Systematic Drift from best fit
Parameter Best fit in linear approx. errors with free ζ

Universal exponents
τ 1.2636 ±0.0006 ±0.02 −0.006
νk 0.4630 ±0.0002 ±0.01 −0.02
ζ 0.63(fixed) ±0.0007 ±0.02 +0.05

A00(sk,Wk) = exp{−[T00 + U00s
1/2
k + Z00s

δ00
k + C00( sk

W
n00
k

)m00 ]}
T00 2.488 ±0.004 ±0.1 −0.01
U00 −0.150 ±0.005 ±0.1 +0.04
Z00 0.0040 ±0.0004 ±0.01 −0.0009
δ00 2.21 ±0.03 ±0.9 +0.06
C00 5.60 ±0.01 ±0.7 +1.8
m00 1.371 ±0.003 ±0.1 −0.04
n00 (1 + ζ ) 1.621 ±0.004 ±0.7 +0.04

A10(sk,Wk) = exp{−[T10 + U10s
1/2
k + Z10s

δ10
k + C10( sk

W
n10
k

)m10 ]}
T10 1.437 ±0.004 ±0.1 −0.1
U10 0.244 ±0.244 ±0.1 −0.03
Z10 0.027 ±0.001 ±0.03 +0.005
δ10 1.64 ±0.01 ±0.4 −0.06
C10 1.153 ±0.004 ±0.2 +0.7
m10 1.962 ±0.005 ±0.2 +0.04
n10 (1 + ζ ) 1.624 ±0.004 ±0.1 +0.06

A11(sk,Wk)= exp{−[T11 + U11s
1/2
k + Z11s

δ11
k + D11( sk

Wk
)m1 + C11( sk

W
n11
k

)−m2]}
T11 0.47 ±0.03 ±1.2 −0.3
U11 −0.5 ±0.1 ±3.6 −0.5
Z11 0.21 ±0.06 ±1.7 +0.4
δ11 1.102 ±0.03 ±1.0 −0.12
D11 0.52 ±0.03 ±1.0 +0.1
C11 0.83 ±0.05 ±1.6 −0.3
m1 1.48 ±0.01 ±0.4 −0.0008
m2 1.64 ±0.02 ±0.6 −0.02
n11 (1 + ζ ) 1.655 ±0.004 ±0.1 +0.02

Corrections to scaling Azz
1 /s + Azz

2 /s2

A00
1 −0.94 ±0.02 ±0.5 +0.06

A00
2 0.27 ±0.01 ±0.4 −0.04

A10
1 0.15 ±0.01 ±0.4 −0.2

A10
2 −0.07 ±0.01 ±0.3 +0.1

A11
1 0.8 ±0.07 ±2.1 −0.3

We can also write A10 in terms of the distribution of right-
most pieces A(s,w,S|x,Lk) from Eq. (17), integrating over all

possible sizes S, all possible widths w, and all possible pieces
x (from lattice size a to window width W ):

A10(s|W,Lk) =
∫ ∞

a2
dS

∫ ∞

a

dw

∫ W

a

dx

W
A(s,w,S|x,Lk)

∼
(

s

L
1+ζ

k

)2−τ
1

s2 s1/(1+ζ )

∫ L
1+ζ

k

a2
dS

∫ Lk

a

dw

∫ W

a

dx

W
AswSxk

(
x

s1/(1+ζ )
,
S

s
,

w

S1/(1+ζ )
,
w

Lk

)
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=
(

s

L
1+ζ

k

)2−τ
1

s

∫ L
1+ζ

k /s

a2/s

d

(
S

s

) ∫ Lk/s
1/(1+ζ )

a/s1/(1+ζ )
d

(
w

s1/(1+ζ )

)∫ W/s1/(1+ζ )

a/s1/(1+ζ )

s1/(1+ζ )

W
d

(
x

s1/(1+ζ )

)
AswSxk

(
x

s1/(1+ζ )
,
S

s
,

w

S1/(1+ζ )
,
w

Lk

)

= 1

W
L

(τ−2)(1+ζ )
k s1−τ+1/(1+ζ )A10

(
s
/
L

1+ζ

k ,W/Lk

)
; (25)

dx/W is the relative probability that the avalanche intersects
the left-hand boundary, and we have changed the integration
limits at ∞ to the avalanche length scale Lk . (For w < x < W ,
the original distribution is naturally zero.) After we rewrite the
integration variables in terms of the invariant scaling variables,
we can organize the form of the scaling function into the
form of Eq. (24). This tells us that τ ′ = τ . These results are
consistent with our numerical fits: W has an exponent of −1,
and τ ′ is equal to the system τ .

With the correct power laws pulled out, we can now write
down a function to describe the data and cutoff:

A10(s|W,Lk) = 1

W
L

(τ−2)(1+ζ )
k s1−τ+1/(1+ζ )

× exp

{
−

[
T10 + U10s

1/2
k + Z10s

δ10
k

+C10

(
sk

W
n10
k

)m10
]}

exp
(
A

(10)
1

/
s+A

(10)
2

/
s2

)
.

(26)

FIG. 10. (Color online) Split avalanches data and fit. Shown here
are the area-weighted size distributions for split (10) avalanches with
different k and window size W . The lines are the joint best fit of A00,
A10, and A11 to Eqs. (23), (26), and (32), whereas the shaded areas are
the fluctuations in theory corresponding to the covariant systematic
errors on our exponents and parameters (individual parameter best fit
values and errors, Table II).

Again, our best fit n10 is nearly 1 + ζ , so sk/W
n10
k ∼ s/W 1+ζ .

Also note that this distribution has the same functional form
as A00 in Eq. (23) aside from a factor of s1/(1+ζ )/W in front.

Figure 10 shows the results of a joint nonlinear least
squares fit with the 00 and 11 avalanche data, with shaded
areas representing estimations of fluctuations in the theory
corresponding to systematic error bars on our parameters.
Here, as in the 00 distributions, τ and ζ (and νk which
is included in Lk and the scaling variables sk and Wk) are
universal exponents shared amongst the three different distri-
butions, A10

1 and A10
2 are (nonuniversal) analytic corrections to

scaling reflecting lattice effects on small avalanches, while the
other parameters describe the shape of the universal scaling
function A10(sk,Wk). Fitted results for the other universal
and nonuniversal parameters are quoted in Table II. We
describe the scaling shape and its motivation in more detail in
Sec. VI.

C. Spanning avalanches

Finally, consider the spanning avalanche distribution A11.
First, remember that most of the area in general is spanned by
the largest avalanches (since τ < 2). Therefore as Lk → ∞,
100% of the area is covered by avalanches of widths much
larger than W , and hence A11 must integrate to 1 in this limit.
This makes it natural to pull out only powers of W and s

outside the scaling form for A11.
Second, notice that the size of a 11 avalanche is basi-

cally given by its height. More specifically, as W → 0, the
avalanches have size s = Whx , where hx is the height of the
vertical cross section of the avalanche. Hence we can write
A11 in the limit W → 0 in terms of the distribution A(hx |Lk)
of randomly chosen vertical cross sections of avalanches
[Eq. (15)], choosing hx = s/W :

A11(s|W = 0,Lk)ds ∼W→0 dhxA(hx = s/W |Lk),
(27)

A11(s|W = 0,Lk) ∼W→0
1

W
A(hx = s/W |Lk),

where dhx/ds =1/W . Remembering from Eq. (15) that
A(hx |Lk) ∼ (hx/L

ζ

k )(2−τ )(1+ζ )/ζAhxk(hx/L
ζ

k )/hx , we substi-
tute s/W for hx and take the limit of Wk → 0 in Eq. (27)
to give

A11(s|W = 0,Lk) ∼Wk→0

× 1

W

(
s

W L
ζ

k

)(2−τ )(1+ζ )/ζ

Ahxk

(
s

W L
ζ

k

)
/(s/W ), (28)
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we cancel the two W ’s and add the dependence on the second
scaling variable Wk = W/Lk to derive the scaling form for
A11:

A11(s|W,Lk)

= 1

s

(
s

WL
ζ

k

)(2−τ )(1+ζ )/ζ

A11
(
s
/(

WL
ζ

k

)
,W/Lk

)
. (29)

Here limY→0 A11(X,Y ) = Ahxk(X) and thus∫
A11(X,0) dX = 1 (implied by the fact that almost all

avalanche area touches both boundaries as W/Lk → 0). Also
notice that since

X = s

WL
ζ

k

= s

L
(1+ζ )
k

Lk

W
= sk

1

Wk

, (30)

we can rewrite A11(s|W,Lk) as

A11(s|W,Lk) = 1

s

(
sk

Wk

)(2−τ )(1+ζ )/ζ

A11

(
sk

Wk

,Wk

)
. (31)

Figure 11 shows the results of a joint fit with the simulation data
of the previous 00 and 10 distributions. For the 11 distributions
we use the functional form

A11(s|W Lk) = 1

s

(
sk

Wk

)(2−τ )(1+ζ )/ζ

exp

{
−

[
T11 + U11s

1/2
k

+Z11s
δ11
k +D11

(
sk

Wk

)m1

+C11

(
sk

W
n11
k

)−m2 ]}

× exp
(
A

(11)
1

/
s
)
, (32)

FIG. 11. (Color online) Spanning avalanches data and fit. Shown
here are the area-weighted size distributions for spanning (11)
avalanches with different k and window size W . The lines are the joint
best fit value using the functional forms using Eqs. (23), (26), and (32),
whereas the shaded areas are the fluctuations in theory corresponding
to the systematic errors on our exponents and parameters (individual
parameter best fit values and errors are quoted in Table II).

τ (and also ζ and νk , which are hidden in the scaling
variables sk and Wk) are universal exponents shared amongst
the three different distributions, A1

11 is the (nonuniversal)
analytic correction to scaling reflecting lattice effects on small
avalanches, while the other parameters describe the shape of
the universal scaling function A11(sk,Wk). Note that we do
not include the term A2

11, as we have done in the 00 and 10
distributions; this term turns out to be the same as another term
in the universal scaling function in the limit of W → 0, and
so it is redundant (see Appendix A5). The best fit universal
and nonuniversal parameters are given in Table II. We discuss
in more detail the motivation and form of the scaling function
A11(X,Y ) in Sec. VI.

We also test the limiting case of our scaling function with
our data sets of W = 1 in Fig. 8 of Sec. IV D. The curves
drawn in Fig. 8 are with the function given in Eq. (32), using
the best fit values of the joint fit of A11, A10, and A00. Notice
that the predictions of Eq. (32) matches the data for Wk =
0, indicating that our function satisfies limY→0 A11(X,Y ) =
Ahxk(X) as expected.

VI. SCALING SHAPES AND RESULTS

In the previous section we wrote down scaling functions
for each type of avalanche inside a window. In principle there
are many possible parametrizations we can choose that would
be able to capture the behavior of the data. In this section we
explain how and why we chose each one, and also discuss the
scaling function in the limit of small windows.

A. Scaling shapes and functional forms

We would like to capture the scaling behavior of both
the finite size of the avalanches, and the effect of the
window size on the distributions. We choose forms inspired
by a functional renormalization group expansion for static
avalanche size distributions for all universality classes [31],
and further motivated by heuristic arguments for the cutoff de-
pendence on the two scaling variables, sk = s/L

1+ζ

k and Wk =
W/Lk .

Similar to in Sec. IV C, we start with an avalanche size
distribution of the form

A(sk) = exp
[− (

T + Us
1/2
k + Zsδ

k

)]
. (33)

We expect that as W → ∞, we will not see the effect of the
window size, and the scaling forms will go to the limit of
our proposed avalanche size distribution in Eq. (33). Keeping
this in mind, we would like to write a function of A(sk,Wk),
including the effect of the window size. For the 00 and 10
distributions, we expect the avalanche sizes to be cut off by
the window size W when W/Lk < 1, hence a cutoff dependent
on sk/Wn

k should be expected, where n > 0. While when W 
Lk , their scaling forms should go to the limit of our proposed
avalanche size distribution in Eq. (33). Therefore for the 00
and 10 avalanches, we propose a scaling form of

Azz(sk,Wk)

= exp

{
−

[
Tzz + Uzzs

1/2
k + Zzzs

δzz

k + Czz

(
sk

W
nzz

k

)mzz
]}

.

(34)
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FIG. 12. (Color online) An avalanche cut by windows in the
extreme limits. Drawn here are two fronts separated by an avalanche
event. Here we are depicting cases where this avalanche (or its
segment) is the maximum avalanche size for the 00, 10, and 11
at different window widths. Boxes of different widths and colors
are used to show the cases in which this may happen. The main
avalanche may count as a 00 avalanche for a wide window, while
part of it would count as a 11 avalanche for a smaller window; it
could also count as a 10 avalanche if it happens to cross the window
boundary. This figure illustrates our arguments for the shape of the
cutoff (the exponent nzz) given a window size W for the 00, 11, 10
cases. Another small avalanche is drawn for the 11 case to show that
the minimum size to cross the 11 window also introduces a separate
cutoff.

We have heuristic arguments for what this nzz value should
take. Figure 12, a schematic of an avalanche cut by different
windows, is meant to help illuminate our discussion. For the
00 internal avalanches, the largest avalanche contained fully
within the window should have a width w that is roughly W .
And since smax ∼ wmaxhmax ∼ w

1+ζ
max , then smax ∼ W 1+ζ and

it follows that sk ∼ W
1+ζ

k , giving us an expectation value of
n00 = 1 + ζ . Numerically, we find n00 ∼ 1.62 when we fix
ζ = 0.63. The fit plotted against one of the scaling variables
sk and also the contour plot of the scaling shape is shown in
Fig. 13.

For the 10 or 01 spilt avalanches, since we are effectively
measuring the ends of avalanches that spill into the window,
n10 depends on what the shape of the avalanche is at the edges.
The largest portion of an avalanche to spill into the window
will again be limited by the size of the window W . Here
the shape follows the roughness of the two fronts preceding
and following the avalanche, where h(x) ∼ xζ for each,
so plausibly hedge = hafter − hbefore ∼ Wζ . The size is then
limited by smax ∼ wmaxhedge ∼ W 1+ζ , giving us an expectation
value of n10 = 1.63. Numerically, we find n10 ∼ 1.62 (ζ is
estimated from 0.62–0.72 in our various measures), matching
our expectation. The fit plotted against one of the scaling
variables sk and also the contour plot of the scaling shape
is shown in Fig. 14.

Now we move on to discuss the 11 spanning avalanches.
Here the situation is slightly more complicated than the
previous two cases, due to the distribution being strongly cut
off at two length scales, as one may note from the shapes of the

(a)

(b)

FIG. 13. (Color online) Internal avalanches scaling function.
(a) Scaling collapse showing A00(sk,Wk) as a function of sk . The
separate curves show the effects of the scaled window size Wk .
(b) Logarithmic contour plot of best fit scaling function against both
scaling variables sk and Wk . Each contour reflects a drop of a factor
of e in the scaling function. The black dots are at locations of the
simulated data points used in the fit indicating where the fit should
be a reliable prediction. The red solid line is log10 Wk = n00 log10 sk ,
which is the slope at the large avalanche cutoff, with n00 = 1.62, the
best fit value (n00 = 1 + ζ = 1.63 is the expected value from our
heuristic arguments).

distributions shown in Fig. 11. First of all the avalanches need
to be large enough to cross the window, implying an inner cut-
off that depends on W

1+ζ

k /sk (i.e., the cutoff is for smin/s � 1
and so smin/s ∼ W

1+ζ

k /sk); here the argument for the minimum
size 11 avalanches follows from a similar argument for the
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(a)

(b)

FIG. 14. (Color online) Split avalanches scaling function.
(a) Scaling collapse showing A10(sk,Wk) as a function of sk . The
separation between curves shows the dependence on the scaled
window size Wk . (b) Logarithmic contour plot of best fit scaling
function against both scaling variables sk and Wk . Each contour
reflects a drop of a factor of e in the value of the scaling function. The
black dots are at locations of the simulated data points used in the fit.
The red solid line is log10 Wk = n10 log10 sk , which is the slope at the
large avalanche cutoff, with n10 = 1.62, the best fit value.

maximum size 00 avalanches. The smallest avalanche that is
able to span the window will have a width wmin = W , whereas
hmin ∼ w

ζ
min, and smin ∼ hminwmin ∼ W 1+ζ . However, in this

case sk should be in the denominator of the scaling variable,
since for smax  s > smin the probability of the having a
spanning avalanche grows as s increases. For the outer cutoff
we expect that the maximum size is given by the window size

(a)

(b)

FIG. 15. (Color online) Spanning avalanches scaling function.
(a) Scaling collapse showing A10(sk,Wk) as a function of sk . The
curves move leftward and become more sharply rounded with
increasing Wk . (b) Logarithmic contour plot of best fit scaling
function. Each contour reflects a drop of a factor of e in the
scaling function. The black dots are at locations of the simulated
data points used in the fit. The upper orange solid line is the
slope of the contour plot at the small avalanche cutoff, and has
log10 Wk = 1/1.65 log10 sk where 1.65 is the best fit n11 value. The
orange dashed has log Wk = 1/1.63 log10 sk where 1.63 is the 1 + ζ

value. The lower red solid line is log10 Wk = log10 sk , which is the
slope at the large avalanche cutoff.

W and the typical maximum height, i.e., smax ≈ Whmax, which
implies that sk

max ≈ Wk
max(hmax/L

ζ

k ). This rescaled height
(hmax/L

ζ

k ) is constant. Therefore the cutoff for the large size
avalanches should depend on sk/Wk . Hence we propose the
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scaling form below for the 11 spanning avalanches:

A11(sk,Wk) = exp

(
−

(
T11 + U11s

1/2
k + Z11s

δ11
k

+C11

(
sk

W
n11
k

)−m2

+ D11

(
sk

Wk

)m1
))

, (35)

where C11controls the strength of the inner cutoff and D11 the
outer cutoff.

Figure 15(a) shows the shape of the scaling function plotted
against one scaling variable sk , and Fig. 15(b) gives the contour
plot of this function against both variables. The best fit value
of n11 is n11 ∼ 1.65, whereas the expected one was n11 =
1 + ζ = 1.63.

Finally, one may note that in our system all the nzz turn out
to fit to our expected 1 + ζ within the error bars of ζ . One may
be tempted to set nzz as 1 + ζ and have fewer fit parameters
in one’s form; however, we recognize that our geometrical
arguments do not hold for front propagation that is super-rough
with ζ > 1, or for models that allow overhangs, so we leave
nzz as a free parameter to signify this geometrical constraint.

B. Limit of small windows

Although there are noticeable imperfections in the theory
function, the agreement is impressive between theory and
simulation as seen in Figs. 13–15. The scaling function for each
of the three distributions is a competition between two types of
terms: the rescaled size sk = s/L

1+ζ

k and the rescaled window
size Wk = W/Lk . Upon examining the fit parameters of the
scaling function, all three distributions share the characteristic
that at small Wk the terms with pure powers of s

1/2
k and s

δzz

k

become unimportant, leaving only sk/W
nzz

k for the 00 and
10 distributions, and for the 11 a sk/Wk term. Notice that
for the 00 and 10 distributions, since nzz is 1 + ζ , the Lk

dependence disappears for the universal scaling function at
small Wk . Therefore the shape of the scaling function is cut off
mainly by the window size W . In fact removing the sk terms
for these functions does not affect the shape for Wk < 5. For
experiments that study systems in the same universality class
as this one, this implies that data may be measured at large
magnifications (small windows) and fit to extract exponents
and scaling behavior without the extra, often unknown, scale
of Lk .

VII. SUGGESTIONS FOR EXPERIMENTS
AND CONCLUSIONS

What does our analysis imply for current experiments? How
should one conduct the experiment and analyze the data? Here
we discuss, for the particular case of magnetic avalanches in
Barkhausen noise, how to take into account window effects
and further enhance the collection of data.

There are two optical methods for detecting avalanche
distributions for Barkhausen noise in 2D thin films, and
both make use of the magneto-optical Kerr effect (MOKE).
When a polarized beam of light reflects off a magnetized
sample, the reflected polarization is affected depending on
the magnetization. A second polarizer can be used to filter this
signal, and then using either a photodiode [16] or an optical

microscope [5,6], we can collect data about the avalanches
from the signal. For experiments using a photodiode (let us
call this “laser reflectometry”), one can only measure the
total magnetization change over time, and not individual
avalanches. For experiments using an optical microscope
(let us call this “avalanche visualization”), one can resolve
individual avalanches and their shape.

In laser reflectometry experiments [16], we only have
information for the magnitude of magnetization as a function
of time, and cannot see which avalanches touch the boundary.
Furthermore, in current techniques the laser spots are Gaussian
in shape, and do not have sharp boundaries. However, there
seems to be no fundamental reason why the illuminated region
could not be optically generated with uniform illumination and
sharp edges, up to some diffraction limit depending upon the
geometry of the experiment. (A typical avalanche of interest
is a few microns in size, large compared to the wavelength
of optical light, which is 400–700 nm). If one could make the
edges of the laser spots sharper, one could adjust the laser spots
to flicker between two sizes, one with a radius slightly larger
than the other. Events that occur with the same magnitude
in both the large size measurement and the smaller size
measurement would be 00 internal avalanches. More elaborate
sequences of spot shapes could be used to further distinguish
01 and 10 split avalanches from 11 spanning avalanches.

For avalanche visualization experiments [5,6,22], it is
straightforward to separate the data into 00, 10, 01, and 11
avalanches for systems which have our strip geometry and flat
fronts with ζ < 1. Our analysis will remain valid with minor
corrections due to real-world experimental circumstances. For
example, sometimes the propagation direction of the front is
not parallel to the top and bottom boundaries. In this case there
would be corrections depending on the angle of the tilt θ and
the size of the window. The local heights hx would need to be
adjusted with the factor of cos θ . The 10 and 01 avalanches
would be cut off at an angle, but for self-affine (short, wide)
avalanches these size corrections are likely irrelevant.

For materials with dipolar interactions and zig-zag shaped
fronts [5,36], we are less confident that our methods can be
applied without modification. The large vertical extent of the
zig-zag front suggests that all four boundaries of the window
will matter; therefore we will need to divide avalanches into
more categories (0000, 1000, 0100, 0010, 1010...). The analy-
sis for these types of avalanches will be more complicated. This
would be an interesting problem to pursue by simultaneous
analysis of simulations and the experimental data.

Knowing how to deal with window effects can be an
important tool for these visualization experiments. By combin-
ing data at several magnifications (corresponding to different
window sizes), we resolve a larger range of length scales.
Higher magnifications will show the small avalanches, while
lower magnifications will allow us to both capture larger
avalanches and explore more fully the 00 internal avalanches.
For example, if our charge-coupled device (CCD) camera
recording the images has a resolution of 10002 pixels, and we
have a magnification range of 5×–50×, we can simultaneously
explore a range of window sizes and extend our effective spatial
resolution from 10002 to 10 0002.

More generally, this paper has provided the tools needed
to extract from the experimental data for systems of similar
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interface dynamics the critical exponents τ , ζ , and the univer-
sal scaling functions ASk , Ahk , etc. For these experiments,
we can also measure widths and heights and the average
shape, giving us an independent measure of ζ , and the
universal scaling function Ahxk . Our detailed analysis and
comprehensive methods presented in this paper enable a more
powerful interpretation of current experiments, and improved
construction of future experiments.

ACKNOWLEDGMENTS

We would like to thank A. Rosso for a useful discussion
on the proper definition of universal scaling forms, and
M. Transtrum for his insights on nonlinear least square fitting
techniques and Monte Carlo sampling. Y-J.C. and J.P.S. were
supported by NSF Grant No. DMR-1005479. S.P. would like
to acknowledge support from DOE Basic Energy Sciences
Grant No. DE-FG02-07ER46393.

APPENDIX A: METHODS AND SOFTWARE

1. Numerical simulation

The avalanche simulations in this paper were produced
using a quenched KPZ model [10,11], with dynamics
given by

∂h(x,t)

∂t
= F − k〈h〉 + γ∇2h + λ(∇h)2 + η(x,h), (A1)

where h(x,t) is the height of the front, F is the driving force,
k〈h〉 is the “demagnetization field,” linear and nonlinear terms
for the KPZ model controlled by the parameters γ and λ

respectively, and η is the Gaussian random noise. This was
run for system sizes of width L 4096, 8192, and 16 384. The
simulations have been run in a strip geometry (4096 × 8192,
8192 × 16 384, and 16 384 × 32 768) and the bottom half of
the simulations have been truncated to avoid transient effects
due to the initially flat front. The left-right boundaries have
periodic boundary conditions.

The simulations are done using a discrete cellular automa-
ton model, in which the displacement of the string h, the
time t , and the space x are all discretized and take integer
values [13,37]. For a configuration {hi}, we compute the local
force Fi at each site i, leading to a discretized version of
Eq. (A1),

Fi = F − k〈hi〉 + γ

a2

∑
nn

(hi+nn − hi)

+ λ

a2

∑
i

(hi+i − hi−1)2 + ηi(hi), (A2)

where the sum runs over all the nearest neighbors nn for the
site i, a is the discretization length that we set to 1, and ηi(hi)
is a random force. The automaton dynamics are as follows:
(1) increment the external field until one site is unstable
(Fi > 0); (2) determine for each site along the interface
whether it is stable (Fi < 0) or unstable (Fi > 0); (3) advance
all unstable sites by one step hi = hi + a = hi + 1 in parallel,
generating a new value of the pinning force ηi(hi); (4) repeat
until no sites are unstable (the end of the avalanche); (5) repeat
(1)–(4) until the front passes the top of the simulated window.

2. Nonlinear least squares fitting

We use nonlinear least squares methods for fitting data to
theory functions, minimizing a cost defined as

C(θ ) = 1

2
�i

(
y

theory
i − ydata

i (θ )

σi

)2

. (A3)

Here θ are the parameters, y is the function value, and σi is the
error on the data points. The weight σ in our case is determined
by fluctuations from run to run. Namely, we bin the data (in
equispaced log bins) for each of N simulations, calculate the
standard deviation of this value across runs, divide by

√
N − 1

to get the fluctuation in the mean of that bin.2

In our distributions, small avalanches occur more often
(leading to small error bars), but large avalanches are more im-
portant, and the smallest avalanches suffer from nonuniversal
lattice effects. So during the fitting process there is a tradeoff
between fitting the region where there are good data and where
the variations are most important. We use a number of methods
to compensate for this imbalance. (1) We set a minimum error
bar (1% of the data value) on the data points, making the error
bars on smaller avalanches larger, and therefore decreasing
their weight.3 (2) Analytic and singular corrections to scaling
can also account for nonuniversal effects. We include analytic
corrections to scaling for the lattice effects in our scaling
functions. These corrections appear in all distributions we
discuss. A more detailed discussion is in Appendix A 5. (3)
One may also skip points that have nonuniversal behavior
when fitting. For our fits in this paper, all points are included.

Another issue arises in regions where one has sparse data;
there may be bins that do not have any observations. For these
zeros, the error bar should not be zero! We can use maximum
likelihood methods to estimate theoretical errors. Say we have
N experiments, and bin the data with Li sizes in each bin i.
With the median size in the bin Si , the expected probability
for each size is ρi = A(Si)/Si , where A(S) is the theoretical
distribution of sizes, and so getting a zero in one of the bins
will have the probability p = (1 − ρi)NLi . Using maximum
likelihood, this results in a cost of C = −lnp = −NLi ln(1 −
ρi) ∼ NLiρ given that ρ is small. The residual we add to the
total cost is therefore

rzero =
√

NLiρi(θ ). (A4)

This calculation is generalizable to sparse data that are
nonzero—say one has n events in a bin for N measurements,
then the probability is p = (NLi )!

n!(NLi−n)! (1 − ρi)NLi−nρn
i , and the

appropriate error bar we get is approximately σ = 1
NLi

. One
could then use the larger of the error bars given by this
argument or the statistical error bars from the simulation. In
practice, for our simulations, we find it sufficient to use the

2This definition of fluctuations in the (simulation) data assumes that
the error in each bin is uncorrelated.

3We choose this 1% empirically. We adjust error bars to be large
enough so that the theory is not distorted over the data points with
small error bars, but not so large that the points do not matter.
Therefore this value depends on the size of the error bars overall
in the data set.
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statistical error bars but to compensate with minimum error
bars given by Eq. (A4).

In nonlinear least squares fitting, we can also include priors
in the cost if we have assumptions or information a priori
about the parameters. For example, in our problem, we put
priors on the exponents inside the scaling functions (n00, δ00,
etc.) to prevent them from going to large values and forcing
their corresponding coefficients to zero. As a result our cost
function now becomes

C(θ ) = 1

2
�i

(
y

theory
i − ydata

i (θ )

σi

)2

+ �n2 + ln
(
δ2

11

)
. (A5)

In Eq. (A5), n represents all the arbitrary exponents that occur
inside the scaling functions (nzz, mzz, δzz etc. . . .). ln(δ2

11) is
included to prevent δ11 from going to zero.

A clear understanding of these techniques for fitting is
important for increasing the reliability of our results, and
acknowledging its limitations. In Appendix A 4, we will
further discuss how to estimate the reliability of results inferred
by fitting data to a theory, generating systematic error bars for
fitting results.

3. Software for fitting

To facilitate the exploration of this problem, we have
developed a software environment, SloppyScaling, in Python
[38]. The main features of this code include various nonlinear–
least squares fitting methods [39], automatic plotting for
visualization, and methods for generating systematic error bars
on the theory.

4. Systematic error bars

We have quoted in our results systematic error bars instead
of the more commonly used standard error bars in the
parameters. Standard errors given by the covariance matrix are
expected to be erroneous for our problem, since our problem is
highly nonlinear in the parameters, and also sloppy-parameter
combinations in the sloppiest directions can vary an infinite
amount without affecting the fit. We use a method due to
Frederiksen et al. [35] for Bayesian estimation of errors. This
method involves assuming that given a theory (M) which
is imperfect, a spread of parameters (each corresponding to
different models) may fit the data (D) in an equally acceptable
matter. We can define a probability of a certain model with

P (θ |D,M) = exp[−C(θ )/T ], (A6)

where C(θ ) is the cost at a given set of parameters θ , and
the effective temperature T sets a scale for the fluctuations
away from the best fit. Since the cost at the best fit parameters
Cbf is a measure of how well the theory is doing, we choose
T = 2Cbf /N , where N is the number of parameters with
“equipartition” allowing each degree of freedom a contribution
of 1

2T to the total cost.
Ideally, after defining such a probability, one should

sample parameter space to determine the systematic error
bars on parameters. However, in our functions sampling is
nontrivial due to parameter evaporation [40]; the “entropy”
for parameters drifting to infinity overwhelms their cost in

degrading the resulting fits. Therefore we make a quadratic
estimate of the fluctuations in predictions, essentially using
propagation of error to estimate the systematic error. The
covariance matrix gives an error σstat that assumes the
temperature of 1, corresponding to P (θ |D,M) = exp[−C(θ )].
Using propagation of error, we calculate the systematic error
according to our effective temperature T = 2Cbf /N :

σsys =
√

T σcov. (A7)

The shaded plots are generated by sampling according to
the Hessian at the best fit, weighting our steps in each
eigendirection by the inverse square root of the eigenvalue,
and scaling the steps with a low temperature (TL). Then for
our ensemble of parameters we calculate the fluctuations in
the theory (residuals δrens) corresponding to the ensemble.
We scale up these fluctuations according to the temperature

defined by the best fit, or δrT =
√

Tbf

TL
δrens,

δrT = �
∂r

∂θ
δθT . (A8)

We have also estimated systematic errors by removing large k

curves (which we believe have larger corrections), and looking
at the corresponding drift in exponents and parameters. The
estimate of the systematic error that this procedure gives
is often similar (sometimes smaller) to the one using our
temperature-scaled propagation of error.

5. Corrections to scaling

Corrections to scaling play an important role in our scaling
functions; their inclusion accounts for nonuniversal effects,
and helps increase the reliability of universal predictions. In
each of the scaling functions in this paper we have included
analytic corrections to scaling that capture the lattice effects
of our automata simulations. They are of the form

exp(A1/S + A2/S2). (A9)

This expansion for small S corrects for the lattice effects
on small size avalanches, which we believe to be present
in the distributions. One can imagine that experiments may
have other origins of nonuniversal effects, such as a nonlinear
signal amplifier or distorting lens; one should always attempt
to account for and include these [29].

One caveat is that, just as adding extra free parameters
does not necessarily increase the quality of one’s fits, adding
corrections is not a guarantee for increasing the accuracy of
one’s scaling function. One should be careful in checking that
the terms included in the corrections to scaling behave as
expected in the region of interest, are subdominant when taking
the appropriate limits, and do not confuse the main universal
scaling function, either by canceling out terms or having the
same effect. An example of this complication is seen in our
studies of using the limit of the 11 distribution at W = 0 for
the local height distributions.

In Secs. IV D and V C, we take the viewpoint of using the
parametrized form of A11(s|Lk,W = 0) as the proper limit of
A(hx |Lk). However, these data should be matched as well by
A11(s|Lk,W = 1), since in effect this is what we are fitting for
the local height distributions. We can view the ratio between
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the two functions as a multiplicative correction to scaling from
lattice effects [without considering the corrections to scaling
for lattice effects in Eq. (A9)]:

f (hx,Lk) = A11(s|Lk,W = 1)

A11(s|Lk,W = 0)

= exp

{
−

[
U11

(
hx

L
1+ζ

k

)1/2

+ Z11

(
hx

L
1+ζ

k

)δ11

+C11

(
hx

L
1+ζ−n11
k

)−m2
]}

= exp
[ − (

U11L
−1/2
k h1/2

s + Z11L
−δ11
k hδ11

s

+C11L
(1+ζ−n11)m2
k h−m2

x

)]
. (A10)

Here we define hs = hx/L
ζ

k . Note, however, that for the term
C11L

(1+ζ−n11)m2
k h−m2

x , the value of the fit for n11 equals 1.65,
which is within the range of error for 1 + ζ = 1.63 ± 0.02.
Therefore this term is nearly C11h

−m2
x , where m2 = 1.61 ±

0.6. This term then has the same effect as the correction
to scaling term A11

2 /s2 at small W (since s ∼ hW for 11
avalanches at small W ). Since A11

2 /s2 is only significant in
the range of small s, which only occurs in the 11 distributions
at small W , these two parameters serve the same purpose, and
it is redundant to include both for the fits. We therefore remove
the term A11

2 /s2 for the 11 distributions for our fits.
One can also check the corrections and see that all powers of

Lk are negative, and the multiplicative correction approaches
unity as we get closer to the critical point. With our current
fit, the term with L

−1/2
k dominates the corrections. Notice

that, originally, to account for lattice effects, we have added
corrections in integer powers of hx , [exp(A11

1 /hx + A11
2 /h2

x)],
which are subdominant compared to L

−1/2
k . This implies that

there are more dangerous corrections to scaling than originally
inferred. By this method, one might check if the corrections
originally included are sufficient—in this case they are close,
but could be improved upon by systematically adding similar
terms.

In a continuum case, the concept of local heights hx should
describe a smooth shape tracing the depinning line; in our
automata, since the smallest width is naturally 1 lattice spacing,
the smallest possible window width is W = 1. In measuring
the local heights, this discreteness limits the smoothness
of the shape of hx , and gives rise to the corrections we see.
Here we have seen that if we “know” from other measurements
(in our case the 11 spanning avalanches) the right limit the
universal scaling form should take, we may find the form of
the corrections.

6. Scaling collapses and their limitations

We have argued at various points in the paper that scaling
collapses are limited and may lead to questionable results.
Here we will illustrate an example of this. Using the critical
exponents given by a free fit of the windowed distributions
(ζ allowed to vary), we collapse the sizes, heights, and widths.
Comparing the figures included here (Figs. 16–18) and the
ones in Sec. IV (Figs. 5–7), one can see that the collapses are
of similar quality.

FIG. 16. (Color online) Here we collapse the size distributions
with exponents τ = 1.25, νk = 0.44, and ζ = 0.68. Notice that the
collapses are similar to the ones shown in Fig. 5. Here only the
combination of νk(1 + ζ ) affect the scaling collapse; the large shifts
in νk and ζ mostly cancel in the product, yielding similar collapses.

The fact that such distinct values of ζ can yield similar
quality collapses may imply (1) our “systematic error” bars
on ζ , estimated to be ±0.02, are in reality much larger,
(2) collapses do not incorporate nonuniversal corrections to
scaling, and these may have an important effect, (3) collapses
are not a reliable way of verifying the values of critical
exponents. In particular, we expect corrections to scaling due
to large k to be responsible for the drift in exponents.

With these software tools and analytical methods, data
at critical points may be analyzed while including multiple
scaling variables, allowing for the treatment of a broad range
of experiments, and also allowing for a far more rigorous

FIG. 17. (Color online) Height distribution collapse. Here we
collapse the size distributions with exponents τ = 1.25, νk = 0.44,
and ζ = 0.68. Here only the combination of νkζ affect the scaling
collapse; the large shifts in νk and ζ mostly cancel in the product,
yielding similar collapses. Comparing this with the collapse shown in
Fig. 6, we see that the two collapses are comparable in quality, where
in Fig. 6 the large avalanche cutoff is collapsed nicely, and here the
smaller avalanches are collapsed better.
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FIG. 18. (Color online) Width distribution collapse. Here we
collapse the size distributions with exponents τ = 1.25, νk = 0.44,
and ζ = 0.68. Notice that the collapses are similar to the ones shown
in Fig. 7. Here only the combination of νk affects the scaling collapse
and (τ − 2)(1 + ζ ) affects the shape of the scaling collapse. Since νk

does not change significantly, the quality of the collapses are similar.

estimation of statistical and systematic errors. By using
automatic fits to entire scaling functions, instead of traditional
collapses, and by estimating systematic error bars, we facilitate
the interpretation of data with multiple scaling variables and
analytic corrections to scaling. This advance will allow for
better characterization not only of noise in magnetic thin
films and similar avalanche dynamics, but it should be broadly
applicable to all applications of critical phenomena and scaling
theories to experiments and simulations.

APPENDIX B: ROUGHNESS EXPONENT ζ

In the investigations presented in this paper, we have
found that the estimates of the critical exponent ζ have been
problematic. In this appendix, we will discuss various means
of measuring this exponent, the significance of the range of
values we find from various measurement methods, possible
origins of this range, and implications for future research.
We emphasize that any value of ζ in the range we observe
(0.62 ± 0.02 to 0.72 ± 0.02) can describe all of our data
essentially equivalently well.

The shape of the front has been studied as an identifying
feature for front propagation models, usually characterized by
defining a roughness exponent ζ , which is measured through
a height-height correlation function:

C(r) = 〈[h(x + r) − h(x)]2〉 ∼ r2ζ . (B1)

The quenched KPZ model we use is conjectured to belong
to the directed percolation depinning (DPD) universality class
[9], which is conjectured in turn to belong to the directed
percolation (DP) universality class. For a pinned interface
in DPD, the roughness exponent ζ = 0.63 ± 0.01 [10,11]
matches that of the ratio of correlation length exponents in
DP ν⊥/ν‖ = 0.6326 ± 0.0002 [41]. (Here ξ⊥ ∼ |p − pc|ν⊥

and ξ‖ ∼ |p − pc|ν‖ , where p is the branching probability,
and pc is the percolation threshold.) One may note that for
a moving interface, the picture is less well known; there

FIG. 19. (Color online) Height-height correlations for the qKPZ
simulations. Shown here are the roughness exponents for various
simulation sizes L and k. We measure the height-height correlation
function C(r) ∼ 〈

[h(x + r) − h(r)]2
〉
. A power law fit shows ζ falls

between 0.63 and 0.68. The lower red-dashed line shows ζ = 0.63
and upper black-dashed line shows ζ = 0.68. The lines were shifted
to show each individual power law.

has been numerical study that shows ζ = 0.70 [12,42], but
also arguments that the interface under this condition is not
self-affine [13], that the moving regions have ζ = 1, and the
pinned regions have ζ = 0.63. One could imagine that our
demagnetizing force, like the velocity in DPD, could lead to a
heterogeneous mixture of different scaling regions, converging
to ζ = 0.63 as k goes to 0.

Figure 19 shows measurements of the height-height corre-
lations in our model. Using finite-size scaling for a numerical
fit, we see that as k is tuned away from zero, ζ falls between
0.64 and 0.68, increasing with k. Measuring the local log slope,
one can see clearly a drift in the measured exponent in Fig. 20.

The range of our estimates (varying from ζ = 0.63 ± 0.02
to ζ = 0.72 ± 0.02) is large compared to our error estimates;
however, best fits with ζ fixed within this range had costs
within 1.5 times that of the best fit value, indicating both that
our quadratic estimates for the systematic errors are too small
and that it may be challenging to definitively measure ζ in
either simulation or experiment.

In our fits we find that ζ = 0.62 ± 0.02 for the size, width,
and height distributions joint fit, and ζ = 0.68 ± 0.02 for the
00, 10, 11 joint distributions. Notice that although the direction
of front propagation is in general along the y axis in our
problem, portions of the front will be at various angles to the
y axis. Since the local direction of the front propagation is not
fixed, we can also choose a rotationally invariant definition of
height and width: defining the height and width of an avalanche
along the axes of the moment of inertia tensor. We define
root-mean-square heights and widths as the square root of its
eigenvalues. So if we fit rms heights and widths jointly, we get
ζ = 0.72 ± 0.02, much higher than 0.62 measured along the
global axes. The difference in these two exponents seems to
indicate that the local avalanche shape has a different geometry
than the global avalanche front. Many front propagation
models spontaneously break rotational symmetry through the
orientation of the front. (Envision a circular front growing
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FIG. 20. (Color online) Roughness exponents for the qKPZ simulations. Shown here are the measurements of the local-log slope
ln[C(r)/C(r/2)]/ ln(2) of the height-height correlation function; this is a measure for the roughness exponents for various simulation sizes L

and k. The results of the local-log slope ln[C(r)/C(r/2)]/ ln(2) is consistent with what is seen in Fig. 19. The lower red-dashed line shows
ζ = 0.63, corresponding to directed-percolation depinning (DPD) and suggested by literature to be the correct value for our model. Whereas
the upper black-dashed line shows ζ = 0.68, which is the result of our fits of windowed avalanche distributions. In the blowup of the region of
r/2 = 10–100, we can see that there is a trend of larger ζ corresponding to larger k simulations.

from a point, with differing front orientations.) Note, however,
that the qKPZ dynamics is anisotropic, breaking rotational
invariance.

We have also looked at fits with the windows scaling
functions involving subsets of simulations with different k.
Using smaller values of k generally lead to fits of ζ closer to
0.63. This may point to imperfections in our theory function
(are we missing some of the scaling behavior dealing with k?),
or corrections to scaling (analytic or singular). One possibility
is that there is a residual crossover effect having to do with
another relevant variable. In the anisotropic form of the qKPZ
model, the nonlinear term Eq. (4) λ is a relevant variable,

and is nonzero under renormalization [3,9,43], and although
we simulate the model at fixed λ, we have observed there
is a crossover effect following a direction having to do with
both k and λ. We note that without the nonlinear KPZ term
the qKPZ model becomes the quenched Edwards-Wilkinson
(qEW) model, and that for the qEW ζ > 1. Literature suggests
there also may be a crossover effect due to a runaway fixed
point [43]. We think these last two possibilities can be explored
with more simulations done on different λ and k, examining
a crossover to the linear version of the qKPZ model (the
quenched Edwards-Wilkinson), to make a more complete
picture of the phase space.
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