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The recent availability of large-scale call detail record data
has substantially improved our ability of quantifying human
travel patterns with broad applications in epidemiology.
Notwithstanding a number of successful case studies, previous
works have shown that using different mobility data
sources, such as mobile phone data or census surveys, to
parametrize infectious disease models can generate divergent
outcomes. Thus, it remains unclear to what extent epidemic
modelling results may vary when using different proxies for
human movements. Here, we systematically compare 658 000
simulated outbreaks generated with a spatially structured
epidemic model based on two different human mobility
networks: a commuting network of France extracted from
mobile phone data and another extracted from a census survey.
We compare epidemic patterns originating from all the 329
possible outbreak seed locations and identify the structural
network properties of the seeding nodes that best predict
spatial and temporal epidemic patterns to be alike. We find
that similarity of simulated epidemics is significantly correlated
to connectivity, traffic and population size of the seeding
nodes, suggesting that the adequacy of mobile phone data
for infectious disease models becomes higher when epidemics
spread between highly connected and heavily populated
locations, such as large urban areas.

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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1. Introduction
In the last decade, the analysis of individual call detail record (CDR) extracted from mobile
phone data has provided numerous insights into the quantitative patterns that characterize
human everyday life [1]. In particular, mobile phone data have proved to be an excellent
source to describe human movements at the finest scales, providing unprecedented details on
individual mobility patterns and highlighting some universal features, such as the high degree
of predictability of individual trajectories which coexists with strong heterogeneities of collective
patterns [2–5].

The availability of human mobility data at such high resolution has impacted several research fields,
ranging from urban planning to social sciences [6–11], but one of its most successful applications
has undoubtedly been the spatial epidemiology of infectious diseases [12–18]. A detailed description
of human mobility is important for characterizing and forecasting the spatial and temporal spread
of infectious diseases [19] and human movement data have become an essential ingredient for
most spatial epidemic models, both at global [20–22] and national or continental scale [23–25]. The
urgent need for accurate mobility data to inform epidemic models has been recently spotlighted
during the 2014 West Africa Ebola virus disease (EVD) outbreak [26,27]. Other recent global
public health threats, such as the 2013 MERS-CoV outbreak and the 2016 Zika virus outbreak,
have called for a prompt characterization of human movements originating from the affected
areas to properly inform modelling efforts and assess the risk of importation to the rest of the
world [28,29].

Although its importance is widely recognized, an accurate description of human mobility in a
given country or region is often challenged by several issues. First, the lack of reliable official
data sources, especially in low-income countries and regarding short-range mobility [21]. Second,
the limited availability of alternative data sources such as call detail record data owing to privacy
and ethical concerns [30]. Finally, the limited generalizability of mobility models [31] whose
performance can significantly vary depending on the specific geographical setting and modelling
assumptions [13,32], and whose use can be hindered in the absence of good calibration data.
Furthermore, epidemic modelling results can be sensitive to choices in the parametrization of mobility
models, accuracy in the definition of initial conditions [33] and to the type of mobility under
study [34].

All the above uncertainties call for a quantitative assessment of using different proxies to describe
human movements in spatial epidemic models, to better understand how modelling results are affected
by limitations inherent to the various available data sources. Among the vast literature on the use of
mobile phone data, there are a few studies presenting a side-by-side comparison of different proxies for
human mobility with applications to infectious disease modelling, especially considering mobile phone
data [35–37]. These studies pointed out some important differences in estimates of human movements
from mobile phone records when compared with official surveys or mobility models. More specifically,
travel volumes tend to be larger when measured by CDRs than by surveys or census. By contrast,
the overall network topology is usually well captured by mobile phone data, with differences mainly
affecting less connected or less populated areas [36].

In this study, we present an extensive side-by-side comparison of simulated epidemics in France
based on two commuting networks: one extracted from an official census survey and one from
a large-scale mobile phone dataset. We have previously examined the two networks in terms of
their statistical features, comparing their topology and distributions of travel flows, and found a
good statistical agreement between the two [36]. By contrast, previous results based on simulated
epidemics on the two networks have shown that simulation outcomes may vary substantially when
using one dataset or the other, depending on the specific outbreak location and disease parameters
[36]. Here, we thoroughly assess the adequacy of the mobile phone network to match epidemic
patterns that have been generated by simulations using the census data. Our goal is to test the
goodness of the mobile phone mobility network to replace the census survey mobility network, which
is explicitly assumed to be the best representation of commuting patterns in France. To this aim,
we compare the spatio-temporal properties of simulated outbreaks originating from every possible
seed of the mobility networks and quantify their similarity in terms of the epidemic invasion tree
and arrival time of first infection. We identify the features characterizing the outbreak seed nodes
that best correlate the similarity between epidemic patterns and discuss how these results can help
to assess the adequacy of mobile phone data to describe recurrent mobility patterns in spatial
epidemic models.
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2. Methods
2.1. Commuting networks
We compared simulated epidemics based on the movements of French commuters extracted from two
different data sources: the census commuting network and the mobile phone commuting network.

The census commuting network is extracted from the database of the French National Institute
of Statistics and Economic Studies [38], reporting the results of the 2007 National Census Survey.
Commuting data are collected each year by the National Census Survey, which samples all the
residents in municipalities with less than 10 000 inhabitants and about 8% of the households in the
other municipalities. Then, a full database is generated by assembling five surveys conducted on five
consecutive years, resulting in an overall coverage of about 40% of the population in municipalities with
more than 10 000 inhabitants.

The network used for our simulations was generated by creating a directed and weighted link
between any two nodes, i and j, representing the commuters home location and a work location. The
link weight, wc

ij, represents the total number of commuters who travel every day on that connection
for work or study reasons. Every individual older than 3 years is considered a student and included in
the network. The original data resolution was at the level of commune, however, their number being in
the order of 30 000, we coarse-grained the data at level of arrondissement (district). Overseas regions and
territories of France are excluded from the analysis. Then, the final census commuting network had 329
nodes and 38 077 weighted links for a total 8 019 636 commuters.

The mobile phone commuting network is extracted from a 2007 mobile phone billing information
dataset, including 5 695 974 subscribers. This dataset provides temporal and spatial information of user
activity, that is the time of every placed call and the coordinates of the tower-cell from which a call
has been placed. Following previous work [36], we identify a user’s home place as the most frequently
visited tower-cell in terms of placed calls, and his/her workplace as the second most visited tower.
In this process, we considered only users who placed more than 100 calls over the course of the
10 months covered by our dataset. To make the census commuting network and the mobile phone
commuting network comparable, we coarse-grained the latter from the tower-cell resolution to the
district resolution, following the procedure described in [36], thus mapping the mobile phone network
to the same geography of the census network.

As expected, the number of users that are estimated to live in each district is affected by a sampling
bias owing to the operator coverage that is not uniform from district to district [36]. To refer the mobile
phone network to the same population of the census network, that is the whole French population,
we adopted a simple normalization approach. We rescaled the population of each district in the mobile
phone network by the population sampling ratio nmp

i /nc
i , where nmp

i is the resident population of district
i tracked by the mobile phone dataset and nc

i is the resident population of district i reported by census.
Accordingly, each weight wmp

ij of the mobile phone network is rescaled by the same factor. With the
chosen normalization, the total population assigned to each node of the network (including commuters
and non-commuters) is equal in the two systems, whereas the relative fraction of commuters is larger
in the mobile phone network [36]. The final mobile phone commuting network has 329 nodes, 60 817
weighted links and a total of 18 750 497 commuters.

2.2. Epidemic metapopulation model
We considered a reaction–diffusion (RD) metapopulation model to simulate epidemic spreading on
the commuting networks. The metapopulation model is a spatially structured model where the whole
population is divided into sub-populations connected by mobility fluxes. In our study, we considered
the population of continental France (N = 63 201 782) structured into sub-populations corresponding to
the 329 districts connected by commuting flows.

The reaction process, describing the local disease transmission, takes place in each node of the network
where individuals are assumed to be in homogeneous mixing. We consider a rapidly transmitted
infection, such as an influenza-like-illness (ILI), whose spatial spread was found to correlate with
commuting movements [39,40]. The natural history of the disease is described by a SIR compartmental
model with no demography, in which each individual can be either susceptible (S), infectious (I) or
recovered/removed (R). Individuals in the recovered compartment develop a lifelong immunity and
can not be infected. Transitions from one state to another are ruled by two parameters: the spreading
rate β and the recovery rate μ. The epidemic model is characterized by the basic reproductive number
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R0 = β/μ, that defines the average number of infected individuals generated by one infectious individual
in a fully susceptible population, thus leading to the threshold condition R0 > 1 for an outbreak in a single
population [41].

The diffusion process which drives the disease transmission across the system is mediated by the
directed and weighted connections of the commuting network. No other type of movement is considered.
The RD process is time-discrete and the dynamics is separated into two components, corresponding to
two parts of the commuting day: work time when commuters are in their working district and home
time when commuters are in their home districts. The commuters can be infected in their workplace
during work time and then spread the disease once they travel back to their home district during home
time or vice versa. Infectious individuals are allowed to commute. For the sake of simplicity, we do
not consider different degrees of severity of clinical symptoms and potentially associated behavioural
changes. Each day of a simulation is considered as a typical working day, therefore no weekends or
holidays are introduced into the model. We define the number of susceptible, infected and recovered
who live in district i and work in district j as Sij, Iij and Rij, respectively.

At each time step, the number of new infected individuals in each node is extracted from a binomial
distribution with a number of trials equal to the number of susceptible individuals in that node, and
probability of success equals the force of infection λi of the node. The force of infection and the number
of infected individuals in each node vary in time and depend on the part of the day we are considering.
We define the force of infection during home time as λh

i and during work time as λw
i .

They can be expressed as

λh
i = β

Iii + ∑
j∈νi

Iij

Nii + ∑
j∈νi

Nij
(2.1)

and

λw
i = β

Iii + ∑
j∈νi

Iji

Nii + ∑
j∈νi

Nji
, (2.2)

where Nij = Sij + Iij + Rij is the total population of commuters living in i and working in j, while Nii are
the residents of i who do not commute. The number of susceptible individuals that are present in node i
during home time and work time can be computed as

Sh
i = Sii +

∑

j∈νi

Sij (2.3)

and
Sw

i = Sii +
∑

j∈νi

Sji, (2.4)

where the sums run over the neighbourhood of node i : j ∈ νi.

2.3. Numerical simulations and data analysis
We systematically considered each of the 329 network nodes as the initial seed of simulated outbreaks
and for each seed we ran 1000 stochastic realizations on both networks, thus resulting in 658 000
simulated epidemics. Throughout our study, we model an ILI transmission characterized by an
exponentially distributed infectious period with average μ−1 = 3 days. We chose a value of β, such that
the local basic reproductive number is set to the constant value R0 = 1.5 for all simulations. For such
value of R0, the whole system is above the epidemic threshold and the probability of generating a global
outbreak is close to 1 for every simulated epidemic [42]. Each simulation is initialized with a number of
infected individuals in the seed node equal to 10 and it is run until the epidemic stops spreading across
the network (Ii = 0, ∀i). As output of each stochastic simulation we considered: (i) the arrival time ti of the
infection in node i, defined as the first time step an infected individual is recorded in a fully susceptible
subpopulation; (ii) the daily incidence in each node, defined as the number of new infected at every time
step; (iii) the daily prevalence in each node, defined as the number of total infected at every time step; and
(iv) the epidemic infection path which specifies the disease progression in space by defining a directed link
i → j from the infecting to the infected subpopulation [43].

To compare the temporal diffusion in the two networks, we computed the average arrival time in
each sub-population i over the 1000 model realizations for a given seed in the mobile phone network
〈tM

i 〉 and in the census network 〈tC
i 〉. The Spearman rank correlation coefficient rs between 〈tM

i 〉 and 〈tC
i 〉

was computed to measure the strength of monotonic relationship between the mean arrival times in the
two networks, for each seed s. It is worth recalling that mobility networks extracted from mobile phone

 on July 6, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


5

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160950

................................................
data systematically overestimated the commuting fluxes with the considered normalization, therefore
accelerating the speed of invasion of the disease [36]. To discount the systematic difference in arrival
times owing to such bias, we used a non-parametric measure to focus on the temporal ordering of the
infected sub-populations.

To investigate the spatial spread of simulated epidemics, we built the infection path for each model
realization and then we computed the minimum spanning tree of all the infection paths originating
from the same outbreak seed [43]. The infection path is built by adding a directed and weighted link
between node i and node j when node i has seeded the infection in node j. The weight represents the
fraction of simulations in which the seeding event was observed on that link. The minimum spanning
tree extrapolates the most likely transmission route of the infection for a given epidemic scenario,
i.e. for a given seed, by minimizing the weighted distance between the origin node and all the other
nodes of the network. We then compared the similarity of spatial epidemic patterns by computing the
Jaccard index of the minimum spanning trees. For each different outbreak seed s, the Jaccard index is
defined as

J(s, M, C) = {M} ∩ {C}
{M} ∪ {C} , (2.5)

where {M} represents the set of links in the minimum spanning tree of the mobile phone network
epidemics and {C} is the set of links in the minimum spanning tree of the census network.

2.4. Network features
To identify the characteristics of the outbreak seed that were most likely to generate similar epidemic
patterns on the two networks, we used the Pearson correlation coefficient to correlate all the values
of rs and J(s, M, C) with a number of centrality measures characterizing the seed s. More specifically,
we considered the following features measured on both mobility networks and labelled as M and C
to identify the mobile phone network and the census network, respectively. First, the node degree ki,
defined as the number of edges in the graph that are incident on node i and that can be ingoing, outgoing
or the sum of the two.

Second, the node strength or traffic, Ti (ingoing, outgoing and total) defined as

Ti,in =
∑

j∈νi

wij, (2.6)

Ti,out =
∑

j∈νi

wji (2.7)

and Ti,tot = Ti,in + Ti,out. (2.8)

We also considered various combinations of these quantities to quantify differences between
the networks:

— absolute difference in degree: |kC
x − kM

x |;
— relative difference in degree: |kC

x − kM
x |/kC

x ;

— absolute difference in traffic: |TC
x − TM

x |; and

— relative difference in traffic: |TC
x − TM

x |/TC
x ;

where x can be ingoing, outgoing or total. As an additional measure of similarity, we analysed the local
network topology of each seed by means of the loyalty [44]. The loyalty Θ is a quantity that measures the
fraction of preserved neighbours of a node in the two networks. If we define VC

i as the set of neighbours

of node i in the census network and VM
i as the same set in the mobile phone network, then Θ

C,M
i is given

by the Jaccard index between VC
i and VM

i :

Θ
C,M
i = VC

i ∩ VM
i

VC
i ∪ VM

i

. (2.9)

Loyalty takes values in the interval [0, 1], with Θ = 0 indicating that no neighbours are retained, and
Θ = 1 that exactly the same set of neighbours is preserved. Given that the networks under study are
directed, loyalty can be measured on the ingoing, outgoing and complete set of neighbours.
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Figure 1. Distributions of similarity measures of epidemic simulations and their correlation. Frequency distributions of the Spearman’s
rank correlation coefficient measured between arrival times on the two networks (a) and the Jaccard similarity index between the
infection trees on the two networks (b). Each value of rs and J(s) is computed over a statistical ensemble of 1000 simulations for a given
outbreak seed s. Both histograms correspond to 329 binned values, one for each node of the commuting networks, and solid lines indicate
the average of the distributions. Panel (c) shows the relationship between J(s) and rs for each node of the networks.

Eventually, we compared our results against node variables that are not directly related to the network
structure, such as the node geographical coordinates (longitude and latitude), the node population, the
local mobile operator coverage (expressed as a population fraction) and the median income I of the node
population (2012 data, available from [45]).

2.5. Model evaluation and selection
To identify which network feature or set of features was the best predictor of the similarity of spatial
and temporal epidemic patterns, we extensively examined the predictive performance of a linear model
which included all the combinations of variables that alone were found to be positively correlated with
rs or J(s). Specifically, we measured the predictive power of the multiple linear regression in the form

Y = αX, (2.10)

where the response vector Y represents the values rs or J(s) for each seed s, and the predictors X are
chosen among all the possible combinations of 17 variables: population P, degree kM,C

x , traffic TM,C
x ,

loyalty Θx and median income I. To compare the performance of the linear models for each response
variable, we computed the Akaike information criterion (AIC), where smaller values of AIC indicate
a better quality of the model, and we measured the difference �AIC = AICi − AICmin [46]. Given the
known limitations of a stepwise selection [47], we evaluated all the possible combinations of the selected
covariates independently, thus considering all the resulting 131 055 linear models, and compared them
with the AIC.

3. Results
The degree of similarity in terms of temporal and spatial unfolding of the simulated epidemics displayed
a high variability across the two networks, census and mobile phone, depending on the nodes that were
selected as a seed of the outbreak. In general, the temporal hierarchy of the epidemics, measured by
the Spearman’s rank correlation rs between the arrival times of all the nodes, was found to be very
similar between the two networks with rs > 0.69 for every seed s of the network. Figure 1a shows
that the distribution of rs ranges between rs = 0.69 and rs = 0.94, with average r̄s = 0.85. The similarity
between the spatial infection patterns on the two networks was more widely distributed with values
of the Jaccard index ranging between J = 0.13 and J = 0.46, with average J̄ = 0.27 (figure 1b). Therefore,
while the temporal sequence of infected nodes during an outbreak was generally well preserved in the
two networks for most of the epidemic seeds, the paths of infection varied significantly with as few as
13% of transmission links shared between infection trees in some scenarios. Figure 1c highlights how the
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Table 1. Similarity of simulated epidemics patterns as a function of the degree of the outbreak seed.

temporal diffusion spatial diffusion

variable Pearson coefficientρ p-value Pearson coefficientρ p-value

kCin 0.425 p< 10−5 0.759 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kMin 0.438 p< 10−5 0.661 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kCout 0.527 p< 10−5 0.723 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kMout 0.476 p< 10−5 0.684 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kCtot 0.480 p< 10−5 0.765 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kMtot 0.462 p< 10−5 0.680 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|kCin − kMin| −0.042 0.45 −0.253 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|kCout − kMout| 0.141 0.01 0.262 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|kCtot − kMtot| 0.041 0.45 −0.066 0.23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|kCin−kMin |
kCin

−0.282 p< 10−5 −0.437 p< 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|kCout−kMout|
kCout

−0.349 p< 10−5 −0.303 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|kCtot−kMtot|

kCtot
−0.339 p< 10−5 −0.469 p< 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Similarity of simulated epidemics patterns as a function of the traffic of the outbreak seed.

temporal diffusion spatial diffusion

variable Pearson coefficientρ p-value Pearson coefficientρ p-value

TCin 0.246 p< 10−5 0.408 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TMin 0.331 p< 10−5 0.518 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCout 0.409 p< 10−5 0.511 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TMout 0.427 p< 10−5 0.588 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TCtot 0.317 p< 10−5 0.466 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TMtot 0.380 p< 10−5 0.560 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|TCin − TMin | 0.443 p< 10−5 0.620 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|TCout − TMout| 0.391 p< 10−5 0.605 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|TCtot − TMtot| 0.451 p< 10−5 0.667 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|TCin−TMin |
TCin

−0.421 p< 10−5 −0.258 p< 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|TCout−TMout|
TCout

−0.468 p< 10−5 −0.140 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|TCtot−TMtot|

TCtot
−0.562 p< 10−5 −0.295 p< 10−5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

similarity of temporal patterns measured by rs was only mildly correlated with the spatial similarity
measured by J (ρ = 0.33). The two quantities displayed a different behaviour and high values of rs

were sometimes associated to low values of J, showing that they provide a different view of the system
under study.

The similarity of both spatial and temporal epidemic patterns was mainly driven by a few features
of the outbreak seed that were in general positively correlated with each other, specifically the degree
of a node and its traffic. As shown in table 1, the Pearson’s correlation coefficient ρ between all the
degree measures and the similarity of temporal (rs) and spatial patterns (J(i, M, C)) displayed a significant
positive value, ranging between 0.425 and 0.527 for the invasion sequences and between 0.661 and 0.765
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Figure 2. Comparing the similarity of invasion trees and loyalty. Each panel shows the Jaccard similarity index measured between the
epidemic infection tree of the census network and the infection tree of the mobile phone network against the loyalty of the seed node:
(a,d)Θin, (b,e)Θout, (c,f )Θtot. Points are scatter plot for each node of the network that seeded the epidemic. Colour gradient, from
blue to red, represents increasing values of (a) KCout, (b) K

C
in, (c) K

C
tot, (d) T

C
out, (e) T

C
in, (f ) T

C
tot. Traffic values are shown on a log scale.

Table 3. Similarity of simulated epidemics patterns as a function of non-network variables.

temporal diffusion spatial diffusion

variable Pearson coefficientρ p-value Pearson coefficientρ p-value

population 0.403 p< 10−5 0.687 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

median income 0.168 0.0002 0.356 p< 10−5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coverage 0.018 0.75 0.007 0.91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

latitude 0.283 p< 10−5 0.054 0.33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

longitude −0.176 0.001 −0.055 0.32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for the invasion trees. Likewise, all the traffic measures of the outbreak nodes were positively correlated
with the similarity of epidemic patterns (table 2) with smaller but still significant values of the Pearson’s
coefficient, ρ = [0.246 − 0.427] for the temporal diffusion and ρ = [0.408 − 0.588] for the spatial diffusion.
Node population, which is generally expected to correlate with degree and traffic, was also found to be
a significant predictor for the similarity of epidemic temporal (ρ = 0.403) and spatial patterns (ρ = 0.687)
as shown in table 3. The median income was weakly correlated with rs and J (ρ = 0.168 and ρ = 0.356).
Other geographical and demographic variables were not significantly correlated with the similarity of
epidemic patterns.

Overall the above centrality measures were significantly correlated with the node loyalty, indicating
that incoming and outgoing mobility flows of the census network were better captured by CDR data
for highly connected, busy and highly populated locations. Figure 2 summarizes this result by showing
scatter plots of the epidemic tree Jaccard index J and the outgoing (figure 2a,d), ingoing (figure 2b,e)
and total (figure 2c,f ) loyalty Θ of the outbreak seed. In each panel, dots are colour coded according
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Figure 3. Comparing the correlation of arrival times and loyalty. Each panel shows the Spearman’s correlation coefficient measured
between the arrival times on the census network and the mobile phone network against the loyalty of the seed node: (a,d)Θin, (b,e)
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Table 4. Multiple linear regressions. (The two models with minimum AIC are shown only.)

model variables AIC

rs = αX P, KCin, K
C
tot, T

C
in, T

C
out, T

M
in , T

C
tot,Θin,Θout,I −1338.43

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J = αX P, KCtot, T
C
in, T

C
out, T

C
tot, T

M
tot,Θout −1248.88

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

to the degree (figure 2a–c) or traffic (figure 2d–f ) of the seed node. It clearly appears that the higher the
loyalty of the outbreak seed, the higher the similarity of the final infection trees. The Pearson’s correlation
coefficient between the two quantities varies between ρ = 0.7 for Θout and ρ = 0.76 for Θtot. Moreover,
the colour gradient indicates that Θout, Θin and Θtot are positively correlated with all the measures of
degree and traffic considered. Along the same lines, the loyalty was a significant predictor of the invasion
chronology (figure 3) with the Pearson’s correlation coefficient between rs and Θ ranging from ρ = 0.45
for Θout to ρ = 0.53 for Θtot.

When looking at the absolute differences in the seed degree between the two mobility networks,
the correlation with the epidemic patterns was in general not significant (table 1). Instead, the absolute
difference in traffic was found to be a good predictor of the epidemic patterns’ similarity (table 2) with
a positive correlation ρ = [0.391 − 0.667]. Shifting our attention from absolute to relative differences in
degree and traffic, these were found to be negatively and significantly correlated with the accordance
of epidemic patterns, both for the invasion chronology (ρ = [−0.562–0.282]) and the invasion trees
(ρ = [−0.469–0.140]). This can be explained by the fact that epidemics seeded in peripheral nodes were
the most affected by discrepancies in the two networks and most likely to display a different epidemic
pattern from one model to the other.

Moving from the analysis of nodes’ features taken one by one to a multiple linear regression based on
a set of predictors, the best models were all found to be a linear combination of several variables (table 4).
Specifically, the best linear model when Y ≡ rs was found to be a combination of 10 variables and the best
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linear model for Y ≡ J(s), was a multiple linear regression of seven variables. Compared to the best model
with AICmin, we found 30 and 45 models to be within the range �AIC < 2, which represents a traditional
threshold for model selection [46]. Imposing a threshold �AIC < 4, we would have selected 255 models
for Y ≡ rs and 492 models for Y ≡ J(s).

4. Discussion
In this study, we systematically evaluated the goodness of a large-scale mobile phone dataset to represent
commuting movements in France, as reported by the official census, when integrated into a spatially
structured epidemiological model. Overall, the mobile phone network was found to represent more
faithfully the commuting links originating from or incoming to the most connected locations, which also
turn out to be the busiest and most populated, as demonstrated by the correlation between node loyalty
and its degree and traffic. As the infection tree of the epidemics is structurally defined by the topology
of the underlying mobility network [48], the similarity of spatial epidemic patterns was found to be best
explained by the loyalty of the seed node. This result suggests that obtaining an accurate description of
the local connectivity around the origin of the outbreak could be sufficient to capture spreading patterns
on a larger spatial scale.

The chronology of the epidemic invasion was in general well preserved on both mobility networks
and showed a milder dependence on the characteristics of the outbreak seed. This suggests that the
arrival order of an epidemic can be well predicted also considering a proxy for mobility such as mobile
phone data, in agreement with the known fact that the arrival times distribution in a metapopulation
model can be estimated by measuring a certain weighted distance computed on a directed weighted
graph [49]. Still, the agreement between temporal sequences of infection on the two networks was
significantly correlated to the degree, the traffic and, ultimately, to the loyalty of the seeding node,
confirming a better match for epidemics seeded in central locations.

Results confirmed the initial findings of our previous work [36], where, based on a limited exploration
of different initial conditions, connectivity and traffic of the seed node were found to contribute to the
similarity across networks. On the other hand, the multiple regression analysis showed that almost
all features of the outbreak seed contributed to shaping the epidemic patterns and their similarity, to
some extent. For both temporal and spatial similarity, the best predictive models were based on several
variables and hundreds of models were found to be statistically equivalent based on their AIC values.
It was not possible, therefore, to identify a parsimonious set of characteristics of the seed node that
alone would best predict the epidemic outcomes on both networks. Indeed, designing a set of rules
to extrapolate the results of simulated epidemics from a proxy mobility network to another one, and
possibly generalizing such rules across different countries, would be of highly practical importance.
However, our results suggest that a perfect match between simulated epidemics on two mobility
networks cannot be obtained by a simple rescaling or normalization based on a single or few network
metrics.

We focused uniquely on one-type human movement, that is daily commuting, for several reasons:
it has been shown to be relevant for the spread of influenza at the national level [39], it is accurately
recorded by census surveys for the whole population with very limited sampling bias, epidemic
models based on recurrent mobility have been tested on real disease data [50,51], and finally, home-
work movements can be extracted from mobile phone data with very good precision for almost every
user [52]. In our case, both datasets referred to the same year and the definition of commuting in
the census data included both home-work and home-school movements, thus virtually representing
the best available description to be matched with mobile phone data. Extending our analysis to
include all types of movement into an epidemic model can be challenging owing to the lack of
data from census or travel surveys on a geographical scale large enough to be compared with
mobile phone records. Other studies have compared human movement data from CDRs and travel
or migration surveys in a low-income setting [35,37], nonetheless both were either limited to a few
thousand individuals in a relatively small region for travel surveys or by the low resolution in the
migration data.

In our study, we considered a best case scenario where the two mobility datasets could be aligned
to a high degree. An even better match could be obtained by refining the normalization procedure
and by identifying more accurately home and work locations by including more metadata, as tested
in [36]. However, we do not expect these refinements to impact significantly on our results, as they will
introduce second order changes in the topology of the mobile phone network. On the other hand, in
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most real situations CDRs will be affected by geographical biases in network coverages and usage or
incurred by certain demographic groups being more frequent phone users [53], not to mention how
difficult the access to such data can be owing to their sensitive nature. Trying to correct for such socio-
economic biases, by taking them into account in the normalization procedure, could provide a potential
explanation for the discrepancies observed between epidemic outcomes on the two networks. On the
other hand, it would also increase the number of parameters or assumptions in the model. For this
reason, we decided to focus on a basic normalization, as it is also more easily generalizable to other
settings where socio-economic variables are not easily accessible. Also, alternative sources of mobility
have been proposed to complement mobile phone records such as GPS [54] or social media traces [55,56],
the latter being more easily accessible at the cost of introducing other uncertainties on the demographics
of the travellers and the type of movement.

Here, we focused on modelling an ILI. Additional heterogeneities and factors might be relevant
to realistically capture the spatial spread of ILIs [57], here however we adopted minimal modelling
assumptions that allowed us to clearly isolate the effects of different mobility networks on the disease
spread. Results might be different when considering other diseases for which movements other than
commuting might be relevant, and for which transmission is driven by environmental conditions, such
as cholera or poliovirus. In general, we expect our findings to hold true within the modelling of rapidly
disseminated directly transmitted infections.

A significant amount of research in the past decade has clearly highlighted the fact that one single
source of mobility data cannot provide a full and comprehensive description of human movements
across all spatio-temporal scales that are relevant for infectious disease transmission. Moreover, there
is no a priori correct level of aggregation for analysis of human mobility and infectious disease dynamics
[58]. It becomes clear that, to obtain a detailed picture of human mobility in an area for epidemic
modelling, it is necessary to consider combinations of data in a multilayer fashion [21,59]. To what extent
modelling results are affected by the integration of one particular mobility proxy compared to others,
and how this relates to the epidemiological properties of the disease under study—whether it could be a
rapidly transmitted infection or a vector borne disease—requires further research.

Our approach compared mobile phone data to infer recurrent mobility flows as reported by census
surveys in France to be then integrated into a metapopulation model for ILIs. Results suggest that
obtaining an accurate description of human movements in the area at the origin of the outbreak can
be essential to capture its future spreading patterns, and that mobile phones are more reliable in central
regions than peripheral ones. However, it would be important to investigate how this requirement can
be reduced by changing the spatial resolution of interest and how this depends on the use of mobile
phone data or other proxies to approximate human mobility. Continued work along these directions is
important to understand how to measure epidemiologically relevant patterns of movement to be further
integrated into computational models which can ultimately help in forecasting and controlling disease
spread.

Data accessibility. The commuting networks are available as electronic supplementary material files of [36].
Authors’ contributions. P.B., M.T. and V.C. designed the study. Z.S. provided access to CDR data. C.P. and P.B. implemented
the model algorithm and ran simulations. C.P. and M.T. analysed simulation results. M.T. wrote the first draft of the
manuscript. V.C. contributed to the writing of the manuscript. All authors revised and approved the final version of
the manuscript.
Competing interests. The authors declare they have no competing interests.
Funding. The work was partially supported by the Lagrange Project of the ISI Foundation funded by the CRT
Foundation to M.T.; the French ANR project HarMS-flu (ANR-12-MONU-0018) to V.C.; the EC-Health project
PREDEMICS (contract no. 278433) to V.C.
Acknowledgements. C.P. acknowledges the ISI Foundation for hospitality and support during her internship.

References
1. Blondel VD, Decuyper A, Krings G. 2015 A survey of

results on mobile phone datasets analysis. EPJ Data
Sci. 4, 1–55. (doi:10.1140/epjds/s13688-015-0046-0)

2. González MC, Hidalgo CA, Barabási A-L. 2008
Understanding individual human mobility patterns.
Nature 453, 779–782. (doi:10.1038/nature06958)

3. Song C, Qu Z, Blumm N, Barabási A-L. 2010 Limits of
predictability in human mobility. Science 327,
1018–1021. (doi:10.1126/science.1177170)

4. Song C, Koren T, Wang P, Barabási A-L. 2010
Modelling the scaling properties of humanmobility.
Nat. Phys. 6, 818–823. (doi:10.1038/nphys1760)

5. Pappalardo L, Simini F, Rinzivillo S, Pedreschi D,
Giannotti F, Barabási A-L. 2015 Returners and
explorers dichotomy in human mobility. Nat.
Commun. 6, 8166. (doi:10.1038/ncomms9166)

6. Amini A, Kung K, Kang C, Sobolevsky S, Ratti C. 2014
The impact of social segregation on humanmobility

in developing and industrialized regions. EPJ Data
Sci. 3, 6. (doi:10.1140/epjds31)

7. Calabrese F, Smoreda Z, Blondel V, Ratti C. 2011
Interplay between telecommunications and
face-to-face interactions: a study using mobile
phone data. PLoS ONE 6, e20814.
(doi:10.1371/journal.pone.0020814)

8. Phithakkitnukoon S, Smoreda Z, Olivier P. 2012
Socio-geography of human mobility: a study using

 on July 6, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1140/epjds/s13688-015-0046-0
http://dx.doi.org/doi:10.1038/nature06958
http://dx.doi.org/doi:10.1126/science.1177170
http://dx.doi.org/doi:10.1038/nphys1760
http://dx.doi.org/doi:10.1038/ncomms9166
http://dx.doi.org/doi:10.1140/epjds31
http://dx.doi.org/doi:10.1371/journal.pone.0020814
http://rsos.royalsocietypublishing.org/


12

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160950

................................................
longitudinal mobile phone data. PLoS ONE 7,
e39253. (doi:10.1371/journal.pone.0039253)

9. Bajardi P, Delfino M, Panisson A, Petri G, Tizzoni M.
2015 Unveiling patterns of international
communities in a global city using mobile phone
data. EPJ Data Sci. 4, 24. (doi:10.1140/epjds/
s13688-015-0041-5)

10. Çolak S, Lima A, González MC. 2016 Understanding
congested travel in urban areas. Nat. Commun. 7,
10793. (doi:10.1038/ncomms10793)

11. Schläpfer M, Bettencourt L, Grauwin S, Raschke M,
Claxton R, Smoreda Z, West G, Ratti C. 2014 The
scaling of human interactions with city size. J. R.
Soc. Interface 11, 20130789. (doi:10.1098/rsif.
2013.0789)

12. Wesolowski A, Metcalf C, Eagle N, Kombich J,
Grenfell BT, Bjørnstad ON, Lessler J, Tatem AJ,
Buckee CO. 2015 Quantifying seasonal population
fluxes driving rubella transmission dynamics using
mobile phone data. Proc. Natl Acad. Sci. USA 112,
11114–11119. (doi:10.1073/pnas.1423542112)

13. Wesolowski A, Qureshi T, Boni MF, Sundsøy PR,
Johansson MA, Rasheed SB, Engø-Monsen K,
Buckee CO. 2015 Impact of human mobility on the
emergence of dengue epidemics in Pakistan. Proc.
Natl Acad. Sci. USA 112, 11887–11892. (doi:10.1073/
pnas.1504964112)

14. Wesolowski A, Eagle N, Tatem A, Smith D, Noor A,
Snow R, Buckee C. 2012 Quantifying the impact of
human mobility on malaria. Science 338, 267–270.
(doi:10.1126/science.1223467)

15. Bengtsson L, Gaudart J, Lu X, Moore S, Wetter E,
Sallah K, Rebaudet S, Piarroux R. 2015 Using
mobile phone data to predict the spatial
spread of cholera. Sci. Rep. 5, 8923. (doi:10.1038/
srep08923)

16. Finger F, Genolet T, Mari L, de Magny GC, Manga
NM, Rinaldo A, Bertuzzo E. 2016 Mobile phone
data highlights the role of mass gatherings
in the spreading of cholera outbreaks. Proc. Natl
Acad. Sci. USA 113, 6421–6426. (doi:10.1073/pnas.
1522305113)

17. Lima A, De Domenico M, Pejovic V, Musolesi M. 2015
Disease containment strategies based on mobility
and information dissemination. Sci. Rep. 5, 10650.
(doi:10.1038/srep10650)

18. Perez-Saez J et al. 2015 A theoretical analysis of the
geography of schistosomiasis in Burkina Faso
highlights the roles of human mobility and water
resources development in disease transmission.
PLoS Negl. Trop. Dis. 9, e0004127. (doi:10.1371/
journal.pntd.0004127)

19. Pybus OG, Tatem AJ, Lemey P. 2015 Virus evolution
and transmission in an ever more connected world.
Proc. R. Soc. B 282, 20142878. (doi:10.1098/rspb.
2014.2878)

20. Colizza V, Barrat A, Barthélemy M, Valleron A,
Vespignani A. 2007 Modeling the worldwide spread
of pandemic influenza: baseline case and
containment interventions. PLoS Med. 4, e13.
(doi:10.1371/journal.pmed.0040013)

21. Balcan D, Colizza V, Goncalves B, Hu H, Ramasco JJ,
Vespignani A. 2009 Multiscale mobility networks
and the large scale spreading of infectious diseases.
Proc. Natl Acad. Sci. USA 106, 21484–21489.
(doi:10.1073/pnas.0906910106)

22. Lemey P et al. 2014 Unifying viral genetics and
human transportation data to predict the global
transmission dynamics of human influenza H3N2.

PLoS Pathog. 10, e1003932. (doi:10.1371/journal.
ppat.1003932)

23. Chao DL, Halloran ME, Obenchain VJ, Longini IM.
2010 FluTE, a publicly available stochastic influenza
epidemic simulation model. PLoS Comp. Biol. 6,
e1000656. (doi:10.1371/journal.pcbi.1000656)

24. Merler S, Ajelli M. 2009 The role of population
heterogeneity and human mobility in the spread of
pandemic influenza. Proc. R. Soc. B 277, 557–565.
(doi:10.1098/rspb.2009.1605)

25. Ferguson NM, Cummings DAT, Fraser C, Cajka JC,
Cooley PC, Burke DS. 2006 Strategies for mitigating
an influenza pandemic. Nature 442, 448–452.
(doi:10.1038/nature04795)

26. Halloran ME et al. 2014 Ebola: mobility data. Science
346, 433–433. (doi:10.1126/science.
346.6208.433-a)

27. Wesolowski A, Buckee CO, Bengtsson L, Wetter E, Lu
X, Tatem AJ. 2014 Commentary: containing the
Ebola outbreak—the potential and challenge of
mobile network data. PLoS Curr. 6.
(doi:10.1371/currents.outbreaks.0177e7fcf52217b
8b634376e2f3efc5e)

28. Poletto C, Pelat C, Levy-Bruhl D, Yazdanpanah Y,
Boelle P, Colizza V. 2014 Assessment of the Middle
East respiratory syndrome coronavirus (MERS-CoV)
epidemic in the Middle East and risk of
international spread using a novel maximum
likelihood analysis approach. Eurosurveillance 19,
20824. (doi:10.2807/1560-7917.ES2014.19.23.20824)

29. Bogoch II et al. 2016 Anticipating the international
spread of Zika virus from Brazil. Lancet 387,
335–336. (doi:10.1016/S0140-6736
(16)00080-5)

30. De Montjoye Y-A, Hidalgo CA, Verleysen M, Blondel
VD. 2013 Unique in the crowd: the privacy bounds of
human mobility. Sci. Rep. 3, 1376. (doi:10.1038/
srep01376)

31. Simini F, González MC, Maritan A, Barabási A-L.
2012 A universal model for mobility and migration
patterns. Nature 484, 96–100. (doi:10.1038/nature
10856)

32. Wesolowski A, O’Meara WP, Eagle N, Tatem AJ,
Buckee CO. 2015 Evaluating spatial interaction
models for regional mobility in Sub-Saharan Africa.
PLOS Comput. Biol. 11, e1004267. (doi:10.1371/
journal.pcbi.1004267)

33. Tizzoni M et al. 2012 Real-time numerical forecast of
global epidemic spreading: case study of 2009
A/H1N1pdm. BMCMed. 10, 165. (doi:10.1186/
1741-7015-10-165)

34. Danon L, House T, Keeling M. 2009 The role of
routine versus randommovements on the spread
of disease in Great Britain. Epidemics 1, 250–258.
(doi:10.1016/j.epidem.2009.11.002)

35. Wesolowski A, Buckee CO, Pindolia DK, Eagle N,
Smith DL, Garcia AJ, Tatem AJ. 2013 The use of
census migration data to approximate human
movement patterns across temporal scales. PLoS
ONE 8, e52971. (doi:10.1371/journal.pone.0052971)

36. Tizzoni M et al. 2014 On the use of human mobility
proxies for modeling epidemics. PLoS Comp. Biol. 10,
e1003716. (doi:10.1371/journal.pcbi.1003716)

37. Wesolowski A et al. 2014 Quantifying travel behavior
for infectious disease research: a comparison of
data from surveys and mobile phones. Sci. Rep. 4,
5678. (doi:10.1038/srep05678)

38. Institut national de la statistique et des études
économiques. Mobilités professionnelles en 2007:

déplacements domicile - lieu de travail. See
https://www.insee.fr/fr/statistiques/2022121.

39. Viboud C, Bjornstad O, Smith D, Simonsen L, Miller
M, Grenfell BT. 2006 Synchrony, waves, and spatial
hierarchies in the spread of influenza. Science 312,
447–451. (doi:10.1126/science.1125237)

40. Crépey P, Barthélemy M. 2007 Detecting robust
patterns in the spread of epidemics: a case study of
influenza in the United States and France. Am. J.
Epidemiol. 166, 1244–1251.
(doi:10.1093/aje/kwm266)

41. Keeling MJ, Rohani P. 2008Modeling infectious
diseases in humans and animals. Princeton, NJ:
Princeton Univeristy Press.

42. Balcan D, Vespignani A. 2011 Phase transitions in
contagion processes mediated by recurrent mobility
patterns. Nat. Phys. 7, 581–586. (doi:10.1038/nphys
1944)

43. Piontti APY, Gomes MFDC, Samay N, Perra N,
Vespignani A. 2014 The infection tree of global
epidemics. Netw. Sci. 2, 132–137. (doi:10.1017/nws.
2014.5)

44. Valdano E, Poletto C, Giovannini A, Palma D,
Savini L, Colizza V. 2015 Predicting epidemic risk
from past temporal contact data. PLoS Comp.
Biol. 11, e1004152. (doi:10.1371/journal.pcbi.
1004152)

45. Institut national de la statistique et des études
économiques, 2015. Structure et distribution des
revenus, inégalité des niveaux de vie en 2012.

46. Burnham KP, Anderson DR, Huyvaert KP. 2011 AIC
model selection and multimodel inference in
behavioral ecology: some background,
observations, and comparisons. Behav. Ecol.
Sociobiol. (Print) 65, 23–35. (doi:10.1007/s00265-
010-1029-6)

47. WhittinghamMJ, Stephens PA, Bradbury RB,
Freckleton RP. 2006 Why do we still use stepwise
modelling in ecology and behaviour? J. Anim. Ecol.
75, 1182–1189. (doi:10.1111/j.1365-2656.2006.
01141.x)

48. Brockmann D, Helbing D. 2013 The hidden geometry
of complex, network-driven contagion phenomena.
Science 342, 1337–1342. (doi:10.1126/science.
1245200)

49. Gautreau A, Barrat A, Barthélemy M. 2008 Global
disease spread: statistic and estimation on arrival
times. J. Theor. Biol. 251, 509–522. (doi:10.1016/j.
jtbi.2007.12.001)

50. Balcan D et al. 2009 Seasonal transmission potential
and activity peaks of the new influenza A(H1N1): a
Monte Carlo likelihood analysis based on human
mobility. BMCMed. 7, 45. (doi:10.1186/1741-
7015-7-45)

51. Keeling MJ, Danon L, Vernon MC, House TA. 2010
Individual identity and movement networks for
disease metapopulations. Proc. Natl Acad. Sci. USA
107, 8866–8870. (doi:10.1073/pnas.10004
16107)

52. Kung KS, Greco K, Sobolevsky S, Ratti C. 2014
Exploring universal patterns in human home-work
commuting frommobile phone data. PLoS ONE 9,
e96180. (doi:10.1371/journal.pone.0096180)

53. Blumenstock JE, Eagle N. 2012 Divided we call:
disparities in access and use of mobile phones in
Rwanda. Inform. Technol. Int. Dev. 8, 1–16.

54. Williams NE, Thomas TA, Dunbar M, Eagle N,
Dobra A. 2015 Measures of human mobility using
mobile phone records enhanced with GIS data.

 on July 6, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1371/journal.pone.0039253
http://dx.doi.org/doi:10.1140/epjds/s13688-015-0041-5
http://dx.doi.org/doi:10.1140/epjds/s13688-015-0041-5
http://dx.doi.org/doi:10.1038/ncomms10793
http://dx.doi.org/doi:10.1098/rsif.2013.0789
http://dx.doi.org/doi:10.1098/rsif.2013.0789
http://dx.doi.org/doi:10.1073/pnas.1423542112
http://dx.doi.org/doi:10.1073/pnas.1504964112
http://dx.doi.org/doi:10.1073/pnas.1504964112
http://dx.doi.org/doi:10.1126/science.1223467
http://dx.doi.org/doi:10.1038/srep08923
http://dx.doi.org/doi:10.1038/srep08923
http://dx.doi.org/doi:10.1073/pnas.1522305113
http://dx.doi.org/doi:10.1073/pnas.1522305113
http://dx.doi.org/doi:10.1038/srep10650
http://dx.doi.org/doi:10.1371/journal.pntd.0004127
http://dx.doi.org/doi:10.1371/journal.pntd.0004127
http://dx.doi.org/doi:10.1098/rspb.2014.2878
http://dx.doi.org/doi:10.1098/rspb.2014.2878
http://dx.doi.org/doi:10.1371/journal.pmed.0040013
http://dx.doi.org/doi:10.1073/pnas.0906910106
http://dx.doi.org/doi:10.1371/journal.ppat.1003932
http://dx.doi.org/doi:10.1371/journal.ppat.1003932
http://dx.doi.org/doi:10.1371/journal.pcbi.1000656
http://dx.doi.org/doi:10.1098/rspb.2009.1605
http://dx.doi.org/doi:10.1038/nature04795
http://dx.doi.org/doi:10.1126/science.346.6208.433-a
http://dx.doi.org/doi:10.1126/science.346.6208.433-a
http://dx.doi.org/doi:10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e
http://dx.doi.org/doi:10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e
http://dx.doi.org/doi:10.2807/1560-7917.ES2014.19.23.20824
http://dx.doi.org/doi:10.1016/S0140-6736(16)00080-5
http://dx.doi.org/doi:10.1016/S0140-6736(16)00080-5
http://dx.doi.org/doi:10.1038/srep01376
http://dx.doi.org/doi:10.1038/srep01376
http://dx.doi.org/doi:10.1038/nature10856
http://dx.doi.org/doi:10.1038/nature10856
http://dx.doi.org/doi:10.1371/journal.pcbi.1004267
http://dx.doi.org/doi:10.1371/journal.pcbi.1004267
http://dx.doi.org/doi:10.1186/1741-7015-10-165
http://dx.doi.org/doi:10.1186/1741-7015-10-165
http://dx.doi.org/doi:10.1016/j.epidem.2009.11.002
http://dx.doi.org/doi:10.1371/journal.pone.0052971
http://dx.doi.org/doi:10.1371/journal.pcbi.1003716
http://dx.doi.org/doi:10.1038/srep05678
https://www.insee.fr/fr/statistiques/2022121
http://dx.doi.org/doi:10.1126/science.1125237
http://dx.doi.org/doi:10.1093/aje/kwm266
http://dx.doi.org/doi:10.1038/nphys1944
http://dx.doi.org/doi:10.1038/nphys1944
http://dx.doi.org/doi:10.1017/nws.2014.5
http://dx.doi.org/doi:10.1017/nws.2014.5
http://dx.doi.org/doi:10.1371/journal.pcbi.1004152
http://dx.doi.org/doi:10.1371/journal.pcbi.1004152
http://dx.doi.org/doi:10.1007/s00265-010-1029-6
http://dx.doi.org/doi:10.1007/s00265-010-1029-6
http://dx.doi.org/doi:10.1111/j.1365-2656.2006.01141.x
http://dx.doi.org/doi:10.1111/j.1365-2656.2006.01141.x
http://dx.doi.org/doi:10.1126/science.1245200
http://dx.doi.org/doi:10.1126/science.1245200
http://dx.doi.org/doi:10.1016/j.jtbi.2007.12.001
http://dx.doi.org/doi:10.1016/j.jtbi.2007.12.001
http://dx.doi.org/doi:10.1186/1741-7015-7-45
http://dx.doi.org/doi:10.1186/1741-7015-7-45
http://dx.doi.org/doi:10.1073/pnas.1000416107
http://dx.doi.org/doi:10.1073/pnas.1000416107
http://dx.doi.org/doi:10.1371/journal.pone.0096180
http://rsos.royalsocietypublishing.org/


13

rsos.royalsocietypublishing.org
R.Soc.opensci.4:160950

................................................
PLoS ONE 10, e0133630. (doi:10.1371/journal.pone.
0133630)

55. Beiró MG, Panisson A, Tizzoni M, Cattuto C. 2016
Predicting human mobility through the
assimilation of social media traces into mobility
models. EPJ Data Sci. 5, e0129202. (doi:10.1140/
epjds/s13688-016-0092-2)

56. Blanford JI, Huang Z, Savelyev A, MacEachren AM.
2015 Geo-located tweets. Enhancing mobility maps

and capturing cross-border movement. PLoS ONE
10, e0129202. (doi:10.1371/journal.pone.
0129202)

57. Apolloni A, Poletto C, Ramasco JJ, Jensen P, Colizza
V. 2014 Metapopulation epidemic models with
heterogeneous mixing and travel behaviour. Theor.
Biol. Med. Modell. 11, 3. (doi:10.1186/1742-4682-11-3)

58. Wesolowski A, Buckee CO, Engø-Monsen K, Metcalf
C. 2016 Connecting mobility to infectious diseases:

the promise and limits of mobile phone data. J.
Infect. Dis. 214, S414–S420. (doi:10.1093/infdis/
jiw273)

59. Tatem AJ. 2014 Mapping population and pathogen
movements. Int. Health 6, 5–11.
(doi:10.1093/inthealth/ihu006)

 on July 6, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1371/journal.pone.0133630
http://dx.doi.org/doi:10.1371/journal.pone.0133630
http://dx.doi.org/doi:10.1140/epjds/s13688-016-0092-2
http://dx.doi.org/doi:10.1140/epjds/s13688-016-0092-2
http://dx.doi.org/doi:10.1371/journal.pone.0129202
http://dx.doi.org/doi:10.1371/journal.pone.0129202
http://dx.doi.org/doi:10.1186/1742-4682-11-3
http://dx.doi.org/doi:10.1093/infdis/jiw273
http://dx.doi.org/doi:10.1093/infdis/jiw273
http://dx.doi.org/doi:10.1093/inthealth/ihu006
http://rsos.royalsocietypublishing.org/

	Introduction
	Methods
	Commuting networks
	Epidemic metapopulation model
	Numerical simulations and data analysis
	Network features
	Model evaluation and selection

	Results
	Discussion
	References

