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Abstract.  The recent availability of large-scale, time-resolved and high quality 
digital datasets has allowed for a deeper understanding of the structure and 
properties of many real-world networks. The empirical evidence of a temporal 
dimension prompted the switch of paradigm from a static representation of 
networks to a time varying one. In this work we briefly review the framework 
of time-varying-networks in real world social systems, especially focusing on the 
activity-driven paradigm. We develop a framework that allows for the encoding 
of three generative mechanisms that seem to play a central role in the social 
networks’ evolution: the individual’s propensity to engage in social interactions, 
its strategy in allocate these interactions among its alters and the burstiness 
of interactions amongst social actors. The functional forms and probability 
distributions encoding these mechanisms are typically data driven. A natural 
question arises if dierent classes of strategies and burstiness distributions, with 
dierent local scale behavior and analogous asymptotics can lead to the same 
long time and large scale structure of the evolving networks. We consider the 
problem in its full generality, by investigating and solving the system dynamics 
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in the asymptotic limit, for general classes of ties allocation mechanisms and 
waiting time probability distributions. We show that the asymptotic network 
evolution is driven by a few characteristics of these functional forms, that can 
be extracted from direct measurements on large datasets.

Keywords: network dynamics, stochastic processes, socio-economic networks, 

random graphs, networks
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1. Introduction

The interest about network-science has been considerably enhanced in recent years 
by the unprecedented availability of large, high-quality digital datasets coming from 
human on-line and digital activities. New and accurate measures on real-world exam-
ples allowed to deepen our understanding on the structure and dynamical properties of 
complex networks, and led the network-science community to switch the focus to the 
dynamical microscopic processes governing the arrangement, appearance and disap-
pearance of vertices and links. The presence of a temporal dimension in social networks 
is summarized in the time-varying-networks paradigm.

Systems that can be modeled as temporal networks are ubiquitous, as we expect 
contact in social and natural environments not to be always active and available to 
the agents of the underlying web: we are not (luckily) always at the phone with our 
friends, the spread of biological viruses and diseases (again, luckily) is not always pos-
sible as contacts between infected and susceptible nodes are not always present. The 
new approach poses some fundamental question: how can we encode the dynamics of 
the network itself? How does the temporal dimension aect the dynamical processes on 
the network?

In this work we focus on a model belonging to a family of the time-varying-net-
works, i.e. an activity-driven model of network-dynamics. Though there are many ways 
to implement a temporal dimension in networks, the activity driven approach allows 
for a rigorous analytical approach whose results gives accurate predictions on the net-
work evolution. In the activity driven approach, each site is endowed with an activity 
potential, i.e. the propensity to engage an interaction with a randomly chosen node. 
The interaction is instantaneous, meaning that the edge is created and deleted before 
the next interaction. This simple prescription strongly modifies both the topological 
and the dynamical properties of the network. Indeed, the instantaneous network fea-
tures only one edge between the two active nodes at that time. It is then customary to 
integrate these interactions over a time window to get an integrated-network. Due to 
the temporal evolution of the edges, the sparser nature of the network and the dierent 
connectivity patterns of subsequent snapshots, the dynamical evolution of models such 
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as diusion, epidemic spreading or reaction diusions is deeply modified with respect 
to the same processes evolving on a static network.

The activity driven framework introduces a dynamics on the edge creation but 
it does not tell anything on how the activity of an agents is arranged amongst its 
neighbors. A second question then arises: how and where do people invest their social 
interactions? In other words, is it possible to measure and define a mechanism able to 
reproduce the growth of real-world social circles?

Recent works have tackled this problem by applying a data-driven approach. A tie 
allocation mechanism in real systems has been accurately measured and a memory pro-
cess on top of an activity driven model has been proposed [1]. As reasonably expected, 
social interactions are not randomly arranged but they are rather concentrated towards 
the closest neighbors of the node. We are more prone to interact with already known 
pals, through already established ties, rather than connect to a new random node in 
the network.

An additional level of complexity found in real-world systems is the heterogeneous 
distribution of inter-event times, i.e. the time between two consecutive interactions 
of a single node. Also in this case the time-resolved records of human activities (e.g. 
mobile phone calls, Twitter citations, and scientific collaborations) allows us to directly 
observe the temporal activity patterns in many systems. Burstiness then appears to be 
ubiquitous in complex, real-world systems. In few words, burstiness is a significantly 
enhanced activity levels over short times followed by long periods of inactivity. In 
particular, in human dynamics burstiness has been reduced to the fat-tailed nature of 
the inter-event time between two successive interactions of the same user. Real-world 
heterogeneous inter-event time distributions have been recently implemented on top of 
the activity driven model with memory finding a non-trivial interplay between the two 
mechanisms [2] and breeding a rich phase diagram in the parameters characterizing 
‘memory’ and burstiness.

The modeling of the memory mechanisms and of the bursty dynamics are typically 
extracted from large datasets. As the focus is on long time and large scale properties of 
the evolving network, a natural question arises on the relevant features of the micro-
scopic ‘memory’ and burstiness functions, influencing the asymptotic evolution of the 
network dynamics. Does a dierent measure of the memory function and of the bursti-
ness distribution, at small scales, changes the long time dynamics of the networks? 
What classes of memory functions and waiting time distribution are going to lead to 
the same asymptotic theory?

In this work we tackle this problem by initially doing a short review of the time 
varying networks framework, especially focusing on the activity driven network para-
digm. We then extend our previous results by investigating and solving in the asymp-
totic limit an activity driven model for general classes of memory and waiting time 
distributions. Interestingly, we show that the asymptotic dynamics is driven by a few 
characteristics of the functional forms encoding memory and burstiness, that can be 
typically extracted from direct measurements on large real datasets. These provide a 
strong universality picture for the asymptotic evolution of the networks and put in a 
new perspective the data driven modelling of two important generative mechanisms, 
such as memory and burtiness.

https://doi.org/10.1088/1742-5468/aa6ce7
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The paper is organized as follows: In section 2 we review the notion of time varying 
networks and specifically of the activity-driven networks paradigm, giving a thorough 
characterization of the model and of its analytical formulation, and solving the system 
so as to characterize the network evolution and dynamics in the asymptotic limit. In 
section 3 we consider general classes of tie allocation mechanisms and we solve for the 
asymptotical dynamics in the case of general form of memory function. We also show 
the numerical results validating our analytical approach. Then, in section 4 we further 
develop the model so as to include general classes of time waiting distributions in our 
analysis. Again, a thorough analytical characterization of the system is carried out with 
a general for of burstiness and we test our predictions with numerical simulations. We 
also analyze the phase space created by the interplay of the memory mechanism and 
the bursty behavior in the general case. Finally, in section 5 we sum up the results and 
advances provided by our work and we discuss the future directions and research issues 
that have to be solved in the continuation of this work.

2. Time varying networks

Evolving networks models, mainly featuring a preferential attachment mechanisms [3], 
have been under a thorough investigations in the last years as a generative tool for 
static networks. However the modeling limit, where networks evolution and dynamics 
are strictly coupled , has been introduced only recently in network science, while before 
it was a prerogative of adaptive systems [4, 5]. How the network evolution and the 
connectivity dynamics aect dynamical processes is an extremely important point, as 
dierent topological or temporal structures may results in (very) dierent outcomes of 
a diusion or spreading process [6, 7].

The introduction of a temporal dimension challenges our mathematical and compu-
tational modeling. Indeed switching the focus to a dynamics completely coupled with 
the network itself calls for a robust and thorough study of the tools and approximations 
that one can apply. As the temporal networks framework can be applied to a variety 
of real-world systems, the field of research is quite interdisciplinary. This resulted in 
a variety of names and terminology given to the object of study: temporal graphs, 
evolving graphs, time-varying networks, time-aggregated graphs, time-stamped graphs, 
dynamic networks, dynamic graphs, dynamical graphs, and so on [8–10].

2.1. Types of temporal networks

The most commonsensical example of a temporal network is the person-to-person com-
munication [8, 11]. The recently availability of records of electronic one-to-one com-
munication perfectly fit into this framework. These datasets have been used to model 
spreading dynamics of information and viruses and helped developing immunization 
and control procedures for containing the spread of malware and electronic viruses in 
mobile devices.

Another class of real-world systems allowing for a temporal description are the one-
to many information dissemination processes. These are, for example, the broadcast of 
information through micro-blogs (like Twitter) [48], e-mails and post on on-line social 

https://doi.org/10.1088/1742-5468/aa6ce7
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media [12] and posting of information on websites [13]. In the latter case, the time 
dimension is studied to analyze the circadian patterns of Wikipedia editorial activity, 
allowing to estimate the geographical distribution of editors [13].

An additional example of temporal contacts are the proximity patterns of humans, 
i.e. the contact pattern on who is close to whom at what time. These kind of data have 
historically been gathered in small scale and with questionnaires to confined space 
gatherings of people like fraternities or oces. The recent availability of cheap radio-
frequency-identification-devices (RFID) and the Bluetooth technology installed on the 
majority of mobile devices allowed to collect large scale and long time interactions of 
several people in open space (e.g. the reality mining [14] and the SocioPatterns project 
[8]). The RFID methodology has been implemented in networks of patients, school 
children, and conference attendees [7]. Advanced data-mining procedures and spectral 
analysis methods borrowed from the tensor-theory have then been applied in order to 
develop, also in this case, optimal procedures to contain and isolate epidemics processes 
in such critical social systems as hospitals and schools [7, 16, 17].

2.2. Models of temporal networks

The number of models of time varying networks found in the literature is booming and 
we will here introduce only some of them, together with some randomized reference 
models. Then, in section 2.3 we will introduce the main framework used in this work, 
i.e. the activity driven networks family.

2.2.1. Models of social group dynamics. Basic mechanisms shaping the evolution of 
a group of individuals has been encoded in a framework for modeling social networks 
[18–20]. In this modeling scheme edges are transitory social ties (e.g. being in a con-
versation with a person) evolving accordingly to a master equation that regulates the 
entrance and exit rates of individuals from a group of a certain size. The main idea 
beneath this mechanism is a sort of reinforcement of interactions, as the longer an 
agent interacts with a group, the more it is likely to stick with the same group. Models 
of this family encode mechanisms such as focal and cyclic closure, tie strength reinforce-
ment [21], triad interactions and perceived priority activation [22].

2.2.2. Contact network models. In these models, one tries to extend the static graph 
framework to allow for a turnover of neighbors. The prescription is to select two edges 
with some probability every time step and swapping them. Since the edges are simply 
rewired, the topology and the contacts dislocation have to be determined using some 
other generative models. The real-world situation that this kind of contact sequences 
try to mimic is the change of partnerships to generate contact structures for disease 
spreading simulations [23, 24].

2.2.3. Randomized reference models. Amongst the many structural properties of net-
works, a relevant task is to quantify the importance of certain topological features of 
the empirical graph with respect to a reference model: the configuration model is the 
benchmark for static networks [25, 26], while when dealing with contact sequences 
of temporal graphs it is customary to reshue the sequence of events accordingly to 
a particular scheme [59]. This procedure aims at removing activity correlations and 

https://doi.org/10.1088/1742-5468/aa6ce7
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Table 1. The typical functional forms of the activity PDF F(a) measured from 
data. The selected PDF are, from top to bottom: power law, stretched exponential, 
power law with cuto and the log-normal distribution.

PDF F(ai)

Power law a−ν
i

Stretched exponential aν−1
i exp [−λaνi ]

Truncated power law a−ν
i exp [−λai]

Log-normal 1
ai
exp

[
− (ln(ai)−µ)2

2σ2
a

]

temporal causality of the events. However, given the (many) dierent structures and 
time-scales of temporal correlations, a unique and general-purpose procedure cannot be 
developed, so that one has to choose a suitable scheme that deletes a selected type of 
correlations to isolate its contribution to the system dynamics.

2.3. Activity driven networks

We focus now on the activity-driven networks introduced by Perra et al in [27]. There, 
an accurate modeling of the dynamics of the networks is defined by measuring the 
activity of the agents forming the system from empirical, time-resolved and large-
scale datasets. The new concept is to move the activity (i.e. its propensity to engage 
an interaction) from the links and topological measures (such as the degree of a node 
in the preferential attachment model) to the node itself. This is done by assigning to 
each node i its activity potential ai. The latter measures the fraction of interactions 
that node i performs with respect to the total number of events measured in a certain 
temporal windows. The activity then sets a clock (or activation rate) that determines 
the temporal interaction pattern of node i within the network.

The first analysis has been performed on three large-scale network datasets, i.e. col-
laborations in the journal ‘physical review letters’ (PRL) published by the American 
Physical Society, Twitter mentions, and the Internet Movie DataBase), carrying out a 
first measure of the activity potential. As for many properties measured in real-world 
systems, the distribution of such activity potential F(a) is found to be highly hetero-
geneous and broadly distributed, often reasonably approximated by a power-law, as 
shown in Table 1. More recently, the measure of the activity distribution has been 
extended to seven larger datasets containing time-stamped information about three 
dierent type of social interactions: scientific collaborations, Twitter mentions, and 
mobile phone calls, yielding dierent functional forms [1]. In figure 1 we recall the 
resulting activity distribution for each analyzed dataset analyzed in [1, 28]. All of them 
feature long tails at large activities. A truncated power law is the best candidate for all 
the APS datasets together with the MPN one. On the other hand, in the TMN a log-
normal distribution as the best candidate. Also other empirical measurements in a wide 
set of social networks show the analogous broad distributions of activity [27, 29–31].

2.3.1. The dynamical model. Let us introduce the dynamics of the model. We start 
with a network G composed by N nodes (agents) and assign to each of them an activity 
potential ai, defined as the probability per unit time δt to create new contacts.

https://doi.org/10.1088/1742-5468/aa6ce7
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The evolution process then reads as follows:

 •	 At each discrete time step t the network starts with N disconnected vertices;

 •	 With probability aiδt each vertex i becomes active and generates m links that 
are connected to m other randomly selected vertices. Non-active nodes can still 
receive connections from other active vertices, and we call Gt this instantaneous 
graph (i.e. a snapshot of the system at time t);

 •	 At the next time step t+ δt, all the edges in Gt are deleted. From this definition 
it follows that all interactions have a constant duration δt.

Hereafter without losing generality we fix δt = 1. We define the integrated network 
Gt =

⋃τ=t
τ=0 Gτ  as the union of all the instantaneous networks, we will call ki(t) the con-

nectivity of the node i in Gt; i.e. ki(t) represent the number of nodes which have been 
in contact with i up to time t.

The just outlined model is random and Markovian. Indeed, it has no memory (nodes 
choose to activate or not and who to contact regardless of their previous steps) and 
all the interactions are established among randomly chosen nodes. The topological and 
evolution properties of such a network are then completely encoded in the activity 
potential distribution F(a).

In particular, the interaction rates among nodes and thus the activity potential 
distribution define the network structure of both the cumulated and the instantaneous 
connectivity patterns. Specifically, one can trace the origin of the heterogeneous distri-
bution ρ(k) for the degree ki (i.e. the appearance of hubs) to the heterogeneous activity 
of the network elements.

Taken aside, each temporal snapshot of the network evolution is a simple sparse 
random graph with low average connectivity mainly composed by a set of stars with 
degree m. By accumulating the connections activated in the integrated graph we 
observe a dense graph with a skewed ρ(k) degree distribution. Nodes with a larger 
activity value are then more likely to become hubs and vice-versa. The emergence of 

Figure 1. The experimental activity distribution F(a) for (A) APS database for 
PRA, (B) PRB, (C) PRD, (D) PRE, (E) PRL, (F) TMN and (G) MPN (blue 
points). We also show the best candidate fit of the F(a) distribution (red solid 
lines) featuring their functional form. From [1].

https://doi.org/10.1088/1742-5468/aa6ce7
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this highly connected nodes is no more due to a positional advantage in degree space 
(as in preferential attachment) but stems from the very heterogeneous social propen-
sity instead. Hubs (or the most popular individual) are the nodes willing to repeatedly 
engage in social interactions.

For small enough time, i.e. when ki � N , a first analytic result can be obtained [27]. 
Since for ki � N  the probability of connecting an already established link is negligible, 
each active node creates m links both in Gt and in Gt. Since in a time step the average 
number of active edges is mN〈a〉, the average number of links in Gt is E(t) = mN〈a〉t 
and the degree k(t) of the integrated graph is :

k(t) =
2E(t)

N
= 2m〈a〉t. (1)

Equation (1) can be easily generalized to the case where the number of activated links 
m is not constant. In particular, if m is not correlated to the activity and to the net-
work evolution, k(t) = 2〈m〉〈a〉t, where 〈m〉 is the average number of activated links. 
In the following, we will always choose m constant for simplicity, as in the case of non 
constant m in the Master equation approach one should introduce a further probability 
distribution P̂ (m), i.e. the probability for an active node of connecting m links.

2.3.2. Master equation. In this section we introduce a more general approach, based 
on the Master equation for the probability distribution Pi(k, t) for a node of activity ai 
to have degree k at time t. The discrete Master equation reads:

Pi(k, t+ 1) = ai
N − k

N
Pi(k −m, t) + ai

k

N
Pi(k, t) + Pi(k − 1, t)

∑
j�i

aj
∑
h

Pj(h, t)m

N

+ Pi(k, t)
∑
j�i

aj
∑
h

Pj(h, t)
N −m

N
+ Pi(k, t)

∑
j∼i

aj + Pi(k, t)(1−
∑
j

aj).

 (2)
In equation (2) we used the approximation ai � 1, so that we can neglect the terms 
where two or more nodes are simultaneously active (these terms are of order aiaj or 
higher). We remark that this approximation becomes exact when equation (2) is consid-
ered as a discretization of a continuous time evolution. In that case the time step is dt 
and the activation probability is aiδt, which becomes arbitrarily small in the continu-
ous limit. The first term of the sum represents the probability that the site i is active 
and a new link is added to the system. The second term is the probability that the site 
i is active but it activates an already established linked. In the third and fourth terms, 
the symbol 

∑
j�i denotes the sum over the sites that are not yet connected to i. In par-

ticular, the third term represents the probability that one of these sites is active and 
that it connects to i. The fourth term is the probability that one of these sites is active 
but no link between j and i is established. The fifth term is the probability that one of 
the sites already connected to i is active; in this case no new link is added to i. Finally, 
the last term represents the probability that at time t all the sites are not active.

To solve the equation, further hypotheses have to be introduced. First we assume 
k � N , so that the second term can be neglected and 1

N

∑
j�iaj = 〈a〉, i.e. the average 

value of the activity. As 
∑

h Pj(h, t) = 1, after some algebra we get:
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Pi(k, t+ 1)− Pi(k, t) = −ai (Pi(k, t)− Pi(k −m, t)) ai −m〈a〉 (Pi(k, t)− Pi(k − 1, t))
 (3)

Now we can introduce the asymptotic limit of large time and large k and we can write 
a continuous equation in t and k. We get:

∂Pi(k, t)

∂t
= −m

∂Pi(k, t)

∂k
(ai + 〈a〉) + m

2

∂2Pi(k, t)

∂k2
(mai + 〈a〉). (4)

The solution of equation (4) is straightforward:

Pi(k, t) = (2π(ai + 〈a〉)t)−
1
2 exp

[
−(k −m(ai + 〈a〉)t)2

2tm(mai + 〈a〉)

]
. (5)

We remark that in equation (4) the first derivative in k is responsible for the velocity 
drift while we need to introduce the second order term to get the shape of the Gaussian 
distribution. We also notice the dierent eect of m on ai and on 〈a〉 when considering 
the width of the distribution.

2.3.3. The average degree 〈ki(t)〉. In the large time limit the solution presented in 
equation (5) reduces to a delta function:

Pi(k, t) = δ(k −m(ai + 〈a〉)t). (6)
This relation provides the simple average degree growth for a site of degree ai

〈ki(t)〉 = m(ai + 〈a〉)t (7)
that was already obtained in previous works [27, 32]. We remark that equation (7) 
can be obtained directly by multiplying by k and then averaging equation (3), so the 
hypothesis of asymptotic long time is not necessary. Moreover averaging equation (7) 
over the nodes of the graph we recover equation (1) which indeed has been obtained 
considering only ki � N .

2.3.4. The degree distribution ρ(k). Besides the average degree growth for nodes of 
activity ai, equation (6) also sets a relation between the activity and the degree distri-
butions F(ai) and ρ(k), respectively. Indeed, one can write:

ρ(k) =

∫
Pi(k, t)F (ai)dai = F (k/t− 〈a〉)/t. (8)

in particular if at large a F (ai) ∝ a−ν
i  we get that also ρ(k) ∝ k−ν at large connectivity. 

As one can see, the heterogeneous degree distribution is naturally introduced by the 
broad distribution of the activity potential a.

Remarkably, the degree distribution is found to follow the same scaling form of the 
individual activity distribution. While this results is recovered in numerical simula-
tions, empirical data show a dierent behavior. As we will discuss in the next  sections 
this is due to features which are not captured by the random uncorrelated model: 
links already explored are more likely to get activated again, the activity of social 
agents is not homogeneous in time and other structural constraints (communities or 
weighted interactions) may be relevant.

https://doi.org/10.1088/1742-5468/aa6ce7
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3. Ties activation mechanism

The just outlined activity driven model is a random model that completely misses 
correlations and second order structure of the human interaction patterns. Indeed, 
it is reasonable to expect that dierent forces govern the evolution and shaping of 
social relationships, making them far from random [33–35]. In addition, we expect 
individuals to reinforce and re-activate more likely the edges and connections that 
they already explored in a previous time [36]. The mechanisms presented in literature 
deal with connectivity ranking in the social network (e.g. the degree in the preferential 
attachment), to homophily or assortativity. Nevertheless, they completely miss the 
transposing of correlation of social events in the modeling framework. The importance 
of a correct measure and characterization of both temporal activation patterns and 
correlations mechanisms on human dynamics are key elements in order to give a cor-
rect description of social networks’ properties [11, 31, 37], dynamical features [7, 8, 
10, 15, 18, 27, 37–39], and the behavior of processes unfolding in social systems [11, 
29–32, 37, 40–43].

Recent studies tried to measure and characterize how individuals invest their social 
acts, i.e. how they allocate their limited energy, time, attention and emotional closeness 
in their social circles [44]. The most famous results on social interactions limitation is 
probably the Dunbar’s number [36, 45]: this is a cognitive limit on the number of stable 
social relationships due to the neocortical volumes [46, 47]. This limit imposed by neo-
cortical processing capacity seems to define the number of individuals with whom it is 
possible to maintain stable interpersonal relationships. Quite remarkably, this results 
have been recently validated by means of Twitter data [48].

Other studies combining automatically retrieved digital datasets and periodical 
surveys of human-compiled reports [39] revealed other features of human interactions:

 •	 There is a common and robust pattern in the way people allocate their social 
events across the members of their ego-net. Indeed, there are a few individuals 
(emotionally close to the ego) that receive a large fraction of calls: these links are 
called strong-ties [34]. On the other hand, the rest of the contacted alters sums 
up to a small fraction of the social activity: these are the so-called weak-ties [34];

 •	 the single individual still retains a particular social signature corresponding to his 
peculiar way of communication allocation;

 •	 this fingerprint remains stable in its shape even during period of intense social 
turnover (e.g. the authors focus on the switch from high-school to college) [39].

Thus, the heterogeneity usually found in the degree and in the activity distribution 
are also found in the behavior that individuals follow in their time and social capital 
allocation to their alters.

A recent work further investigated the implication of the second point of the 
above list [46]. In particular, a measure and characterization of dierent ‘social strat-
egies’ and dierent patterns of links activation-deactivation has been observed in a 
large datasets of mobile phone calls. A method to detect links activation-deactivation 
in finite-size datasets has been developed and two main social strategies (or social 
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network explorations) are found: social keepers and social explorer. While the former 
class of individuals tends to interact with a small and fixed set of alters, the latter 
are more likely to explore and connect to new nodes in the network at every interac-
tion. Moreover, a detailed characterization of correlations between an edge activation/
deactivation and a subsequent deactivation/activation is performed, together with a 
temporal characterization of the inter-event pattern (see reference [46] and the next 
section).

All of these findings suggest that there should be an underlying mechanism shaping 
and driving the social exploration in diverse social layers [49–54].

3.1. The p(k) memory rule

The activity driven framework can be expanded so as to account for the heterogeneous 
nature of individuals’ social interactions. This is achieved by means of a simple memory 
eect, encoded in a non-Markovian reinforcement process, first suggested by Karsai 
et al [31]. The introduction of this mechanism generates two fundamental results: (i) it 
inhibits the creation of new edges by a node that gets active and (ii) it generates het-
erogeneity on the edges’ weight. Indeed, the edges appearing first are the ones that are 
more likely to get activated more times in the following network’s evolution.

The memory process is defined through the probability pi(k), i.e. the probability 
that the next communication event of the node i that already contacted k dierent 
alters in the network results in the establishment of a new, k  +  1th link toward a node 
never contacted before. This probability then sets the rate, for each value of the cumu-
lative degree k, of the increment of degree from k → k + 1 for an active node.

The activity driven model is then redefined as follows: once active, the node i of 
degree k will call one of the k nodes already belonging to its circle with probability 
1  −  pi(k). The connected node is chosen in a uniform way among the k neighbors. 
Otherwise, with probability pi(k) the node i will contact a randomly chosen node never 
contacted before. Note that a node that is not active at a given time t has still the 
chance to get contacted by another node and hence increasing the value of the degree. 
This model is naturally defined for m  =  1. Setting m  >  1 would require a k-dependent 
probability function, describing how many of the activated links connects to new and 
old neighbors. This would implies an over-complication of the model. Therefore, we se 
here m  =  1.

The introduction of the memory and reinforcement mechanism deeply aects the 
structure and topology of both the instantaneous and the aggregated network. As we 
can see from figures 2((a)–(b)), the creation of new edges is inhibited with respect to 
the memory-less version of the activity driven model, so that the resulting integrated 
network is sparser. Moreover, we observe the appearance of strong and weak ties, i.e. 
we see a heterogeneity on the links’ weight distribution. Indeed, links that are appear-
ing first in time are more likely to be re-activated later, as the vertices of the edge will 
be pushed by the memory rule pi(k) to re-activate already established ties instead of 
new ones.

The measure of the pi(k) has been carried out on datasets related to scientific col-
laborations, Twitter mentions and mobile-phone-call datasets (MPC) [1]. In all these 
measures, agents are characterized by a dierent memory functions, i.e. a dierent form 
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for the probability pi(k); however, in general, pi(k) displays a power law decay to zero 
for large k, i.e. the probability of connecting to a new node is vanishing if the node has 
already been in contact with a large number of dierent alters, so that:

pi(k) ∼
(
k

ci

)−βi

for
k

ci
→ ∞. (9)

In this asymptotic expression, βi describes the tendency to explore new connections at 
large k, while ci provides a scaling value for the degree k where the asymptotic behavior 
in equation (9) is realized.

In [1], the probabilities pi(k) on dierent datasets have been fitted using the function:

pi(k) =

(
1 +

k

ci

)−βi

. (10)

Interestingly, in many cases the exponent βi has been shown to assume a single value 
for all the sites βi = β, while in general ci are distributed according to a well peaked 
distribution [1].

The specific form equation (10), measured from real dataset, is only one of the func-
tions, with dierent behavior at small k leading to the same asymptotic equation (9). 
As we will show in the following, the large scale and long time behavior of the networks 
dynamics is only determined by the large k behavior of pi(k) and the same analytic esti-
mates can be obtained for any functions displaying the same asymptotic equation (9), 
regardless of the small k form of the memory function.

3.2. The master equation with a general memory process

In the presence of a reinforcement process characterized by a general form of the 
memory pi(k), we can modify the master equation (2) for the probability for node i of 
having a degree k:

Figure 2. (a) A network with distributed activity as resulting from a memory-less 
evolution after 33 time steps. (b) The same network after the same number of steps 
with the memory process turned on and set to p(k)  =  1/(1  +  k). In both the plots 
the color is proportional to the node activity (the redder the more active) and the 
edge width is proportional to the link weight wij.
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Pi(k, t+ 1) =Pi(k − 1, t)

[
aipi(k − 1) +

∑
j�i

aj
∑
h

pj(h)

(N − h)
Pj(h, t)

]

+ Pi(k, t)

[
ai[1− pi(k)] +

∑
j�i

aj
∑
h

(
1− pj(h)

N − h

)
Pj(h, t)

]

+ Pi(k, t)
∑
j∼i

aj + Pi(k, t)

[
1−

∑
j

aj

]
,

 

(11)

where N is the number of nodes in the network, 
∑

i∼j and 
∑

i�j represent the sum over 
the nodes which are connected and not yet connected to i respectively. Equation (11) has 
been obtained in the limit ai � 1 so that multiple activation events can be neglected. 
Each term of equation (11) corresponds to a particular event that may take place in the 
system [1]. For instance, the first term of the l.h.s. of equation (11) takes into account 
the increment of the node i’s degree from k  −  1 to k. This may happen whether because 
node i gets active and contacts a new node in the system with probability aipi(k − 1) 
or because a node j never contacted before gets active and calls node i with probability 
ajpj(h)/(N − h), being h the degree of j. In the same way, the second line takes into 
account that node i does not change degree k whether because it calls an already con-
tacted node or because the non contacted nodes call other nodes in the network. In the 
last line, the first term is the probability that a node already connected to i is active, 
and the last term considers the possibility that no node in the network gets active. 
After some algebra, equation (11) reads:

Pi(k, t+ 1)− Pi(k, t) = aipi(k − 1)Pi(k − 1, t)− aipi(k)Pi(k, t)

− (Pi(k, t)− Pi(k − 1, t))
∑
j�i

aj
∑
h

Pj(h, t)pj(h)

(N − h)
. 

(12)

3.3. Asymptotic solution in the single β case

Let us first consider the case where pi(k) feature a single exponents i.e. βi = β for all 
sites. We apply to equation (12) the same asymptotic approach adopted for the case 
without memory. In particular first we introduce the hypothesis k � N  so that 

∑
j�i 

can be approximated with the sum over all sites. Then we consider the asymptotic limit 
of large t and k, in this case only the asymptotic behavior of pi(k) given by equation (9) 
becomes relevant, so that:

∂Pi(k, t)

∂t
= − ai

cβi
kβ

∂Pi(k, t)

∂k
+

aic
β
i

2kβ

∂2Pi(k, t)

∂k2
+

aiβc
β
i

kβ+1
Pi(k, t)

+

(
1

2

∂2Pi(k, t)

∂k2
− ∂Pi(k, t)

∂k

)∫
dajF (aj)aj

∫
dcjρ(cj, aj)

∫
dh

cβj
hβ

Pj(h, t),

 
(13)

where k and t can be considered continuous variables and ρ(cj, aj) is the probability for 
a node j of activity aj to have reinforcement constant cj.

https://doi.org/10.1088/1742-5468/aa6ce7


Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns

15https://doi.org/10.1088/1742-5468/aa6ce7

J. S
tat. M

ech. (2017) 054001

3.3.1. The Pi(k, t ) distribution. The long time asymptotic solution of equation (13) is 
of the form:

Pi(k, t) ∝ exp

[
− A

(k − C(ai, ci)t
1

1+β )2

t1/(1+β)

]
. (14)

Here, C(a, c) is a function of the activity a and of the reinforcement parameter c and 
it satisfies the equation:

C(a, c)

1 + β
=

acβ

C(a, c)β
+

∫
da′F (a′)

∫
dc′ρ(c′, a′)

a′c′β

C(a′, c′)β
. (15)

We do not have an exact solution for C(a, c). However, C(a, c) � (acβ)1/(1+β) for large a. 
The form of the solution can be verified by noticing that equation (14) can be written 
setting the variable x = k − C(ci, ai)t

1
1+β. Substituting it in equation (13) and imposing 

that |x| � t
1

1+β, from equation (13) we obtain:

∂Pi(x, t)

∂t
=

aiβc
β
i

C(ai, ci)1+βt

(
x
∂Pi(x, t)

∂x
+ Pi(x, t)

)
+

C(ai, ci)

2(1 + β)t
β

1+β

∂2Pi(x, t)

∂x2

(
∂2Pi(x, t)

2∂x2
− ∂Pi(x, t)

∂x

)∫
dajF (aj)

∫
dcjρ(cj, aj)

∫
dy

yajβc
β
jPj(y, t)

C(aj, cj)1+βt
.

 (16)
The solution of the latter equation is then of the form

Pi(x, t) ≈ t−
1

2(1+β) exp

(
− Ax2

t1/(1+β)

)
 (17)

thus confirming that x can be considered much smaller than t
1

1+β.

3.3.2. The average degree 〈k(ai, t)〉. An important consequence of equations (14) and 
(15) is that, for a system featuring a single memory strength β, the average degree of a 
node of activity ai and constant ci, grows as:

〈ki(t)〉 ∝ C(ai, ci) · t
1

1+β . (18)

In particular, 〈ki(t)〉 ∝ (ait)
1

1+β for large values of the activity ai. We remark that, on 
the contrary of the memoryless case, equation (18) can be obtained only considering 
the asymptotic limit of large t and k since an average over k of equation (12) does not 
provide a close expression for 〈ki(t)〉. The same behavior is found for the average degree 
of all nodes of activity ai, 〈k(ai, t)〉, where

〈k(ai, t)〉 =
∫

dc′ρ(c′|ai)C(ai, c
′)(t)

1
1+β ∝ (ait)

1
1+β (19)

As expected, the average degree grows slower than in the memoryless case (β = 0) 
where the average degree is linear in time, as found in equation (7). Specifically, the 
exponent β weighting the memory process’s strength aects the growth exponent: the 
stronger the reinforcement attitude (larger β), the slower the growth of the average 
degree 〈k(ai, t)〉 in time.
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3.3.3. The degree distribution ρ(k). The presence of a memory process also aects the 
asymptotic behavior of the degree distribution ρ(k). Indeed, the solution of the mas-
ter equation (14) tells us that in the large time limit Pi(k, t) tends to a delta function

δ(k − C(ai, ci)t
1

1+β ), so that the degree k and the activity a at a given time are linked 

by k ∼ (ait)
1

1+β. Then:

ai ∝ k1+β, (20)
and

dai = (1 + β)kβdk. (21)

Given the probability density function F (ai)dai and using equation (21), we can 
write:

F (ai)dai → ρ(k) = F (k1+β)kβdk. (22)

If F (ai) ∝ a−ν
i  we get:

F (ai)da ∝ Ca−ν
i dai

ρ(k)dk ∝ F (k1+β)kβdk = Ck−[(1+β)ν−β]dk.
 (23)

The same procedure can then be repeated for other functional forms of the F(ai) (we 
present the results in table 2).

In other words, the connectivity patterns emerging from social interactions can be 
inferred knowing the propensity of individuals to be involved in social acts, the activity, 
and the strength of the reinforcement towards previously establish ties, β. Finally it is 
worth remarking that equations (18) and (23) are not aected by the distribution of ci. 
This is an important result as it reduces the number of relevant parameters necessary 
to define the temporal evolution of the system.

3.4. The multi-β case

In one of the datasets discussed in [1], MPC, the evolution of social ties is described 
by a distribution of βi rather than a single value of it, i.e. we observe a more hetero-
geneous distribution of social attitudes with respect to the other six analyzed datasets. 
Arguably, such tendency might be driven by the dierent functions phone calls serve 
enabling us to communicate with relatives, friends or rather to companies, clients 
etc. The need to introduce dierent values of βi in the system complicates the model 
beyond analytical tractability. Nevertheless, we can show that the leading term of the 
evolving average degree can be described by introducing a simplified model, in which 
the nodes of the system feature dierent values of β, and undergo a simplified dynam-
ics that neglects, for every node, the eects of links established by others agents in the 
network.

3.4.1. Single agent version of the multi-β case. The model focuses on a single agent 
that can only call other nodes in the network (i.e. we neglect the contributions coming 
from the incoming calls) and whose parameters are ai, βi and ci. In this approximation 
we have to solve a modified version of equation (11), obtained by discarding all the 
terms containing the activity aj of the nodes j �= i:
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Pi(k, t+ 1) = aip(k − 1)Pi(k − 1, t) + Pi(k, t) [ai(1− p(k)) + (1− ai)] . (24)
The continuum limit for large degree k and time t of equation (24) is:

∂P

∂t
= −a

( c

k

)β
[
∂P

∂k
− 1

2

∂2P

∂k2

]
. (25)

The solution for Pi(k, t) is:

Pi(k, t) ∝ exp


−A

(
k − Cit

1
1+βi

)2

t1/(1+βi)


, (26)

where the Ci now reads:

Ci = [(1 + βi)c
β
i ai]

1
1+βi . (27)

3.4.2. The asymptotic growth of 〈k(ai, t)〉. Thanks to equations (26) and (27) we can 
write the average degree 〈ki(t)〉 growth as:

〈ki(t)〉 ∝ Cit
1

1+βi . (28)

The result found in equation (28) holds for a single class of nodes with a given activity 
ai and reinforcement constant ci and strength βi.

The average degree 〈k(ai, t)〉 for all nodes of activity ai can be computed by integrat-
ing over the dierent values of βi and ci:

〈k(ai, t)〉 =
∫

dci

∫
dβiρ(βi, ci|a)C(ai, ci, βi)(t)

1
1+βi (29)

where ρ(βi, ci|ai) is the probability for a node of activity ai to have a memory exponent 
and constant equal to βi and ci. By assuming that the distribution of the exponent βi 
is independent from ai and ci we can factor out the time-dependent term obtaining for 
the activity class ai:

〈k(ai, t)〉 ∝
∫

dβiρ(βi)t
1

1+βi , (30)

Table 2. The functional form of the activity PDF F(ai) and the predicted functional 
form of the ρ(k) degree distribution as found in equation (23), i.e. by replacing 
ai → k1+β. This substitution fixes the scale free parameters of the resulting 

distribution, i.e. the exponent of the power-law and of the k terms in the first three 

cases, and the STD σk =
σai

1+β  in the log-normal case.

PDF F(a) ρ(k)

Power law a−ν
i k−[(1+β)ν−β]

Stretched exponential aν−1
i exp [−λaνi ] k[(1+β)(ν−1)+β] exp

[
−τk(1+β)ν

]
Truncated power law a−ν

i exp [−λai] k−[(1+β)ν−β] exp
[
−τk(1+β)

]

Log-normal 1
ai
exp

[
− (ln(ai)−µ)2

2σ2
ai

]
1
k
exp

[
− (ln(k)−γ)2

2(
σai
1+β )2

]
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where ρ(β) is the probability distribution of the β parameter.
Let us assume that ρ(βi) can be written as a sum of Nβ Kroenecker δ-functions, i.e.:

ρ(βi) =
1∑
j Wj

Nβ∑
j=1

Wjδ(βi − β̄j). (31)

By plugging equations (31) in (30) we find that:

〈k(ai, t)〉 ∝
Nβ∑
j=1

Wjt
1

1+β̄j
t→∞−→ t

1
1+βmin , (32)

where the minimum exponent βmin = minj(β̄j) leads the asymptotic behavior of 〈k(ai, t)〉. 
In other words, 〈k(a, t)〉 evolves as in the single beta case equation (18) but with β sub-
stituted by βmin. It is interesting to notice that the nodes characterized by βmin are 
those with the weak tendency to reinforce already established social ties. They are 
social explorers [46]. Notably, our results, indicate that they lead the growth of average 
connectivity of the network.

3.5. Numerical results

We test analytical results with numerical simulations. In the latter simulation we use 
two modified versions of the reinforcement process displaying the asymptotic behavior 
described in in equation (9). In particular we either apply the constant scheme, fixing 
pi(k) to be

pCi (k) =




Ci if k � k̄,(
1

1+ k
ci

)βi

if k > k̄i.
 (33)

or the beta scheme setting the reinforcement function to:

pβi (k) =





(
1

1+ k
ci

)βi
2

if k � k̄,
(

1
1+ k

ci

)βi

if k > k̄i.

 (34)

3.5.1. Single-β. To check the results of section 3.2 we run numerical simulations fea-
turing the following parameters:

 –	 N  =  106 nodes;

 –	 the node activity ai ∈ [ε, 1.0] with ε = 10−3 and it is power-law distributed so that 
F (ai) ∝ a

−(ν)
i  with ν = 2.1;

 –	 we consider both the reinforcement functions pCi (k) and pβi (k) by fixing the param-
eters independently of the sites i; in particular we fix ci  =  1, k̄i = 10, Ci  =  0.75 
while for the exponents βi = β we consider dierent values in dierent simulation 
runs;
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 –	 we perform T  =  105 time steps, each of these corresponds to N of elementary 
steps, i.e. in a unitary time on average a node has one possibility to make a call.

The results are in excellent agreement with the analytical predictions. Figure 3 
shows the asymptotic growth of the average degree for the nodes of activity ai and 
we compare it with the analytical prediction that in the simpler case where the 
memory function is site independent is 〈k(ai, t)〉 = 〈ki(t)〉 ∝ C(ai, c)t

1
1+β ; plot evi-

dences that C(ai, c) ∼ (ai + 〈a〉)1/(1+β) is a good estimate of the unknown function 
C(ai,c). In figure 4 we plot the average degree distribution for nodes of activity ai: 
P (ai, k, t) =

∫
Pi(k, t)ρ(ci|a)dci. In the case where memory function is site independent, 

we have P (ai, k, t) = Pi(k, t), numerical simulations show indeed that P(ai, k, t) follows 
equation (14). In figure 5 we plot the degree distribution ρ(k). The exponent μ leading 
the large k behavior ρ(k) ∝ k−µ is in good agreement with the analytical prediction in 
equation (23): µ = (1 + β)ν − β.

3.5.2. Multi-β. To investigate the multi-β case we introduce the probability distribu-
tion for the exponents βi. We consider the case where ρ(βi) is independent of the activ-
ity and of the parameter ci; in particular we fix ρ(βi) to be a sum of Kronecker-delta 
according to equation (31). The parameters for the simulations are:

 –	 the memory function is pCi (k), with Ci  =  0.75, ci  =  1 and k̄i = 10 in all sites, while 
the exponent βi is assigned to each site using the distribution ρ(βi)

 –	 ρ(βi) has the form of equation (31) with Nβ = 3; i.e. βi can assume only three values. 
We consider two cases ρa(βi) and ρa(βi). In (a) β̄1 = 0.5, β̄2 = 1.5, and β̄3 = 2.5 
with probabilities (weights) W1  =  1/6, W2  =  1/3, and W3  =  1/2 (i.e. one sixth of 
the nodes has βi = 0.5, one third βi = 1.5 and a half of them βi = 2.5). While in 
(b) β̄1 = 1, β̄2 = 1.5, and β̄3 = 2 with equal probability (W1  =  1/3, W2  =  1/3, and 
W3  =  1/3).

 –	 N  =  106 nodes;

 –	 the activity ai ∈ [ε, 1.0] with ε = 10−3, is power -law distributed so that F (ai) ∝ a−ν
i  

with ν = 2.1;

 –	 T = 2 · 105 evolution steps.

Figure 6 illustrates the results of numerical simulations. The asymptotic growth of the 
average degree 〈k(ai, t)〉 together with the predicted asymptotic behavior proportional 

to t
1

1+βmin. Numerical results are in very good agreement with the asymptotic solutions 
obtained in the single agent approximation of 3.4.1 and 3.4.2.

4. Burstiness

The models presented so far are Poisson process. The average inter-event time is pro-
portional to the inverse of the node activity ai and the probability distribution Ψi(τ) 
of the inter-event (waiting) time τ for the node i decays exponentially as exp(−aiτ), 

https://doi.org/10.1088/1742-5468/aa6ce7


Asymptotic theory of time varying networks with burstiness and heterogeneous activation patterns

20https://doi.org/10.1088/1742-5468/aa6ce7

J. S
tat. M

ech. (2017) 054001

thus showing finite fluctuations [18, 22, 27, 31, 55]. Though widely used and adopted 
to quantify the dynamics of human activity and modeling trac, congestions and inci-
dents in technological networks, Poisson process are not suitable to describe human 
activities featuring skewed distribution of the inter-event times.

The dierences introduced by the heterogeneous temporal activation pattern are 
profound: while in a Poisson process the consecutive events are uniformly spaced in 
time so that very long waiting times intervals are forbidden, in the bursty (heavy-tailed) 

Figure 3. The average degree 〈k(ai, t)〉 for dierent activities. Dynamic parameters 
are fixed as described in section 3.5.1, we used as memory function pCi (k) with 
β = 0.8 in panel (a) and pβi (k) with β = 0.8 in panel (b). The time is rescaled 
as t → (ai + 〈a〉)t, the collapse of the curves evidences that (ai + 〈a〉)1/(1+β) is a 
nice estimate for C(ai,c). We also fit 〈k(ai, t)〉 ∝ (t/A)

1
1+β∗ (cyan dashed line) and 

compare the simulation with the analytical result 〈k(a, t)〉 = A · t
1

1+β (blue solid 
line).

Figure 4. The probability distribution P(ai, k, t) is plotted as a function of the 
degree, in panel (a) the memory function is pCi (k) with β = 1.0 and in panel (b) 
the memory function is pβi (k) with β = 0.7. We consider activity a ∈ [10−3, 1) 
distributed as F (a) ∝ a−2.1. We compare ten logarithmically spaced evolution times 
between t = [104, 106] by rescaling the degree k → (k − 〈k(ai, t)〉)/〈k(ai, t)〉1/2 and 
the distribution P (a, k, t) → 〈k(a, t)〉1/2P (a, k̃, t), for 〈k(ai, t)〉 we usde a numerical 
estimate of the average degree at time t for the nodes of activity ai. We also show 
the fit at large time with a Gaussian curve (black dashed line) as predicted in 
equation (14).
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process one observes localized bursts (peaks) of intense activity followed by long periods 
of inactivity.

The roots of this highly heterogeneous behavior have been addressed to the deci-
sion-based queuing process that humans apply when performing tasks and allocating 
their time and energy in their everyday activities: an individual chooses which task to 
execute over many by some perceived priority parameter, leading to a Pareto distrib-
uted waiting time between the execution of dierent tasks [22, 56]. This is in contrast 
with the first-come-first-serve and random task execution that leads to a Poisson-like 
dynamics instead.

Besides the queuing process, the circadian and weekly activity patterns of individu-
als further add heterogeneity to the inter-event time distribution. While it is reasonable 
to expect that the circadian cycle may cause inhomogeneity on human activity time 
scales (e.g. Malmgrem [57, 58] proposed a possible explanation by means of a combi-
nations of two Poisson processes featuring dierent time scales), more recent studies 
revealed that the bursty behavior remains even after a de-seasoning procedure that 
completely removes the circadian and weekly patterns from the time series of mobile 
phone communication events of individuals [55, 56]. As an additional complications, 
there is evidence that the bursty behavior is caused and/or goes together with both 
memory processes and activity correlations in human dynamics [22, 55, 56, 59].

The most easily found and measured fingerprint of a bursty behavior is a scale free, 
or heavy tailed, inter-event time τ distribution Ψi(τ) as this is the situation in many 
real-world systems (e.g. email exchange, to mobile phone calls and online chats). Of 
course, there are more mechanisms interplaying and determining the temporal activa-
tion pattern of human dynamics. Among them, we recall the short time correlations 
and long-term memory mechanisms that interact to shape the edges’ activation [59], 
while other works focus on the characterization and modeling of burstiness features 
[8, 15, 16, 59], generally highlighting how the interplay of both the inter-event time and 
the edges weight distributions aects dynamical processes on top of networks.

As the heterogeneous distribution of weight is naturally introduced by the memory 
reinforcement process introduced in section 3.1, we implement burstiness in its simplest 

Figure 5. The degree distribution ρ(k) (blue circles) left panel features simulations 
with pri (k) and β = 0.8; right panel pCi (k) and β = 1.0. The analytical predictions 
according to equation (23) are shown in red solid lines (ν = 2.1).
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form, i.e. by means of a heavy tailed inter-event distribution. The same approach has 
been recently adopted [60] to study the aging process of networks featuring power-law 
distributed inter-event times [61, 62]. The aging process refers to the fact that, when 
aggregating the network’s connections over an arbitrary time-window [ti, tf = ti + t] 
from a starting integration time ti �= t0 (where t0 is the starting time of observation of 
the system), one breaks the time-translation invariance of the network’s topological 
properties. Indeed, the degree distribution ρ(k) depends both on the integration time 
window’s length t = tf − ti and the aging time ti at which the aggregation of connec-
tions starts.

In figure 7 we show the inter-event time distribution Ψi(τ) that gives us a first order 
measure of burstiness in the real world systems under consideration. As one can see, the 
Ψi(τ) distribution is found to approximately fall as a power-law in the right tail in all 
the three layers of human activity examined [2], i.e. Ψi(τ) ∼ τ−(1+α). From these data-
sets, while the asymptotic is quite clear, the short time behavior can be very dierent 
and noisy, with bumps, quick decays and non-monotonicity. We will therefore consider 
a generic form for the waiting time distribution and solve for the long time behavior 
of the network dynamics in the general case, showing that it is only determined by the 
asymptotic of the inter-event time distribution.

4.1. Burstiness and activity

The activity of a node is defined as the average number of activations per unit of 
time. When the inter-event time distribution Ψi(τ) drives the node activations, we 
have ai = 〈τ〉−1

i = (
∫
τΨi(τ)dτ)

−1. Since the activity varies among the dierent nodes 
and it is distributed as F(ai), also Ψi(τ) should depend on the network nodes in a suit-
able way in order to reproduce F(ai). The simplest way to introduce a site dependent 
Ψi(τ) is to consider a site dependent parameter: ξi so that Ψi(τ) = Ψ(τ, ξi). Denoting 
ai = 〈τ〉−1

i = g(ξi), we get:

Figure 6. The average degree 〈k(ai, t)〉 for dierent activity classes. In panel (a) we 
consider distribution ρa(βi) and in (b) ρb(βi). The time is rescaled as t → (ai + 〈a〉)t, 
so that all the curves collapse. We also plot the predicted asymptotic growth 

〈k(a, t)〉 = A · t
1

1+βmin (solid lines).
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F (ai)dai = F (g(ξi))
dg(ξi)

dξi
dξi = Φ(ξi)dξi, (35)

so that in a system where the activity distribution is F(ai), the distribution of ξi is 
Φ(ξi) = F (g(ξi))(dg(ξi)/dξi).

This approach naturally applies to all systems where the average activation time 
〈τ〉i does not diverge. However, figure 7 shows that there exists inter-event time dis-
tributions with Ψi(τ) ∼ τ−(1+α) and 0 < α < 1, so that 〈τ〉i is infinite. In this case, 
the empirical definition of activity as the number of activations Ni per unit of time 
t (i.e. ai = limt→∞(Ni/t)) fails. For 0 < α < 1, indeed, we have that Ni ∼ tα [63] and 
the usual activity definition vanishes; however, we can adopt the generalized formula 
ai = limt→∞(N

1/α
i /t) so that ai stays finite. In this way, for 0 < α < 1, the activity ai 

only depends on the asymptotic behavior at large τ of the waiting time distribution. 
In particular, if Ψ(τ, ξi) ∼ h(ξi)

−ατ−(1+α) + o(τ−(1+α)) one can prove that ai = Dαh(ξi) 
where Dα is a constant depending only on the exponent α. Therefore, if the parameters 
ξi are distributed among the nodes of the graphs according the distribution:

Φ(ξi) ∼ F (h(ξi))
∂(h(ξi))

∂ξi
, (36)

then the activity is distributed according to F(ai).
Notice that for waiting time distributions where ξi is the only time scale charac-

terizing the process, both Ψ(τ, ξi) ∼ ξαi τ
−(1+α) + o(τ−(1+α)) and 〈τ〉i ∼ ξi. In this case, 

for any value of α, according to equations (35) and (36), ξi is an inverse activity and 
if Φ(ξi) ∼ ξ−2

i F (ξ−1
i ), the activity distribution is F(ai). In particular, if the asymp-

totic behavior of the distribution at large ai is F (ai) ∼ a−ν
i  we get that for small ξi 

Φ(ξi) ∼ ξ−2+ν
i . An example of single time-scale distribution has been introduced in [2]:

Ψc(τ, ξi) =
α

ξ−α
i

τ−(1+α), τ ∈ [ξi,+∞), (37)

Another possible choice characterized by a single time scale is:

Ψp(τ, ξi) =
α

ξi

(
1

1 + τ/ξi

)1+α

with τ ∈ [0,∞). (38)

In simulations we will use both distributions of waiting times, and we will put into evi-
dence that the asymptotic results does not depends on the short time behavior, as pre-
dicted from the analytics. We will call low-cut scheme the distribution Ψ(τ, ξi) defined 
accordingly to equation (37) and pre scheme the distribution defined by equation (38).

4.2. The model with memory and burstiness

We now consider a network dynamics with a memory function pi(k) and a waiting time 
distribution Ψ(τ, ξi). The distributions Φ(ξi) of the parameters ξi satisfies equation (35) 
for α > 1 and equation (36) for 0 < α < 1, so that the activity distribution is F(ai). The 
network G contains N nodes and we assign to each node i a parameter ξi extracted 
from Φ(ξi), then we set the integrated degree of site i ki  =  0 for all nodes. Moreover, if 
also pi(k) is site dependent, we assign to each node the relevant memory function by 
measuring e.g. the values of βi and ci.
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Before starting the evolution we extract from Ψ(τ, ξi), for each node i, the first 
activation time τi and we fix the initial time at t  =  0. The dynamics then follows the 
following steps:

(a)  Look for the node j with smallest τj. Set the time t = τj.
(b)   With probability 1− pj(kj) the site j connects to a site which have already been 

connected to j; in this case the integrated connectivities ki remain fixed for all 
nodes i. On the other hand, with probability pj(kj), j is connected to a new site; 
in this case choose with uniform probability a site j̄ among the N  −  kj nodes 
which have not yet been connected to j and increase by one unit both kj and kj̄.

(c)  Draw a waiting time δj from Ψ(τ, ξj) and update τj to δj + τj.
(d)  Return to point (a).

For this multi-site bursty evolution we cannot write the full master equation for Pi(k, t),  
the probability that node i has connectivity k at time t. Therefore, we will consider a 
simplified model to obtain an analytical insight of the problem.

4.3. The single agent analytical approach

In the single agent approximation, agents can only attach to other nodes and never 
get contacted. In this case one can consider the evolution of a single agent 0 with his 

Figure 7. The waiting-time distribution Ψ(wi) for (a) mobile phone network (circles), 
(b) the co-authorship network of the Physical Review B journal (squares), and (c) 
the TMN. We also show the fitting curve of the right tail Ψ(wi) ∝ w

−(1+α)
i  giving 

α ∼ 1.45 for the mobile calls dataset, α ∼ 2.1 for PRB and α = 0.95 in the TMN.
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waiting time distribution Ψ(τ, ξ0) and memory function p(k). In this approximation, the 
problem can be analytically solved. Let us call Q(k, t) the probability that the agent 
makes a call at time t and after the call its degree is k. The master equation governing 
the evolution of Q(k, t) reads

Q(k, t) =

∫ +∞

0

Ψ(τ, ξ0) p(k − 1)Q(k − 1, t− τ)dτ

+

∫ +∞

0

Ψ(τ, ξ0) p(k)Q(k, t− τ)dτ + δ(k, 0)δ(t, 0),
 

(39)

The first term accounts for the probability that the nodes gets active and calls, with 
probability p(k), a never contacted node, while the second term accounts for the prob-
ability for the active node to contact an already contacted neighbor.

4.3.1. The P (k, t) distribution. To obtain the probability distribution P(k, t) that the 
agent has degree k at time t we must integrate equation (39) so that:

P (k, t) =

∫ t

0

dt′Q(k, t− t′)

∫ +∞

t′
dτ Ψ(τ, ξ0). (40)

Let us perform the Fourier transform of equation (39) in time:

Q̃(k, ω) = p(k − 1)Q̃(k − 1, ω)

∫ ∞

0

eiωτΨ(τ, ξ0) dτ

+ (1− p(k)) Q̃(k, ω)

∫ ∞

0

eiωτΨ(τ, ξ0) dτ + δ(k, 0).
 

(41)

In the limit k → ∞ p(k) ∼ (c/k)β and k can be considered a continuous variable so that 
from equation (41) we end up with

Q̃(k, ω) =
( c

k

)β
[
−∂Q̃

∂k
+

1

2

∂2Q̃

∂k2

]∫ ∞

0

eiωτΨ(τ, ξ0)dτ

+ Q̃(k, ω)

∫ ∞

0

eiωτΨ(τ, ξ0)dτ + δ(k, 0).

 

(42)

Moreover taking the Fourier transform in time of equation (40) we get:

P̃ (k, ω) = Q̃(k, ω)
1

iω

∫ ∞

0

(eiωτ − 1)Ψ(τ, ξ0)dτ (43)

The issue is now to compute the asymptotic form of the integrals appearing in 
 equations (42) and (43) for small ω and then solving the equations for P (k, ω). We will 
show that in general the result depends on 〈τ〉ξ0 i.e. the average inter-event time of 

Ψ(τ, ξ0), and on the asymptotic behavior of Ψ(τ, ξ0) at large τ i.e. Ψ(τ, ξ0) ∼ wα
ξ0
τ−(1+α) 

(wξ0 = h(ξ0)
−1). In particular, there are three intervals of the exponent α leading to 

three dierent results. We present the detailed derivation in the appendix A, while we 
resume here the main results:
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P (k, t) �





1

(t/wξ0
)

α
1+β

fαβ

(
Dα,β

k

(t/wξ0
)

α
1+β

)
if α < 1,

1

(ts(wξ0
,〈τ〉ξ0 ))

1
α− β

(1+β)

fαβ

(
Dα,β

k−vα,β(t/〈τ〉ξ0 )
β/(1+β)

(ts(wξ0
,〈τ〉ξ0 ))

1
α− β

(1+β)

)
if 1 < α < 2β+2

2β+1
,

1

(t/〈τ〉ξ0 )
1

2(1+β)
exp


−Aβ

(
k−Cβ(t/〈τ〉ξ0 )

1
1+β

)2

(t/〈τ〉ξ0 )
1/(1+β)


 if α > 2β+2

2β+1
,

 

(44)

with

s(wξ0 , 〈τ〉ξ0) =

(
w

α(1+β)
ξ0

〈τ〉1+α+β
ξ0

) 1
1+β−αβ

. (45)

Since both wξ0 and , 〈τ〉ξ0 are characteristic times of the system, the dimensionality of 
s(wξ0 , 〈τ〉ξ0) turns out to be an inverse time. More over fαβ(x) is a non-Gaussian scaling 
function (see [64]), vα,β and Cβ are the drift velocity of the peak of the distribution. The 
constants vα,β, Cβ Dα,β and Aβ only depend on the constant c and on the exponents α 
and β according to their indexes.

We remark that for α < 1 the shape of the inter-event time distribution aects the 
asymptotic behavior through the value of the exponent α and of the constant wξ0 while 

for α > 2β+2
2β+1 only the average inter event time 〈τ〉ξ0 becomes relevant. Interestingly in 

the intermediate regime 1 < α < 2β+2
2β+1 all parameters are important. Finally we notice 

that the node activity a0 for α > 1 is a0 = 〈τ〉−1
ξ0

 while for α < 1 we have that the gen-

eralized activity introduced in section 4.1 is a0 = Dαw
−1
ξ0

. So we get:

P (k, t) �





1

(ta0)
α

1+β
fαβ

(
D′

α,β
k

(ta0)
α

1+β

)
if α < 1,

1

(ts(wξ0
,a−1

0 ))
1
α− β

(1+β)

fαβ

(
Dα,β

k−vα,β(ta0)
β/(1+β)

(ts(wξ0
,a−1

0 ))
1
α− β

(1+β)

)
if 1 < α < 2β+2

2β+1
,

1

(ta0)
1

2(1+β)
exp


−Aβ

(
k−Cβ(ta0)

1
1+β

)2

(ta0)1/(1+β)


 if α > 2β+2

2β+1
,

 

(46)

4.3.2. The average degree 〈k(t)〉. From equation (44), we can also evaluate the growth 
of the average degree 〈k(t)〉 as a function of time and activity a0 (see appendix for 
details):

〈k(t)〉 ∝




(a0t)
α/(1+β) if α < 1,

(a0t)
1/(1+β) if α > 1.

 (47)

The dynamical phase diagram of the extended model is summarized in figure 8. For 
α < 1, burstiness strongly aects the behavior of the system: the exponents governing 
the scaling of P(k, t) and the growth of the average degree 〈k(t)〉 depend on the value of 
α and β. In such Strong Burstiness Regime (StrBR) the scaling function fαβ(x) is not 
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Gaussian and the exponent leading the growth of 〈k(t)〉 depends on both the burstiness 
exponent α and the memory strength β.

On the other hand, for α > (2β + 2)/(2β + 1) a Suppressed Burstiness Regime 
(SupBR) is observed, where the dynamics is independent of α and the Poisson-memory 
driven behavior is fully recovered with a Gaussian scaling function and a connectivity 
growing as (a0t)

1/(1+β). In this case, the only property of the waiting time distribution 
aecting P(k, t) is the activity a0.

Finally, for 1 < α < (2β + 2)/(2β + 1) the average connectivity grows as as (a0t)
1/(1+β) 

as in the systems without burstiness, while the scaling function is not Gaussian and 
its scaling length depends on the burstiness exponent α; this behavior is named Weak 
Burstiness Regime (WBR). We therefore recover in this complex case the same phase 
diagram obtained for the waiting time distribution equation (37) and the memory func-
tion equation (10). The short time behavior of the waiting time distribution and the 
small k form of the memory p(k) do not alter the asymptotic.

4.3.3. The degree distribution. From equation (46) one can obtain the degree distribu-
tion for the multi agent problem ρ(k) by considering a system where the dynamics of 
each agent follows the single agent approximation and the activity distribution is given 
by F(ai). As we will show in the following this results can be used as a good approx-
imation of the full multi-agent system. In particular, starting from equation (46) we can 
evaluate, at fixed time t, the ρ(k) distribution finding:

ρ(k) =

∫
F (ai)P (ai, k, t)dai, (48)

Figure 8. The phase diagram for the scaling behavior of the system. We report 
the delimiting lines of the dierent scaling regions as found in equation (44). 
Specifically for α < 1 we are in the strong burstiness regime (StrBR). On the other 
hand in the 1 < α < 2 region we find two dierent behavior and we report the 
delimiting curve α = (2β + 2)/(2β + 1) as found in the second case of equation (44) 
(dashed line). For α below the delimiting line we find a weak burstiness regime 
(WBR), while above the line we fall in the suppressed burstiness regime (SupBR). 
We also show the position on the phase diagram of the simulations presented in 
this work: we test the transition between the WBR and SupBR regimes in figure 9 
(circles close to the dashed delimiting line), while in figure 10 we present the results 
corresponding to the StrBR and SupBR regions (signs on the top and bottom of 
figure).
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If the activity distribution features a power law decay at large activities i.e. 
F (ai) ∼ a−ν

i  we can show (see appendix A for details) that:

ρ(k) ∼




k−( 1+β
α

(ν−1)+1) if α < 1,

k−((1+β)ν−β) if α > 1.
 (49)

Figure 9. The scaling of the P(k, t) function of the single agent model. Simulations 
are performed using the waiting time distribution Ψc(τ, ξi) of equation (37) and 
pβi (k, t) beta-scheme equation (34) with β = 0.8 and (a) α = 1.3 (WBR region) 
and (b) α = 1.5 (SupBR regime). In both cases we set ξ0 = 1, k̄ = 10, c  =  1 and 
the curves refer to logarithmically spaced times (see legend) averaged over 105 
realizations of the dynamics. We show for comparison the Gaussian fit of the 
P(k, t) distribution (black dashed lines). (c) We show the γ1(t) skewness defined 
as γ1(t) = m3(t)/m

3/2
2 (t), where m3(t) and m2(t) are the third and second moment 

about the mean of the P(k, t) distribution. Dashed and solid lines refer to α > αc 
and α < αc respectively. (d) The 〈k(a, t)〉 curve for dierent α (see the legend) 
and the corresponding analytical prediction of equation (47) (black solid line for 
α > 1 and blue lines for α < 1). Data refer to the pre inter-event equation (38) 
and constant memory equation (33) schemes with β = 0.8 and we average over 104 
dynamical realizations.
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recovering the results of table 2 for α > 1. We remark that for α < 1 a general formula 
for ρ(k) as a function of F(ai) similar to the expressions in table 2 cannot be obtained 
since the calculation implies a convolution between F(ai) and the unknown function 

P(ai, k, t). On the other hand for α > 1 P (ai, k, t) → δ(k − C ′
β(tai)

1
1+β ) where C ′

β is a 

suitable numerical constant and therefore the integral in equation (48) can be solved 

Figure 10. In panel (a) and (b) the degree distribution P(k, t) for multi-agent 
model (N  =  106). Curves refer to logarithmically spaced times (see legends). The 
memory function is pCi (k) (see equation (33)) with βi = 0.8, Ci  =  0.75 and k̄i = 10 
independently of the node i. (a) StrBR regime. The waiting time distribution is 
Ψc(τ, ξi) with α = 0.5 (see equation (37)), ξi ∈ [1, 102] is power-law distributed as 
Φ(ξi) ∼ ξν−2

i  with ν = 2.1. (b) SupBR regime. The waiting time distribution is 
Ψp(τ, ξi) with α = 2.2 (see equation (38)). The distribution Φ(ξi) is the same as in 
panel (a). Black solid line represents a Gaussian fit accordingly to the single agent 
approximation. (c) The average degree growth with time for dierent activities 
ai (see legend), time is rescaled as t → t(ai + 〈a〉). The analytical prediction of 
equation (47) is shown in black solid line. Data are obtained using the same 
parameters of subplot (a). (d) The experimental degree distribution ρ(k) at time 
t  =  106 (blue circles) regarding the simulations of panels (a) (blue circles) and 
(b) (green squares). We also show the analytical predictions of equation (49) for 
the α < 1 (red solid line) and α > 1 (orange solid line) cases (distributions were 
vertically shifted for clarity).
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obtaining general relations between ρ(k) and F(ai) similar to the ones illustrated in 
section (3.3.3).

4.4. Numerical results

We first perform simulations of the approximated single agent dynamics described in sec-
tion 4.3. In figures 9((a)–(c)) we show that the curve α = (2β + 2)/(2β + 1) = αc marks 
a transition from a Gaussian to a non Gaussian scaling function, providing a numerical 
support to the analytical asymptotic results of equations (44) and (47). We fix β = 0.8 
so that αc � 1.385. In figure 9(a) we plot P(k, t) for α = 1.3 < αc. The left tail of curve 
rises as the evolution time increases, so that the asymmetric distribution P(k, t) cannot be 
fitted with a normal PDF. On the other hand, in figure 9(b) we observe for α = 1.5 > αc 
the opposite behavior: the P(k, t) distribution is slowly converging toward the reference 
Gaussian. Since in the proximity of αc the convergence to the asymptotic behavior is very 
slow, in figure 9(c) we enforce the numerical observations plotting at β = 0.8 the γ1(t) 
skewness for dierent times and α. As one can see, for α < αc the skewness is negative and 
its magnitude is increasing with time, revealing the growth of the left tail of P(k, t). On the 
other hand, if α > αc, after an initial lowering, γ1(t) changes its slope and goes up toward 
0, thus showing the convergence of the distribution to a symmetric PDF. Notice that the 
dierent behavior is already evident for values of α very close to the transition line αc. 
In figure 9(d), we check that α = 1 sets the transition from the 〈k(a, t)〉 ∝ tα/(1+β) to the 
t1/(1+β) behavior, as described in of equation (47). The temporal dependence of 〈k(a, t)〉 is 
plotted for dierent values of α at β = 0.8. For α < 1 the exponents are well described by 
α/(1 + β), whereas for α > 1 all the 〈k(a, t)〉 curves collapse on the single curve ∼ t1/(1+β).

In figure 10 we show the results concerning the full multi-agent case (with activity 
distributed according to F (ξi) ∼ ξν−2

i ). We show that the single-agent results provide 
a qualitatively correct approximation for the system’s dynamic. In particular, the P(k, 
t) scaling is holding both in the StrBR regime (figure 10(a)) and in the SupBR (figure 
10(b)), as all the curves collapse when rescaled accordingly to equation (44). We do 
not have an analytical approximation for the α < 1 case. Nevertheless in figure 10(b) 
we show that for α > 1 a Gaussian distribution is consistent with the long time limit. 
The single agent approximation also describes the temporal growth of the average 
degree 〈k(a, t)〉 as shown in figure 10(c); once time gets rescaled to t → t(ai + 〈a〉), all 
the 〈k(a, t)〉 collapse on the curve predicted by the first of equation (47). The long pre-
asymptotic phase with faster growth depends on the details on the memory function 
and of the burstiness and activity distribution. Finally, in figure 10(d) the single agent 
degree distribution still catches the overall behavior of ρ(k) in the multi agent (and 
multi activity) simulations. This result holds in the large degree limit (and thus for 
large activity ai) with the exponents predicted by equation (49).

5. Conclusions

We presented the basic ideas and concepts of complex networks in the modeling frame-
work of time-varying-networks. In particular we reviewed the activity driven model, 
expanding it to include generalized processes that encode simple memory eects in ties 
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choices, as well as a heterogeneous waiting time distribution leading to an emerging 
burstiness. These generalized process are typically modeled on accurate measures from 
extended datasets. We considered a very general class of memory functions and of wait-
ing time distributions, with dierent small scale behavior and analogous asymptotics.

We then framed these data driven modeling for ties selections and burstiness in a 
simple stochastic framework of network evolution, and we derived a general asymptotic 
theory of the network dynamic. We obtained the general scaling laws for the asymp-
totic degree growth, the shape of the degree distribution and the connection between 
the activity (or inter-event time) distribution and the degree one. The asymptotic solu-
tions allowed us to build a non trivial phase diagram of the network evolution due to 
the interplay of burstiness and memory process.

Interestingly, all asymptotic results for the network evolution only depends on a 
few features of the memory and waiting time probability distributions, and they are 
largely independent of other details. Therefore, accurate measures on real large dataset 
can directly focus on these characteristics. We also compared the analytical predictions 
against numerical simulations, finding a striking agreement between the two.

Of course, more complex and ‘second order’ mechanisms are present in human 
dynamics. For instance, the reinforcement of links do not happen simply by choosing 
randomly an node among the ones already contacted [59]. Also, one cannot consider 
the characterization of burstiness as complete by simply imposing a skewed waiting-
time distribution. There are more complex structures and cyclical temporal patterns 
that has to be taken in consideration [20, 22, 55, 56, 59].

Nevertheless, our approach provides a powerful framework that can be easily 
extended and improved by means of additional or dierent mechanisms shaping the net-
work evolution. Moreover, the introduced model represents a relevant step forward in 
the modeling framework of activity driven networks. In particular, the model reproduces 
with striking accuracy the asymptotic properties of all the analyzed real-world networks. 
Moreover it also provides analytical predictions accounting for both the memory process 
and burstiness that are found to be in very good agreement with empirical data.

The importance of such a characterization goes beyond the analytical point of view. 
Indeed, the generated contact sequences may be applied as a synthetic testbeds to 
forecast the outcome of dynamical processes such as epidemic processes or information 
spreading. Furthermore, the developed analytical framework allows for a simple imple-
mentation of dierent functional forms of the activity distribution, the inter-event time 
and the reinforcement process. It is also open to the insertion of additional mechanism 
in the system dynamical evolution. This is an additional strength of the adopted model-
ing framework. Indeed, we expect the continuously growing data availability to allow 
for a precise measurement of new and more complex mechanisms shaping the network 
evolution. These mechanisms will eventually have to be taken into account in a model-
ing framework, and our one, thanks to its ME formalism, provides an handy way to 
accomplish this task.
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Appendix A. Master equation in the single agent approximation

In order to calculate P(k, t) we first need to evaluate in the limit ω → 0 the integrals in 
equations (42) and (43). For this purpose we recall that the asymptotic expression for 
distribution Ψ(τ, ξ0) ∼ wα

ξ0
τα−1 means that there exists a value τ ∗ such that for τ > τ ∗ 

we have Ψ(τ, ξ0) = wα
ξ0
τα−1 + ψr(τ) where ψr(τ) is a fast enough decaying function at 

large t: e.g. 
∫
ψr(τ)τ

2dτ < ∞. In this framework we have:
∫ ∞

0

eiωτΨ(τ, ξ0)dτ ∼ 1 + γα(ω) =

{
1 + |wξ0ω|αAα if α < 1,
1 + iω〈τ〉ξ0 + |ω|δαCα if α > 1,

 

(A.1)

where Aα = Γ(1− α)
[
− cos

(
πα
2

)
+ isign(ω) sin

(
πα
2

)]
/α and

δα =

{
α
2

, Cα =

{
Γ(2− α)

[
cos

(
πα
2

)
− isign(ω) sin

(
πα
2

)]
/(α− α2) if 1 < α < 2

〈τ 2〉ξ0 if α > 2
.

 (A.2)
Then

1

iω

∫ ∞

0

(eiωτ − 1)Ψ(τ, ξ0)dτ =

{
−iAα|wξ0ω|α/ω if α < 1,
〈τ〉ξ0 if α > 1,

. (A.3)

In equation (42) keeping the leading orders for large k and small ω the first integral 
can be approximated to the zero-th order in ω while the second should be expanded as 
equation (A.1):

Q̃(k, ω) =
( c

k

)β
[
−∂Q̃

∂k
+

1

2

∂2Q̃

∂k2

]
+ Q̃(k, ω)(1 + γα(ω)) + δ(k, 0). (A.4)

We now introduce the new variable h = k1+β, so that 1
kβ

∂
∂k

= (β + 1) ∂
∂h and for large h 

1
kβ

∂2

∂k2
∼ (1 + β)2h

β
β+1 ∂

∂h. We then have:

0 = −cβ(β + 1)
∂Q̃

∂h
+ cβ

(β + 1)2

2
h

β
β+1

∂2Q̃

∂h2
+ Q̃(h, ω)γα(ω) + δ(h, 0). (A.5)

Introducing now Q̄(q, ω), the Fourier transform of Q̃(h, ω) with respect h, we have:

0 = iqcβ(β + 1)Q̄(q, ω) + cβ
(β + 1)2

2

∫
e−ihqh

β
β+1

∂2Q̃

∂h2
dh+ Q̄(q, ω)γα(ω) + 1.

 

(A.6)

For α < 1, we can plug equations (43), (A.1), (A.3) into (A.6) and keeping the first 
order for ω → 0 and q → 0 we have:

Aα|wξ0ω|αP̄ (q, ω) + icβ(1 + β)qP̄ (q, ω) = Aα|wξ0ω|α/ω, (A.7)

so that

P̄ (q, ω) =
Aα|wwξ0

ω|α/ω
Aα|wξ0ω|α + icβ(1 + β)q

, (A.8)

This equation is the same of equation (8) discussed in details in reference [64], so that 
we can extract the asymptotic solution:
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P (h, t) =
1

cβ(β + 1)(t/wξ0)
α
fα

(
h

cβ(β + 1)(t/wξ0)
α

)
 (A.9)

where fα is a Lévy function. Reintroducing the degree variable k = h1/(1+β) we obtain 
the first of equation (44).

For α > 1, we plug again equations (A.3) into (A.6) and we have:

− iω〈τ〉ξ0P̄ (q, ω)− Cα|wξ0ω|δαP̄ (q, ω)

= i(β + 1)cβqP̄ (q, ω) +
cβ

2
(1 + β)2

∫
e−iqhh

β
β+1

∂2P̃ (h, ω)

∂h2
dh+ 〈τ〉ξ0 .

 

(A.10)

Here we have to take into account the second order for small ω and q. Indeed the first order 

term in q can be subtracted by introducing the variable ω′ = ω + (β+1)cβq
〈τ〉ξ0

= ω + B
〈τ〉ξ0

q 

(where B is a numerical constant). In the direct space, this corresponds to a shift of 

the h variable h′ = h− vt with v = B
〈τ〉ξ0

. Introducing in (A.10) the shifted variables, we 

now get:

− iω′〈τ〉ξ0P̄
(
q, ω′ − B

〈τ〉ξ0
q

)
− Cα

∣∣∣∣wξ0ω
′ − Bwξ0

〈τ〉ξ0
q

∣∣∣∣
δα

P̄

(
q, ω′ − B

〈τ〉ξ0
q

)

=
cβ(1 + β)2

2

�
e−i(qh′+ω′t)

(
h′ +

B

〈τ〉ξ0
t

) β
1+β ∂2

∂h′2P

((
h′ +

B

〈τ〉ξ0
t

)
, t

)
dh′dt+ 〈τ〉ξ0 .

 (A.11)
Equation (A.11) displays dierent behaviors whether, for q → 0 and ω → 0, the term 

Cα|wξ0ω
′ − Bwξ0

〈τ〉ξ0
q|δαP̄ (q, ω′ − B

〈τ〉ξ0
q) is dominant with respect to the integral. This can 

be discussed introducing a scaling hypothesis in equation (A.11). In particular, we 

expect P (h, t) ∼ 1
tγ
g
(
h−vt
tγ

)
 with γ < 1. In the Fourier space we get:

P̄ (q, ω) =

∫
eiωt+iqh 1

tγ
g

(
h− vt

tγ

)
dtdh =

∫
eiωt+iq(h′+vt) 1

tγ
g

(
h′

tγ

)
dtdh′

=

∫
eit

′+iq′
(
ω + vq

t′

)γ

g

(
q′

q

(
ω + vq

t

)γ)
dt′

ω + vq

dq′

q
=

1

ω + vq
ḡ

(
q

(ω + vq)γ

)
,

 (A.12)
Comparing the second integral with the final result we obtain the scaling form of the 
Fourier transform of P (h′ + vt, t):

P̂ (q, ω) =

∫
eiωt+iqh′

P ((h′ + vt, t))dtdh =
1

ω
ḡ
( q

ωγ

)
 (A.13)

Let us now focus on the integral in equation (A.11). First we can approximate 
(h′ + B

〈τ〉ξ0
t) ∼ B

〈τ〉ξ0
t, as we expect h′ � t. Then we can integrate it by parts and write 

P (h′ + B
〈τ〉ξ0

t, t) as 
∫
eiω̃t+iq̃h′

P̂ (q̃, ω̃)dq̃dω̃ getting:
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− q2
�

dh′dte−iqh′
e−iω′t

(
B

〈τ〉ξ0
t

) β
1+β

∫
eiω̃t+iq̃h′

P̂ (q̃, ω̃)dq̃dω̃

= −q2
�

dtdω̃e−iω′t+iω̃t

(
B

〈τ〉ξ0
t

) β
1+β

P̂ (q, ω̃).

 

(A.14)

Now we insert the scaling form of P̂ (q, ω̃) of equation (A.12). Introducing first ω′t = z 
and then ω̃/ω′ = y, we get:

− q2

ω′ β
1+β

�
dydze−iz+izy

(
B

〈τ〉ξ0
z

) β
1+β 1

ω′y
ḡ

(
q

yγω′γ

)
= − q2〈τ〉ξ0

(〈τ〉ξ0ω′)
1+2β
1+β

H̄
( q

ω′γ

)
,

 

(A.15)

where H̄(x) is a new scaling function. Putting equations (A.15) and (A.12) (v = B
〈τ〉ξ0

) 
in equation (A.11) we get:

−iḡ
( q

ω′γ

)
− Cα

∣∣∣∣∣∣
wξ0ω

′1− 1
δα

〈τ〉
1
δα
ξ0

− Bq

(〈τ〉1+δα
ξ0

w−δα
ξ0

ω′)
1
δα

∣∣∣∣∣∣

δα

ḡ
( q

ω′γ

)

+
cβ

2
(1 + β)2

(
q

(〈τ〉ξ0ω)
′ 1+2β
2+2β

)2

H̄
( q

ω′γ

)
= 1.

 

(A.16)

Clearly from equation (A.16) we have q ∼ ω′γ and, since 1− 1
δα

> γ − 1
δα

, we get that 

(wξ0ω
′1−1/δα)/(〈τ〉1/δαξ0

) is always sub-leading with respect (Bq)/(〈τ〉1+δα
ξ0

w−δα
ξ0

ω′)1/δα. 

From equation (A.16) we get that γ can have the following values: γ = 1
δα  if the term

A(q, ω′) = Cα

∣∣∣∣∣
Bq

(〈τ〉1+δα
ξ0

w−δα
ξ0

ω′)
1
δα

∣∣∣∣∣
δα

ḡ
( q

ω′γ

)
 (A.17)

dominates over

B(q, ω′) =
cβ

2
(1 + β)2

(
q

(〈τ〉ξ0ω)
′ 1+2β
2+2β

)2

H̄
( q

ω′γ

)
 (A.18)

or γ = 1+2β
2+2β  if B(q, ω′) dominates.

In particular, if α < 2β+2
2β+1

< 2, we have δα < 2β+2
2β+1 and γ = 1

δα
= 1

α. In this case, indeed, 

since q ∼ ω′γ, we get A(q, ω′) ∼ O(1), while B(q, ω′) ∼ O(ω′ 2
α
−2 1+2β

2+2β ). The scaling form of  
P(k, t) can be recovered taking into account that the maximum of P(h, t) grows as 

h  =  vt and we can expand P(h, t) with respect to the small variable ε = h
1

1+β − (vt)
1

1+β :
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P (h, t) =
1

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α

g

(
h− vt

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α

)

=
1

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α

g



(
ε+ (vt)

1
1+β

)1+β

− vt

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α




∼ 1

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α

g

(
(1 + β)(vt)

β
1+β ε

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α

)
 

(A.19)

where the time scaling factor 〈τ〉−1−α
ξ0

wα
ξ0 is determined by the fact that in the leading 

term ω′ occurs through ω′〈τ〉+1+α
ξ0

w−α
ξ0

. Let us change the variable h into k = h
1

1+β taking 

into account that dh = (1 + β)h
β

1+β dk � (1 + β)(vt)
β

1+β dk. We obtain:

P (k, t) =
1 + β

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α (vt)−

β
1+β

g


 (k − (vt)

1
1+β )(1 + β)

(t〈τ〉−1−α
ξ0

wα
ξ0
)

1
α (vt)−

β
1+β




=
1

(ts(wξ0 , 〈τ〉ξ0))
1
α
− β

(1+β)

fαβ

(
A′

α,β

k − (Bt/〈τ〉ξ0)1/(1+β)

(ts(wξ0 , 〈τ〉ξ0))
1
α
− β

(1+β)

) 

(A.20)

where the scaling factor for the time is:

s(wξ0 , 〈τ〉ξ0) =

(
w

α(1+β)
ξ0

〈τ〉1+α+β
ξ0

) 1
1+β−αβ

 (A.21)

So we obtain the second of equation (44).
Otherwise, if α > 2β+2

2β+1, γ = 1+2β
2+2β , B(q, ω′) ∼ O(1) dominates over 

A(q, ω′) ∼ O(ω′α 1+2β
2+2β

−1). In particular in equation (A.10) we can neglect the term 

Cα|ξ0ω|δαP̄ (q, ω). So that returning to the direct space and reintroducing the variable 
k we get:

ω〈τ〉ξ0
∂P

∂t
=

cβ

kβ

(
−∂P

∂k
+

1

2

∂2P

∂k2

)
+ 〈τ〉ξ0δ(t− 0)δ(k − 0). (A.22)

Equation (A.22) has been studied in [1] showing that P(k, t) is a Gaussian function 
described by the third of equation (44).

Appendix B. The average degree 〈k(t)〉

The asymptotic average degree of the single agent can be obtained form the expression 
of P(k, t) in equation (46) as:

〈k(t)〉 =
∫

P (k, t)kdk ∝




(a0t)
α/(1+β) if α < 1,

(a0t)
1/(1+β) if α > 1.

. (B.1)
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To calculate the integrals for α < 1 one can change the integration variable into 
k̃ = k/(a0t)

α/(1+β) while for α > 1 one can notice that for t → ∞ in this case the distri-
bution P(k, t) tends to δ(k − (Ba0t)

1
1+β ).

Appendix C. Degree distribution ρ(k)

Let us evaluate the degree distribution ρ(k) in a system where all nodes display a dis-
tribution P(k, t) described by equation (46) with an activity a0 is distributed among the 
dierent agents according to F(a0). We remark that this results well describe also the 
multi agent case. At fixed time t, we have:

ρ(k) =

∫
F (a0)P (k, t)da0, (C.1)

We will consider an activity distribution behaving asymptotically as: F (a0) ∝ a−ν
0  at 

large a0. For the case α < 1 we get in the large k limit:

ρ(k) ∝
∫

1

aν0

1

(ta0)
α

1+β

fαβ

(
D′

α,β

k

(ta0)
α

1+β

)
da0 = Bk−[ 1+β

α
(ν−1)+1], (C.2)

where B is a constant. For α > 1 we note that in the large t limit the degree distribu-
tions tends to P (k, t) → δ(k − (Ba0t)

1
1+β ) so that we obtain:

ρ(k) ∝ k−[(1+β)ν−β]. (C.3)

In this case moreover the integral in (C.1) can be evaluated explicitly obtaining the 
same general form as in the model without burstiness (22):

ρ(k) =

∫
F (a0)δ(k − (Ba0t)

1
1+β )da0 = F

(
k1+β

Bt

)
kβ(β + 1)

Bt
 (C.4)
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