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Abstract

Brazil detected community transmission of COVID-19 on March 13, 2020. In this study we

identified which areas in the country were the most vulnerable for COVID-19, both in terms

of the risk of arrival of cases, the risk of sustained transmission and their social vulnerability.

Probabilistic models were used to calculate the probability of COVID-19 spread from São

Paulo and Rio de Janeiro, the initial hotspots, using mobility data from the pre-epidemic

period, while multivariate cluster analysis of socio-economic indices was done to identify

areas with similar social vulnerability. The results consist of a series of maps of effective dis-

tance, outbreak probability, hospital capacity and social vulnerability. They show areas in

the North and Northeast with high risk of COVID-19 outbreak that are also highly socially vul-

nerable. Later, these areas would be found the most severely affected. The maps produced

were sent to health authorities to aid in their efforts to prioritize actions such as resource allo-

cation to mitigate the effects of the pandemic. In the discussion, we address how predictions

compared to the observed dynamics of the disease.

Introduction

As of 21 March 2020, the pandemic of COVID-19 had reached 184 countries with 266,073

confirmed cases and 11,184 deaths, globally [1]. The first imported case of COVID-19 was

confirmed in Brazil on February 26, 2020, in the city of São Paulo [2], only two months after

the alert on COVID-19 went off in China. At this date, all twenty seven federative units had

reported suspect cases of COVID-19 infection, while 16 states and the Federal District had

confirmed 1128 cases (11,278 under investigation) and 18 deaths [3].

São Paulo and Rio de Janeiro states identified virus community transmission on March 13,

2020 [4–6]. Just four days later, 240 cases were confirmed in São Paulo, with 4 deaths [3]. In

Rio de Janeiro, 45 cases had been confirmed with no reported death. São Paulo and Rio de

Janeiro states hold the most populous metropolitan areas of Brazil, where a large fraction of
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the population live in crowded neighborhoods with poor housing and low income. They are

the country’s main hubs for national and international transportation. It is known that other

pathogens such as Influenza A H1N1, in 2009, have been introduced in the country through

these hubs [7].

In March 2020, when the epidemic was still confined to Rio de Janeiro and São Paulo, we

estimated the pattern of COVID-19 spreading risk within Brazil, taking the states of Rio de

Janeiro and São Paulo as the starting points. In our analysis, we considered a worst case sce-

nario in which there would be no implementation of mobility restrictions. At that moment,

mobility restrictions and social distance were starting to be adopted, but it was not clear

whether the population would adhere to them.

Brazil is a continental country with strong spatial heterogeneities in terms of demography,

age distribution, access to public health, and socioeconomic indexes. Because of these inequali-

ties, the COVID-19 epidemic should impact these populations differently. To identify regions

with high geographical and social vulnerability, we proposed a classification scheme based on

three main criteria: population mobility, socio-demographic-economic characteristics, and the

available health care infrastructure in terms of hospital capacity.

Materials and methods

Data

Brazil is divided into 558 micro-regional administrative units, with population sizes varying

from 13 million people in the metropolitan area of São Paulo to 2, 703 in Fernando de Noro-

nha island, in Pernambuco.

To measure mobility intensity between micro-regions, we used daily air travel statistics

from the Official Airline Guide (OAG) [8]. This dataset contains the number of travels per ori-

gin-destination airport. Data on shorter distance pendular travels motivated by work and

study activities were obtained from the 2010 national census (IBGE) [9].

Demographic data from the 2000 and 2010 national censuses [9] were used to project the

population per age group in 2020 using a geometric growth model. Socioeconomic indicators

were obtained from the same source: infant mortality, life expectancy, GINI index, human

development index (education, longevity and income), proportion of individuals below the

poverty threshold, proportion below the extreme poverty threshold, 25% percentile income,

percentage of urban population, percentage of the population in households with piped water,

% of population with insufficient water supply and precarious sewage disposal, and percentage

of individuals in households without electricity.

Data on health care capacity per micro-region were obtained from DataSUS [10]. From

these data, we calculated the number of standard hospital beds and number of complementary

beds (Intensive Care Unit and Intermediate Unit) available for each micro-region [10], aggre-

gating those from the public sector (SUS) and private (non-SUS) sector. The final indicator is

given by 10, 000 inhabitants.

Number of COVID-19 cases notified per day was obtained from the site brasil.io/dataset/

covid19/casofull. This site aggregates official notification data reported by each state.

Effective distance

To assess the probability of COVID-19 spreading within Brazil, in the absence of mobility

restrictions, we first calculated the effective distance (Ef(i,j)) between micro-regions using the

air travel data. Due to the continental size of Brazil, daily interstate mobility between major

urban centers is mainly composed by air travel. Therefore, interstate dispersion of the disease

during the initial phase of the epidemic is assumed to be driven mainly by air-travel. We
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computed the effective distance, Ef(i,j), between each micro-region and the two COVID-19’s

hotspots, Rio de Janeiro and Sao Paulo. Ef(i,j) is a measure of proximity between micro-regions

i and j created by the flow of travellers. This metric is known to be strongly correlated with the

time it takes to import infectious diseases into new territories from a well-defined origin, par-

ticularly for diseases with direct transmission [11, 12]. We computed Ef from São Paulo and

Rio de Janeiro separately in order to assess the potential contribution of each one.

To facilitate comparison between different scenarios, we also calculated a relative effective

distance (ef), by dividing Ef by the distance to the nearest destination: ef(i,j) = Ef(i,j)/minj{Ef(i,
j)}. This information was mapped into micro-region origin-destination pairs by summing

over the corresponding airports serving each micro-region based on its municipality of

reference.

Outbreak probability

To calculate the probability of outbreak in each micro-region m, we used the standard expres-

sion: pepi ¼ 1 � ð1=R0Þ
Im [13]. This expression comes from the stochastic SIR model, where

the probability of extinction of an outbreak is given by ð1=R0Þ
I0 where I0 is the initial number

of infected when R0 > 1. Thus, the complement of this probability is the probability of the epi-

demic taking hold in the population (see [13], p.106 for a derivation). The prevalence of infec-

tion, Im, is estimated as Im = kτ ∑i fi,m Ii/Ni, where fi,m is the number of travelers with COVID-

19 arriving from micro-region i to micro-region m while Im is the product of the fractional

prevalence Ii/Ni times the infection duration τ (assumed equal for all infected) and a scaling

parameter k, to account for the number of undetected asymptomatic individuals participating

in the transmission. The parameter R0 is the basic reproduction number [13]. For the purpose

of the results shown, we set R0 = 2.5, which is compatible with previous studies [14–17]. S1 Fig

shows how variations in the parameters of the equation affect the probability of outbreak. For

R0> 2, probability of outbreak is likely given the arrival of at least one infected individual.

We computed the outbreak probability per micro-region using two consecutive time win-

dows representing two generations of spread:

First generation of outbreaks. We assumed that community transmission has been

reached when the count of cases was 100 cases. We selected only Rio de Janeiro and São Paulo

as the source municipalities which were the two initial COVID-19 hotspots. Prevalence of

infection was calculated by multiplying the notification count by an expansion factor k = 10

to take into account asymptomatic and unreported cases [18]. This number is then multiplied

by the average duration of infection τ = 8 days [19], resulting in 8000 prevalent infections

(infected × infection duration) in each of the two cities of origin.

The number of travelers per day between micro-regions was computed by adding the num-

ber of air travellers (used to calculate effective distance) and the number of pendular commut-

ers Census [9]. The inclusion of pendular mobility was important to allow spreading between

geographically close micro-regions, while still preserving data-driven flow estimates.

Second generation of outbreaks. In this scenario, we assumed that enough time had

passed so that all micro-regions with pepi� 0.5 in the first scenario actually had developed

community transmission (epidemic). In each of the new hotspots, the prevalence is set to the

same level adopted before for Rio de Janeiro and São Paulo micro-regions. Then we computed

pepi again, to identify the micro-regions most likely to develop outbreaks in this second round.

These generations of outbreaks should not be confused with generations of infections within a

city.

The above mentioned scenarios do not take into account any intervention affecting mobil-

ity, nor demographic and environmental effects that may play a role on the magnitude of R0.
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Social vulnerability. Partitioning cluster analysis (k-medoid) was performed to identify

micro-regions with similar social vulnerability. This method is a more robust variation of the

standard k-means. The first step was the removal of highly linearly correlated variables (Pear-

son’s correlation > 0.8): infant mortality, human development index (longevity and income),

proportion of individuals below the poverty threshold, 25% percentile income, percentage of

urban population. The following ones remained: life expectancy, GINI index, education com-

ponent of the human development index, proportion of the population living below the

extreme poverty threshold, percentage of urban population, percentage of the population in

households with piped water, percentage of population with insufficient water supply and pre-

carious sewage disposal, and percentage of individuals without electricity. The elbow method

was used to estimate the number of clusters [20, 21]. More information on this analysis can be

found in the S2 Supplement Material. The analysis was done using the R environment [22],

packages cluster [23], corrplot [24], FactoMineR [25], factoextra [20].

Results

Effective distance in the absence of travel restrictions

Fig 1(a) and 1(b) show the relative effective distance of the Brazilian micro-regions from São

Paulo and Rio de Janeiro measured by the typical travel movement by air. The majority of

state capitals are among the closest areas, together with some important touristic destinations

(such as Foz do Iguaçu/Paraná and Porto Seguro/Bahia). Important urban and industrial cen-

ters such as Itajaı́/Santa Catarina and Uberlândia/Minas Gerais are also close. São Paulo shows

a more central position than Rio de Janeiro, evidenced by the larger proportion of closer desti-

nations, suggesting that an uncontrolled hotspost of COVID-19 in Sao Paulo produces a

greater risk for earlier and widespread case exportation to other states.

Probability of outbreak

Fig 1(c) shows the probability of COVID-19 outbreak per micro-region triggered by the

increased prevalence of COVID-19 in Rio de Janeiro and São Paulo, in the absence of travel

restrictions. The most likely micro-regions to develop an outbreak are the geographic neigh-

boring regions of São Paulo and Rio de Janeiro, all state capitals of the South and Southeast

regions (Belo Horizonte, Vitória, Curitiba, Florianópolis and Porto Alegre), plus Brasilia,

Recife and Salvador, among others. A more complete list is found in the S1 Supporting

Information.

Fig 1(d) shows the probability of outbreak in a secondary round of propagation, condi-

tioned to the establishment of transmission in the micro-regions with highest risk (p> 0.5)

during the first phase. In this second moment, the establishment of COVID-19 transmission is

very likely along the coast, from Porto Alegre (in the South) to Salvador (Northeast). Other

high risk areas are the neighboring areas of Recife and Fortaleza (Northeast), the neighboring

areas of Foz do Iguaçu, in the western border of Paraná state, and the neighboring areas of

Cuiabá, Brasilia, and Goiânia in the Center-West.

Social vulnerability

We identified five classes of social vulnerability, tentatively ordered from A (least vulnerable)

to D-E (most vulnerable). Table 1 shows the averages of the socioeconomic indexes for each

class, from which we propose the following interpretation. The Supporting information file S2

has more detailed description of the analysis.
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Fig 1. Effective distance from the two initial COVID-19 hotspots in Brazil. (a) Relative effective distance (ef) of Brazilian micro-regions from São Paulo

based on airline network in the absence of travel restrictions. (b) The same from Rio de Janeiro, with blue gradient from closest (dark blue) to farthest (light

blue) destinations, limited to those present on the airline network. (c) Probability of COVID-19 outbreak per micro-region as Rio de Janeiro and São Paulo

sustain high prevalence of infection. (d) Second round of outbreaks after the micro-regions infected in (c) begin to contribute cases, with a gradient from

dark purple (p = 0) to bright yellow (p = 1.0).

https://doi.org/10.1371/journal.pone.0238214.g001
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Class A. Mostly urban micro-regions, with above-average life expectancy, with compara-

tively less social inequality, less population living in extreme poverty, better access to water

supply and sewage disposal services, higher education. They are the largest cities and in the

central region.

Class B. Very similar to A in life expectancy. Still more urban, but with more population liv-

ing in extreme poverty (mean = 5%). Inequality indexes and infrastructure are worse in com-

parison to A, but still above average. These are found in the South, Southeast, and Central

regions.

Class C. Mixture or urban and rural populations. In comparison to A and B, they have sig-

nificantly lower life expectancy, significantly high poverty and less infrastructure. They are the

most urbanized areas of the Northeast region. Manaus, capital of the Amazonas state in the

North region, is also in this category.

Class D. Predominance of rural populations, high inequality, low HDIedu, poor access to

water and sewage services, but with access to electricity. These are mainly located in the dry

Caatinga biome area of the Northeast.

Class E. Predominantly rural regions in the Amazon. Low HDIedu, poor access to treated

water, sewage disposal, and electricity.

Fig 2 shows four maps that synthesize the main vulnerabilities to COVID-19 in Brazil in

March 21th. Fig 2(A) shows a strong difference in age structure, with the proportion of indi-

viduals with 60 or more years of age varying from only 3% in the North to more than 15% in

the Southern part (Fig 2(A).

Fig 2(C) shows micro-regions with similar social vulnerability indexes. Micro-regions in

the C, D and E classes are the most vulnerable. They are located mostly in the Northeast and

North regions. As expected, higher life expectancy is associated with better living conditions,

significantly concentrated in the Southern portion of the country. Hospital capacity is very het-

erogeneous, the best capacity found in large metropolitan areas. There are under-equipped

micro-regions throughout the country but they concentrate in the North and Northeast.

Fig 2(D) highlights the micro-regions with high probability of imminent outbreak (pout>
0.5 on the second wave) and high social vulnerability. They are important targets for immedi-

ate attention in terms of local socio-economic factors (S1 File).

Discussion

In the absence of strong mobility restrictions, the fast establishment of COVID-19 outbreaks

in the larger urban areas of the country was found to be highly likely, with subsequent spread

to their vicinity municipalities. The time scale of this spread is not explicitly represented in the

model, but it was expected to be a matter of a few weeks considering the short serial interval of

Table 1. Mean value of the descriptors in the five classes of social vulnerability in Brazil.

Class life expect. GINI poverty water sewage electricity urban HDI edu.

A 75.0 0.46 2.16 95.9 1.30 0.39 0.79 0.64

B 74.2 0.49 5.99 89.15 4.10 1.59 0.64 0.57

C 70.9 0.52 20.38 80.46 15.266 4.27 0.56 0.50

D 69.96 0.53 25.72 61.88 24.14 4.03 0.49 0.47

E 70.82 0.60 31.55 70.09 41.15 16.84 0.50 0.45

Life expect. = life expectancy (age), GINI, poverty = % living in extreme poverty, water = % individuals without access to piped water, sewage = % population with

insufficient water supply and precarious sewage disposal, electricity = % individuals in households without electricity, urban = % living in cities.

https://doi.org/10.1371/journal.pone.0238214.t001

PLOS ONE COVID-19 spread in Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0238214 September 18, 2020 6 / 11

https://doi.org/10.1371/journal.pone.0238214.t001
https://doi.org/10.1371/journal.pone.0238214


this infection. The implementation of mobility restrictions could delay this spread but it was

unlikely to change the routes of the travelling wave. The analysis of COVID-19 spread using

the mobility flows and probabilities of the epidemic taking off, were subjected to uncertainties

in both mobility and epidemiological parameters available at the time they were calculated.

Nevertheless their utility at the time was not diminished by this uncertainty since the parame-

ters were chosen to represent a somewhat extreme scenario, which the country could still strive

to avoid. Other uncertainties expected to limit the accuracy of the results were the lack of an

Fig 2. Vulnerability panel. (Top left) Percentage of population above 60 years old (Top right) Hospital capacity as number of hospital beds per 10 per

10,000 individuals; (Bottom left) classification of homogeneous areas in terms of socio-economic vulnerability. D and E are the most vulnerable; (Bottom

Right) selection of micro-regions with high probability of imminent COVID-19 epidemics and high social vulnerability.

https://doi.org/10.1371/journal.pone.0238214.g002
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accurate value for the infectious period of COVID-19 and the lack of knowledge about early

changes in mobility resulting from news of the pandemic already circulating through the

country.

Social distancing was one of the main strategies put in place to delay transmission. This was

expected to be difficult to achieve in areas with high social vulnerability where poor living con-

ditions make it difficult to adhere to hygiene and isolation protocols. Even in the A vulnerabil-

ity class, the success of this strategy requires adaptation to cope with the large inequality within

the municipalities of each micro-region. The classification proposed here was developed to

help to tailor the mitigation protocols to the needs and possibilities of the different regions.

It was clear the great heterogeneity in hospital capacity across the country. The median

number of hospital beds was 19 per 10,000, but 5% of the micro-regions have only 6 beds per

10,000. This disparity poses an important challenge for resource allocation, and should be

addressed specially in those municipalities combining high probability to early spread, rela-

tively high percentage of individuals above 60 years old, and limited number of hospital beds

per 10,000 people. All discussions about the time to overload of the health system should take

into consideration the regular level of occupancy of hospital beds in each region, which was

not available for this analysis.

The regions in the North and Northeast of the country were those identified with the high-

est socioeconomic vulnerabilities. These areas were expected to suffer above average burden if

measures were not taken quickly, since the eventual disease spread would add to struggles

already present in those populations.

All the analyses proposed and applied here focused on being able to rank regions in terms

of the seriousness of the health crisis looming over them. As such, their main limitation is that

they yield relative results, allowing for optimal resource allocation, but not for accurately pre-

dicting number of cases and deaths. Further exploration of this model could include Monte

Carlo methods to identify uncertainties regarding different trajectories of disease spread in the

first and second round of propagation.

When this analysis was sent to public health authorities in the form of a report, we hoped it

could help health authorities and decision-makers regarding the best course of action and how

to better allocate their resources. One application was the identification of indigenous popula-

tions in Brazil at imminent risk. In response, the indigenous communities organized them-

selves and in collaboration with other organizations, prepared a document for the UN. These

subsequent reports are available in covid-19.procc.fiocruz.br.

In 9th July 2020, 110 days after the analysis here presented was finished, the paper was still

under revision. During this period, SARS-CoV-2 spreaded throughout Brazil, causing 1.72

million confirmed cases and 68055 deaths. So, we extended this paper, giving an update of the

situation, to compare our predictions with what happened.

After Rio de Janeiro and São Paulo, the next cities to reach three figures in their reported

cases where Belo Horizonte/MG, Brası́lia/DF, Porto Alegre/RS, Salvador/BA and Fortaleza/

CE. These cities have small effective distances to Sao Paulo, and for that reason, with high

probability of outbreak according to our models (S1, S3, S4 Figs). Fast contamination of cities

directly connected by road to Sao Paulo and Rio de Janeiro was also observed, mainly to the

former. One month later, by the end of May, COVID-19 activity was already present in many

cities along the coast as expected. These patterns had been predicted by the model.

We detected that micro-regions in the Northeast, in particular Ceará and Bahia, should

receive attention due to the synergistic effect of geographical and social vulnerabilities on the

magnitude of the COVID-19 public health crisis. Ceará was later strongly hit by the epidemic

and had to implement lock down measures when hospital beds became unavailable.
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Our model underestimed the spread of the epidemic within the Amazon region. This is due

to the fact that human mobility by boat, the main mode of travel in the region, was not well

represented in our mobility matrix. Thus, we did not predict the fast spread to communities

along the Amazon river between Manaus and Belem.

Knowing in advance which regions could potentially suffer the biggest hit first might have

allowed authorities to opt for preemptive differential investments to the public health care sys-

tem (SUS) in these regions. Unfortunately, the initial efforts by the government to allocate

resources in a rational way was not timely enough and was eventually interrupted by political

and economic reasons.

Supporting information

S1 File. Additional information on the cluster analysis and complete results per micro-

region.

(DOCX)

S1 Fig. Probability of outbreak for different values of R0 and the expected number of

infected arrivals (Im). See text for details.

(PNG)

S2 Fig. Map of COVID-19 cases in Brazil in 21-Apr-2020.

(PNG)

S3 Fig. Map of COVID-19 cases in Brazil in 21-May-2020.

(PNG)

S4 Fig. Map of COVID-19 cases in Brazil in 21-Jun-2020.

(PNG)
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6. Ministério da Saúde confirma transmissão comunitária no RJ e em SP; 2020. https://veja.abril.com.br/

saude/ministerio-da-saude-confirma-transmissao-comunitaria-no-rj-e-em-sp/.

7. Codeço CT, Cordeiro JdS, Lima AWdS, Colpo RA, Cruz OG, Coelho FC, et al. The epidemic wave of

influenza A (H1N1) in Brazil, 2009. Cadernos de Saúde Pública. 2012; 28:1325–1336. https://doi.org/
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