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In recent years, the transmission of healthcare-associated infections (HAIs) has led to
substantial economic loss, extensive damage, and many preventable deaths. With the
increasing availability of data, mathematical models of pathogen spreading in healthcare
settings are becoming more detailed and realistic. Here, we make use of spatial and
temporal information that has been obtained from healthcare workers (HCWs) in three
hospitals in Canada and generate data-driven networks that allow us to realistically
simulate the spreading of an airborne respiratory pathogen in such settings. By
exploring in depth the dynamics of HAIs on the generated networks, we quantify the
infection risk associated with both the spatial units of the hospitals and HCWs categorized
by their occupations. Our findings show that the “inpatient care” and “public area” are the
riskiest categories of units and “nurse” is the occupation at a greater risk of getting infected.
Our results provide valuable insights that can prove important for measuring risks
associated with HAIs and for strengthening prevention and control measures with the
potential to reduce transmission of infections in hospital settings.
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1 INTRODUCTION

Healthcare-associated infections, or nosocomial infections, are infections transmitted within
healthcare settings. For every one hundred patients admitted to hospitals, between seven and ten
will acquire at least one type of HAI [1]. Nosocomial infections also play an important role in the
spreading of pandemics, as the recent SARS-CoV-2 pandemic has shown [2, 3]. As such, they have
become an important public health concern [4–7] because the prevalence of HAIs not only yields
losses of financial resources but also causes substantial morbidity and mortality [8–10]. The control
or mitigation of HAIs is challenging since, in modern healthcare systems, there exists a variety of
potential risk factors contributing to the spread of HAIs [11, 12]. For instance, in terms of
environmental aspects, the relatively restricted spaces in hospitals provide the conditions for the
repeated and prolonged exposure to HAIs. Moreover, the various categories of spatial units play
different roles in the transmission of HAIs as a consequence of their function.

Previous studies have shown that close contact is a major mode of transmission of healthcare-
associated infections. Thus, the daily activities of healthcare workers, that form temporal networks of
interactions, can potentially increase the risk of infection to patients and themselves [13–15]. In
addition, the occupational nature of some healthcare workers also contributes to a certain extent to
the transmission of HAIs between hospital units, making it necessary to adopt a system-wide view of
all possible transmission paths. In summary, the risks associated with HAIs are heterogeneous and
could depend on the characteristics of the categories to which the units belong and the various
occupations of healthcare workers.
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Over the last decade, measures aimed at preventing and
containing HAIs have been developed, also accounting for the
previously mentioned variability of transmission routes [16–18].
For instance, increasing hand hygiene and the regular use of
personal protective equipment (PPE) are the most basic infection
prevention and control strategies [12]. Although the
implementation of disinfection measures has a significant
effect on restraining the spread of HAIs, understanding the
dynamics of HAIs that are transmitted by respiratory
mechanisms can open the path for optimizing current strategies.

In terms of mathematical modeling of disease spreading, early
on it was already shown that social networks in healthcare
facilities are different from other networks since individuals
have very particular roles, such as nurses and medical doctors
[19]. Most models focus mainly on a single ward—usually
ICUs—or in simplified hospital settings [20, 21]. Others focus
on certain pathogens, or on the transmission from patient to
patient and across hospitals [22, 23]. Yet, not much attention has
been devoted to the different roles that healthcare workers’
profiles—besides nurses and medical doctors—can play.

In this work, we use data collected from anonymous surveys
carried out in three hospitals on the behavior of workers to study
the propagation of airborne respiratory pathogens. We construct
the interaction network of workers within the hospital using a
data-driven approach and simulate the transmission of
respiratory disease [24, 25]. Our aim is to evaluate the
infection risks of certain occupations, and how they are
distributed through the different units of the hospital. To this
end, we assess the infection risk of each spatial unit by calculating
the disease hitting time and the number of infections produced in
each location. We also evaluate the risk of different HCWs by
computing the probability of getting infected and their potential
infection capacities.

Our findings show that the transmission dynamics of a
potential disease are very similar in the three hospitals
analyzed, even though they are very different in terms of size
and specialties. In particular, transmission is the highest in
inpatient care units, and nurses are the HCWs at the highest
risk, in line with previous studies based in different countries [26].
It is also noteworthy that these results could provide a valuable
reference for monitoring the transmission of airborne infectious
diseases within hospital settings and improve preventive
measures to ultimately reduce the incidence of HAIs.

2 MATERIALS AND METHODS

Site-specific surveys were created for three Canadian hospitals as
part of the CONNECT I study (henceforth, hospitals A, B, and C,
in order of size, being A the largest). In the survey, employees
were asked to provide information on the amount of time they
spent at each location of the hospital during a normal week. The
survey identified 19 different HCW occupational categories and
over 100 different locations in each hospital. These were further
grouped into seven HCW occupational categories (nurses,
physicians, researchers, technologists, administration
personnel, and clerks) and six unit categories (auxiliary rooms,

inpatient areas, medical-staff rooms, other-staff rooms,
outpatient areas, and public areas) using domain knowledge
from the hospital administrations. The total number of
employees in the three hospitals was over 8,000
(~ 4100,~ 2400, and ~ 1600 in hospitals A, B, and C,
respectively). In total, 38% of them responded to the surveys,
with administration personnel and nurses being the two
categories with the largest response rates. For further details
on the CONNECT I study, we refer the reader to [15] in
which a more complete description of the dataset is given.

In Figure 1, we report some of the results of the survey from
hospital B (see also Supplementary Figure S1). We observe that
there was an important heterogeneity in the weekly routines of
different HCW groups. For instance, nurses and physicians did
not visit auxiliary rooms, while administrative assistants and
those that reported their category as other could be easily
found there. Similarly, it is easier to find physicians in
medical-staff rooms and public areas than nurses. Regarding
their daily number of contacts with other co-workers, nurses
were the single-category reporting the largest number, followed
by administrative assistants and physicians. The category labeled
as other was composed of very different HCWs and, thus, their
contact patterns were also quite heterogeneous.

With this information, we applied a data-driven approach to
construct the network of HCW interactions. Due to the lack of
precise information, we did not include any patient interactions.
Therefore, rather than analyzing the impact of a potential
outbreak in the hospital, we focused on understanding how
would an airborne disease spread throughout the hospital. To
do so, we first assumed that two individuals can interact only if
they have reported visiting the same unit. The connection
relationship is denoted by

Au
ij � δi,uδj,u, (1)

where δi,u = 1 if the healthcare worker i has visited unit u and δi,u
= 0 otherwise. To leverage the detailed information contained in
the survey, we further took into account the amount of time that
each individual spent in the said location with the aim of
weighting the interaction. Therefore, in the generated network,
each individual represents one node, and the weighted link
between two nodes i and j in unit u is given by:

wu
ij �

Ti,u

Ti

Tj,u

Tj
, ∀i, j ∈ u, (2)

where Ti,u represents the amount of time that individual i spent in
a spatial unit u and Ti represents the total amount of time in the
hospital reported by individual i. In Figure 2A, we schematically
represent the connection relationship among the healthcare
workers in our network. Figure 2B shows an example of the
networks obtained with this technique. We can see that
technologists tend to cluster together in a few locations, while
nurses, who also tend to cluster together, can be found all over the
hospital.

To simulate the spread of an airborne infectious disease, we
implemented an SIR model on top of the network of HCW
interactions. In the model, a worker might be in one of three
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states: susceptible (S), infected (I), or recovered (R). An infected
individual, i, transmits the disease to a susceptible individual j
with probability P(S → I) = 1−exp (−βwijΔt), where β is the per-
contact transmission probability. This process is run
synchronously for all infected individuals at each time step t.
Then, those individuals that were already infected at time tmight
recover with probability P(I→ R) = 1−exp (−μΔt). We set β = 0.01
and μ = 0.10. The average strength (sum of all the weights of each
node) in each network was 31, 23, and 18 for hospitals A, B, and
C, respectively, yielding a value of R0 in the homogeneous
approximation of 3.1, 2.3, and 1.8 [27]. Another possibility
would be to fix R0 and obtain the corresponding value of the
per-contact transmission probability that would yield that

reproduction number in the hospital. The results that we
report in this study do not change with this choice, and thus
we have not included them in this work.

3 RESULTS

3.1 Risk of Units
In this section, we assess the risk of each location in terms of its
potential to spread an outbreak. Note that this does not capture
where the outbreak originates. Instead, it was assumed that one
HCW gets infected, either by a patient in the hospital, or outside,
and then the outbreak spread through the other HCWs. This

FIGURE 1 | Interaction patterns of HCW. (A) Units visited by four selected HCW groups in hospital B during a normal week. (B) The number of direct contacts with
other HCWs reported bymembers of each category during a typical day. The distributions are fitted to a right-censored negative binomial distribution, with α representing
the mean and θ the dispersion parameter.

FIGURE 2 | Schematic representation of the network. (A) The spatial activities of each individual allow us to determine if two individuals could potentially interact.
We assume that there is a link between two individuals if they visit the same unit. The weight of each link depends on the time proportion spent by each individual in that
unit. (B) Representation of the network obtained in hospital B. To facilitate the visualization, only links with a weight larger than 0.1 are shown.
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process was simulated by randomly choosing one node in the
system and moving it into the infected compartment. Due to the
stochasticity of the model, the results were averaged over 10,000
independent runs. In the Supplementary Material, we also
explored the impact of some of these assumptions. In
particular, Supplementary Figures S2, S3 show the effect of
adding a constant flux of infections from the outside and
Supplementary Tables S1, S2 the impact of the seed selection.

3.1.1 Hitting Time
The hitting time is defined as the average amount of time that it
takes for the disease to reach a specific location [28]. In the case of
hospital units, we defined it as the time until one HCW located in
unit l gets infected, HTl. Therefore, the smaller the hitting time,
the more at risk a location is. We then gauged the risk of each
location in comparison to the rest by dividing each HTl by the
average hitting time in the hospital, 〈HT〉. In Figure 3A, we show
the risk computed using this procedure for each type of unit. We
observe that in the three hospitals, the disease would arrive sooner
in units under the category of inpatient area. Note also that, even
though most locations categorized as public areas are at an
average risk, the riskiest locations belong to the previously
mentioned category. These are mainly cafeterias, which are
visited by many employees and, thus, it is easy for the disease
to reach them.

3.1.2 Number of Infections
We further explored the risk posed by each unit by computing the
average number of infections produced in each unit, NIl. As in the
previous case, we normalized this number by the average number of
infections produced in any unit 〈NI〉 in order to compare different
hospitals. The results, Figure 3B, agree with the previous observation
that the inpatient area was the highest risk category. However, we

observed an important contribution of some medical-staff rooms. A
closer inspection revealed that these locations are laboratories and
research locations, in which the number of different HCWs was not
that large, but the ones that visit those areas were likely to spend an
important amount of time there. Thus, even though it took longer
for the disease to arrive, once it did, it could easily spread throughout
the workers located in those rooms.

To briefly sum up, the results obtained from two methods
reveal that the risk of spatial units belonging to inpatient care and
public area categories is relatively higher than others in both
methods. The units at lower risk were other-staff rooms
(accounting and administration) and auxiliary rooms (laundry
and housekeeping).

3.2 Risk of Individuals
As we saw in Figure 1, there was an important degree of
heterogeneity across HCW occupations and their roles in
different units. In what follows, we explore the risk associated
with each occupation category in order to better understand the
dynamics of the spreading. In [15], the 19 self-reported occupations
identified in the surveys were grouped in four categories, but given
the results from the previous section, we extracted two groups of
HCW from the “other HCW” used in the study: technologist and
researcher (note that in hospital C no one reported anything related
to research as their occupation). We also split the “Admin/Support”
category into administration and clerk due to the relatively large
number of individuals in each category.

3.2.1 Probability of Getting Infected
A basic observable of the risk carried by an individual is the
probability of getting infected. To obtain it, we ran 10,000
stochastic simulations and computed the probability that each
individual got infected, PIi. Then, we divided it over the average

FIGURE 3 | Spatial spreading of a disease in hospital settings. In all cases, each box-plot represents the median and the interquartile range of the risk associated
with units under each category. Dots indicate the average risk of each individual location within the category, with squares, circles, and triangles representing hospitals A,
B, and C, respectively. In panel (A), the relative risk of infection is gauged using the hitting time, while in panel (B) it is measured by taking into account the number of
infections produced within each unit. The category of a unit was provided by the management of hospital A, and the same grouping criteria were used for the other
hospitals. Two groups represent patient-care areas (inpatient area or outpatient area) while the other four groups are composed of units that are predominantly non-
patient-care areas.
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probability of getting infected for all individuals, 〈PI〉, and grouped
them according to their occupation, Figure 4A. In order to clearly
show the differences in the risk between different groups of HCWs,
we transform the box-plot intoTable 1. In the table, the values of the
median and interquartile range of the risk for each occupational
group of HCWs are listed for each hospital. In this case, we observe
that nurses and technologists were the HCWs at higher risk. In
contrast, people working in administration were at a lower risk of
getting infected. Note that interactions with patients were not
included, and it is expected that nurses will have more contact
with patients than other occupations. Yet, the probability of getting
infected is greater for them, purely based on their contacts with other
HCWs. These observations are largely consistent with the reality in
hospital settings, highlighting the role that occupational
heterogeneity plays in the spreading risk of HAIs.

3.2.2 Effective Reproduction Number
Last, we computed the effective reproduction number of each
individual. That is, the average number of secondary infections
they produce during an outbreak, Ri. We divided this quantity over

the average effective reproduction number, 〈R〉, to gauge the risk
posed by each individual. Then, we grouped them again according to
their occupation, Figure 4B. In Table 2, we show the median and
interquartile range of the risk associated with each group of HCWs
for each hospital. In line with the previous observation, nurses were
the category with the highest risk in terms of the effective
reproduction number. Thus, not only it was more likely for
nurses to get infected but also to spread the disease. As such,
they should be a priority when implementing new protection
measures against HAIs. On the other extreme, working under the
administration category was relatively less risky.

4 DISCUSSION

In this work, we have considered the spatial and temporal
information self-reported by healthcare workers in three hospitals
in Canada to generate data-driven networks of interactions between
HCWs. In hospital settings, the functional characteristics of some
categories of units result in a particularly high risk of spreading

FIGURE 4 |Spreading of the disease across HCWs. In all cases, each box-plot represents themedian and interquartile range of the risk associated with each group
of HCWs. Dots indicate the average risk of each worker within the category, with squares, circles, and triangles representing workers from hospitals A, B, and C,
respectively. In panel (A), we show the relative risk measured as the probability of getting infected during an outbreak. In panel (B), the risk is gauged using the average
number of infections produced by an individual during an outbreak.

TABLE 1 | Risk of HCWs assessed by the probability of getting infected. We show
the median and interquartile range of the relative risk for each occupational
group of HCWs in the box-plot. The values in bold represent the top two high-risk
categories in each hospital.

Risk of getting infected

Category Hospital A Hospital B Hospital C

Nurse 1.36 [1.20–1.39] 1.05 [0.77–1.34] 1.27 [0.73–1.42]
Physician 1.23 [0.57–1.37] 0.84 [0.48–1.20] 1.07 [0.63–1.32]
Researcher 1.17 [0.46–1.39] 0.70 [0.33–1.06] – –

Technologist 1.21 [0.63–1.36] 1.34 [1.04–1.46] 1.08 [0.96–1.41]
Administration 0.71 [0.38–0.97] 0.78 [0.48–0.97] 0.06 [0.06–0.06]
Clerk 0.58 [0.27–1.17] 1.01 [0.75–1.38] 1.11 [0.35–1.58]
Other 0.95 [0.50–1.33] 1.03 [0.71–1.34] 0.74 [0.29–1.34]

TABLE 2 | Risk of HCWs measured using the effective reproduction number. We
show the median and interquartile range of the risk for each occupational
group of HCWs in the box-plot. The values in bold represent the top two high-risk
categories in each hospital.

Effective reproduction number

Category Hospital A Hospital B Hospital C

Nurse 1.27 [0.98–1.52] 1.02 [0.80–1.30] 1.12 [0.85–1.28]
Physician 0.97 [0.61–1.35] 0.84 [0.58–1.09] 0.88 [0.69–1.11]
Researcher 0.80 [0.56–1.39] 0.86 [0.53–0.94] – –

Technologist 1.09 [0.60–1.30] 1.09 [0.87–1.29] 1.02 [0.81–1.18]
Administration 0.72 [0.49–0.99] 0.70 [0.58–1.04] 0.45 [0.45–0.45]
Clerk 0.63 [0.41–1.10] 0.94 [0.69–1.33] 1.05 [0.56–1.41]
Other 0.80 [0.55–1.23] 0.89 [0.55–1.20] 0.77 [0.48–1.18]
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healthcare-associated infections. On the other hand, the
heterogeneity of the daily activities of HCWs might also constitute
an important risk factor for the transmission of HAIs. Therefore, the
main purpose of this work was to quantify the differences across
categories of spatial units and workers. Accordingly, we delved into
the dynamics of HAIs by implementing an SIR model on the
generated networks to simulate the spread of an infectious disease
within the hospital settings. This simplified model allowed us to
understand the dynamics of the system without having to focus on
the specific characteristics of a certain type of pathogen.

For the units, we proposed two risk indicators given by the disease
hitting time and the number of infections generated per unit. The first
metric allows quantifying how fast a given disease could reach
different units in the hospital, while the second provides a
measure of the spreading potential of a unit. We found that the
risk levels of units exhibit heterogeneous and spatially distributed
characteristics. In particular, the units labeled as inpatient care or
public area showed higher risks of spreading a disease than others. On
the contrary, the other-staff rooms and auxiliary rooms categories
were comparatively at a lower spreading risk. Similarly, we
quantitatively assessed the risk of groups of HCWs using two
metrics. We focused on the impact of the diversity of occupations
on the risks of HCWs by calculating the probability of getting infected
and the effective reproduction number. The results indicate that
HCWs belonging to the nurse category were the most susceptible to
being infected and, at the same time, nurse was the occupation with
the largest spreading potential in terms of the capacity to generate
new infected individuals. In addition, most of the HCWs labeled as
administration are comparatively less likely to get infected and
transmit the disease to others. Therefore, overall, our results
indicate which units and occupations should be preferentially
targeted by prevention plans aimed at reducing, the probability of
getting infected, the likelihood of generating infections, and the
spreading of HAIs in hospital settings.

Last, a few remarks are in order. First, we observe that merely the
size of the hospital already produces denser and more connected
networks, which increases the value of R0 and thus facilitates the
propagation of this type of infectious disease. Second, the networks
were constructed using only the self-reported information on the
interaction patterns among co-workers, disregarding the risk that
some specific units might pose to the people working there, or the
possibility of patients contributing to the spreading. However, we
believe this limitation highlights something important. Based solely
on the amount of time spent at each location, we have identified
which areas and occupations are at the highest risk in terms of HAIs.
These, in turn, are precisely areas with many patients and in which
riskier activities take place, which can only increase their role in
spreading HAIs. Thus, special attention should be paid to these
interactions, rather than focusing only on patient-worker
interactions. To conclude, it is important to note that this type of
agent-based model requires the estimation of many parameters to
calibrate them to real-world disease data, something beyond the
scope of this study. However, there are promising inference
techniques that have demonstrated their potential to make these
mathematical models useful in real-world settings [29–33].

In summary, the data-driven model presented here provides
insights into the dynamics of healthcare-associated infections in

hospital settings. The findings reveal the key role of the diversity
of categories of units and various occupations of HCWs on the
risk of transmitting infectious diseases. In terms of controlling the
transmission of HAIs, we believe that appropriate interventions
could be developed through quantitatively assessing the risks of
both units and individuals using data of the nature employed
here. Finally, our work constitutes the first step towards more
sophisticated analyses and models whose purpose is the
optimization of the spatial organization of units and
occupations of real settings to reduce the inherent risks of HAIs.
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