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Abstract
Comprehensive and quantitative investigations of social theories and phenomena
increasingly benefit from the vast breadth of data describing human social relations
that is now available within the realm of computational social science. Such data are,
however, typically proxies for one of the many interaction layers composing social
networks, which can be defined in many ways and are composed of communication
of various types (e.g., phone calls, face-to-face communication, etc.). As a result, many
studies focus on one single layer, corresponding to the data at hand. Several studies
have however shown that these layers are not interchangeable, despite the presence
of a certain level of correlation between them. Here, we investigate whether different
layers of interactions among individuals lead to similar conclusions with respect to the
presence of homophily patterns in a population—homophily represents one of the
widest studied phenomenon in social networks. To this aim, we consider a data set
describing interactions and links of various nature in a population of Asian students
with diverse nationalities, first language and gender. We study homophily patterns, as
well as their temporal evolution in each layer of the social network. To facilitate our
analysis, we put forward a general method to assess whether the homophily patterns
observed in one layer inform us about patterns in another layer. For instance, our
study reveals that three network layers—cell phone communications, questionnaires
about friendship, and trust relations—lead to similar and consistent results despite
some minor discrepancies. The homophily patterns of the co-presence network layer,
however, does not yield any meaningful information about other network layers.
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1 Introduction
Mining and analyzing social networks in various contexts yield important insights towards
a better fundamental knowledge and understanding of human behavior [1]. Data on so-
cial networks have allowed researchers to investigate social theories and effects such as
homophily, influence, triadic closure, etc. Data also help design data-driven models of hu-
man interactions, which can be used to describe the many processes taking place in a
given population, such as information spreading, coordination, consensus formation, or
spread of infectious diseases [2]. Accurate descriptions of social interactions are therefore
crucial to shed light on the most relevant mechanisms at work in these processes, and for
instance to understand the factors determining if a rumor will spread, or what are the best
measures to contain the spread of a disease.
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Within a given population, however, several networks of social interactions can be de-
fined: e.g., friendship relations, patterns of communications, co-presence, face-to-face in-
teractions. These different types of relations form a multilayer network [3, 4], for which
each layer can be explored using possibly different methods. Friendship relations are typ-
ically mined through surveys, physical interactions and proximity by diaries or more re-
cently using wearable sensors [5, 6], and communication patterns are extracted from mo-
bile phone call records [7–9]. In recent times in particular, technological developments
have allowed researchers to gather increasing amounts of digital data on face-to-face con-
tacts, phone communication patterns and online relationships, at widely different scales
in terms of population size, space and time resolution. These data have been widely used
to investigate the structure of social networks, the patterns of social interactions and so-
cial theories, such as the strength of weak ties [7], homophily patterns (the tendency of
individuals to have social links with similar individuals, with respect to gender, national-
ity, social class, etc. [10]) [11–16], mechanisms of link formation and persistence [11, 12,
17], social strategies linked to limited attention capacity [8], etc.

In recent years, a number of data gathering efforts has moreover managed to access si-
multaneously more than one layer of interactions in various population groups, leading
to multilayer network data [18, 19]. The issue then arises of how to deal with the result-
ing increased complexity of the data sets, as different types of ties are not interchange-
able [20]. In fact, it has been shown in a number of cases that these layers are correlated
but not equivalent [4, 21–28]. For instance, a comparison between face-to-face contacts
measured by sensors and friendship relations obtained through surveys has shown that
the distribution of contact durations are broad both for pairs of friends and pairs of non-
friends, even if the longest contacts occur between friends [24]. In addition, a comparison
between proximity events and online social links has shown that a simple thresholding
procedure retaining only the strongest proximity links is not enough to determine online
friendship [23]. Furthermore, a recent study of communication, online links, and prox-
imity events has highlighted that these layers differ and cannot be reduced to a single
channel of interaction [28]. Several approaches have thus been put forward to manage
multilayer social networks, such as block-modelling for multiple relations [29], stochastic
actor-oriented models dealing with more than one layer [30], or dimensional reduction
based on structural similarities of layers to define composite network measures [31].

In most cases however, studies of social networks are still based on data describing one
specific layer of the multilayer network characterizing social interactions, and consider
this layer as a proxy of “the” social network of the population under study, despite the
well-accepted and known differences between the “social networks” defined through dif-
ferent proxies [3]. Indeed, many authors have argued that close relationships correspond
to both higher frequencies of face-to-face contacts and phone communication [9, 11, 14,
16, 32, 33]. It is, for instance, often assumed that the most important relationship of an
individual can be captured by his/her mobile phone records, and that the “best friend” of
an individual is the person he or she is in most contact with. Some evidence to support
this assumption has come from surveys [32, 34] or from comparison between surveys and
mobile phone records [9], which are, however, rarely available for the same population.

It is thus important to gather and investigate data sets containing multiple layers of so-
cial interactions, to better ground such assumption and assess the extent of its validity. It
is worth highlighting that the number of data sets offering multiple layers of interactions,
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enriched with metadata describing individual characteristics, remains extremely limited.
Moreover, it is crucial to investigate whether, given that the layers of interactions are cor-
related but not equivalent, socially relevant patterns and theories can be reliably assessed
from one layer only. If it is indeed the case, then for a given population the data that is most
conveniently accessible or that offers the best resolution can safely be used to explore such
issues. Here, we focus on homophily along a range of individual characteristics, as one of
the most explored patterns structuring social networks [10]. A recent study has shown
some notable differences in the strength of homophilous patterns in different communica-
tion channels in a population of European students [4]. We investigate this particular issue
in a diverse population of Asian students of various nationalities in a university of Singa-
pore, for which we have access to phone communication records, co-presence events, and
friendship and trust relations over one full calendar year. Detailed metadata about gender,
nationality, first spoken language, academic performance and psychological traits are also
available, allowing us to assess homophily and its temporal evolution along multiple traits
and multiple layers of social relationships. We put forward a methodology to systemati-
cally compare homophily patterns across layers, as observed through different indicators
and with respect to different attributes, and apply this methodology to our dataset. In this
case, we show that patterns of homophily in the co-presence layer do not inform us on
the patterns in other layers, while the patterns observed in the communication network
and in the networks of friendship and trust obtained from surveys, although not equal,
are informative of each other.

2 Data and methods
We consider data collected in a Singapore university during one full academic year—three
consecutive terms separated by short breaks—and concerning 35 participating students,
of which 15 students were from one cohort class and 20 students from another cohort
class, studying in the same campus and staying at the same on-campus hostel. Each cohort
class varied between 45 to maximum 50 students based on the university policy. There
were no inclusion criteria for this study. The data consists in several types of relationship
between students, as well as in metadata about each student.

Each participant was given a mobile phone (models included Samsung Galaxy S3, Sam-
sung Nexus, and Sony Xperia, all having equivalent features and supporting the state-of-
the-art Android system at that time, namely 4.2/4.3 Jelly Bean) to use for the duration of
the study. This smartphone was preinstalled with a specially developed software capable
of recording and sending phone usage data and colocation information to a server located
in the university premises, as described in [35]. Raw data collected by the software consists
therefore in all call events between participating students, with timestamp and duration of
the call, and timestamped colocation events Specifically, co-presence events were detected
by periodic Bluetooth scanning at 5-minute intervals. If two participants were discovered
in co-presence, there would be one co-presence event registered for each participant, thus
a total of two co-presence events for the dyad [35]. Automated location data collection by
each phone was turned off each night from 12:00 a.m. to 7:00 a.m. for energy saving.

All 35 participants reported in this paper completed all components of the study. Par-
ticipants were also reminded to always carry the phone with them and use it as their own
at the beginning of each term in order to get meaningful data. All participants agreed to
participate in this study on a voluntary basis, where each participant was compensated
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with SGD$30 for participation and completion of all survey questions. Besides the 35 par-
ticipants who completed the study, there were another two students who participated but
withdrew from the study (one discontinued after 1 day of participation, and the other one
pulled out from the study at the end of the first term because of school transfer).

The resulting data is conveniently represented as 2 temporal networks, the communica-
tion and the co-presence ones, in which nodes represent students and events correspond
to a phone call communication or to a co-presence event. Each communication event is
directed, represented by the calling node, the receiving node, the starting time and the du-
ration of the call. Each co-presence event is instead undirected, represented by two nodes,
a starting time and a duration.

Each temporal network can be aggregated on any arbitrary time window. We have con-
sidered on the one hand communication and co-presence aggregated over the full study
(one year), and on the other hand shorter periods of four months corresponding to the
university terms: Term 1 (T1: May to August), Term 2 (T2: September to December) and
Term 3 (T3: January to April). Each aggregated communication network relates nodes,
representing students, by directed links: a directed link is drawn from student i to student
j if i placed at least one call to j during the aggregation time window. Each directed link can
be weighted in two different ways: (1) the weight can be either the number of calls nc

i→j

from i to j, or (2) the total duration dc
i→j of these calls. We also consider an undirected

version of these communication networks in which the weight of a link between i and j
is simply the sum of the weights from i to j and from j to i, ws

ij = wi→j + wj→i (with w = nc

or dc).
As already mentioned, the co-presence networks are undirected. Moreover, in order to

discard classroom activities that are imposed by the university schedule and not driven
by personal relationships, we consider in the co-presence aggregated networks only co-
presence events taking place either after 9:00 p.m. each day for the week days or during
weekends. For each pair of students (i, j), a link is drawn if they have been detected at least
once in co-presence, and the corresponding weights are defined, as in the communication
network, either as the number ncp

ij of such events, or by their total duration dcp
ij . Table 1

shows the properties of both networks under study for these time windows. Figure 1 dis-
plays the yearly aggregated communication and co-presence networks.

In addition, questionnaires were used to assess self-reported relations among students.
Each participant indicated his/her friendship tie-strength with all other participants by
answering individually the following two questions: (Q1) “How strong is your relationship
with this person?” and (Q2) “How would you feel asking this friend to loan you $100 or
more?”. For each question, a 9-point scale was used where 1 indicates for Q1 that they
barely know each other (resp., for Q2 that they would never ask), while 9 indicates they are
close to each other (resp., for Q2, that they would feel comfortable). These questionnaires
were answered by the students at the start of the study (T0) to establish baseline values,
and subsequently at the end of every term (T1, T2, T3). At each such time, we obtain
therefore two questionnaire networks (one for each question asked). Both networks are
fully-connected, directed, and weighted, where the weight Wi→j of an edge from student
i to student j ranges from 0.1 to 1.0 (9 points) indicating the reported strength of the
friendship (Q1) or trust (Q2) relationship of i towards j.

Finally, several attributes are available for each student: (1) his/her so-called cohort class
(the students were divided into two cohort classes of approximately 50 students), (2) gen-
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Table 1 Properties of the communication and co-presence networks

(a) Aggregation period: 1 year

Network properties Communication Co-presence

Number of nodes 33 35
Number of edges 282 435
Average degree 8.5 24.85
Average clustering coefficient 0.45 0.858
Edge weight—total number 2125 14,249
Edge weight—average number 64.4 407.1
Edge weight—total duration (s) 93,580 11,966,878
Edge weight—average duration (s) 2835.8 341,911.0

(b) Aggregation period: 4 months (Term)

Network properties Communication Co-presence
T1 T2 T3 T1 T2 T3

Number of nodes 33 33 33 35 34 31
Number of edges 162 150 129 347 292 145
Average degree 9.81 9.09 7.81 19.82 17.17 9.35
Average clustering coefficient 0.30 0.34 0.23 0.80 0.80 0.65
Edge weight—total number 766 822 555 5387 7057 1791
Edge weight—average number 23.2 24.9 16.8 153.9 207.5 57.8
Edge weight—total duration (s) 29,969 37,553 26,550 3,981,721 6,412,726 1,493,623
Edge weight—average duration (s) 908.1 1138 804.5 113,763.4 188,609.5 48,181.3

der, (3) nationality, (4) first spoken language (all students can be considered bilingual to a
certain extent, with some participants being fluent in three or more languages), (5) aca-
demic performance measured by the participants’ grade point average (GPA) in each term.
Table 2 summarizes the demographic composition of participants in terms of gender and
nationality. Self-reported data about psychological factors such as loneliness, classroom
community, and adaptation to college life were also collected by means of a questionnaire
at the end of each term. For each psychological factor surveyed, a numerical index was
used (see [35] for details): (i) The UCLA loneliness scale (LS) ranges from a minimum of
20 to a maximum of 80, where a higher score indicates a greater sense of loneliness; (ii) the
classroom community scale (CC) consists of 20 items that measure the individual sense of
community in a learning environment, leading to a total score ranging between 0 and 40,
with a higher score indicating a greater sense of community; (iii) the student adaptation
to college questionnaire (SACQ) was applied to measure college adjustment, with higher
scores indicating better adjustment.

For each attribute, the population under study was divided into two groups. For gender
and cohort class, the division is straightforward. For nationality, the participants were di-
vided into two groups—Singaporeans and foreigners—although several nationalities are
represented (see Table 2). With respect to the first spoken language, in order to avoid con-
founding effects with respect to nationality, we focus only on Singaporean students, whose
first language is either English or Chinese. For academic performance (GPA) and the psy-
chological indices, again the participants were segregated into two groups to facilitate the
analysis of the results: first group with above-the-median values, and the other group with
below-the-median values.

2.1 Measuring homophily
Homophily in a social network can be assessed in a number of ways. It is possible for
instance to investigate the fraction of ties between individuals with similar versus different
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Figure 1 Graphical representation of yearly aggregated networks. (a) Communication network.
(b) Co-presence network. Nodes are colored by gender (“M” for male and “F” for female), and their size
depends on their degree. Edges are colored by aggregated duration. For the co-presence network, only
edges present as well in the communication network are shown. As a result, two nodes become isolated and
are not represented

Table 2 Demography table: Number of participants by nationality and gender

Nationality Gender Total
Male Female

Singaporean/permanent resident (PR) 7 15 22
Indian 2 0 2
PRC Chinese 4 1 5
Malaysian 4 0 4
Vietnamese 2 0 2

Total 19 16 35

characteristics, but also higher-order structures such as triads [36], and even temporal
patterns or motifs [15]. Given the weighted nature of the networks at hand—with possibly
broad distributions of weights as often encountered in human interaction networks, taking
into consideration edge weights is crucial [4].

Here, we consider the following metrics to describe and quantify homophily in each
network, and for each node attribute A:

• Dyadic homophily: we first consider homophily at the basic dyad level, i.e.,
considering the basic elements forming the network, that is the edge. We compute the
total fraction of weights carried by edges between nodes with the same value of the
attribute A (directed networks being converted to their undirected versions):

D =

∑
i,j/Ai=Aj

ws
ij

∑
i,j ws

ij
. (1)

• Triadic homophily: closed triangles describe the smallest non-trivial structure in a
social network. For a given attribute A, that can take only two values, triangles can
either be formed by three individuals with equal value of the attribute, or by a group
of 2 individuals different from the third. We therefore compute the ratio of the
weights of triangles formed by individuals with the same attribute value to the total
weight carried by triangles:

T =

∑�
i,j,k/Ai=Aj=Ak

(ws
ij + ws

ik + ws
jk)

∑�
i,j,k (ws

ij + ws
ik + ws

jk)
, (2)
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where the sums
∑� are conditioned on ijk being a closed triangle. To compute this

index, we convert directed networks to their undirected versions.
• Social preference: for each node i, we can rank his/her neighbors j according to the

value of the corresponding edge weight wi→j . As it was found in [9] that a large
fraction of communication is typically allocated by each individual to a small number
of top-ranked alters, it is indeed of interest to check if the individual and these
top-ranked alters share common attributes. We focus here on comparing the
attributes of i and of his/her first-ranked neighbor and compute the fraction of
individuals for which these attributes are equal (we have performed the same test for
the second-ranked neighbors, but omit the results in order to avoid accumulating too
many indicators). An agent whose strongest contact has the same attribute shows
indeed homophilic behaviour, so the fraction of such agents gives an indication of the
existence of homophily in the population. We can moreover compute these fractions
separately for all nodes i with a given value of the attribute A. For instance, we can
compute separately the fraction of male students and of female students for whom the
strongest link is towards a male student, therefore enabling to detect whether
homophilic trends are different for individuals with different characteristics.

• Temporal motifs: as put forward in [15], the availability of time-resolved data makes it
possible to investigate homophily in temporal patterns of interactions by considering
events concerning the same set of nodes and close enough in time. As in [15], we
consider sets of events separated by at most 10 minutes and involving the same 2 or 3
individuals, and investigate the similarity (or difference) of their attributes. For the
sake of simplicity and given the lack of statistics for motifs involving more than 2
nodes in our data, we limit the evidence shown to reciprocal and repeated calls
(within the time-window of 10 minutes) between two nodes: we consider all such
patterns and compute the fraction involving nodes with equal attributes.

Null model: The measure of the above-defined quantities is not enough in itself to as-
sess the presence of homophily in the data. For instance, if a population is divided into
two groups, with one group much larger than the other, then one would observe more
links within the larger group than between the two groups even if links were created to-
tally at random. One thus needs to compare the data with a baseline corresponding to a
null hypothesis of absence of homophily. To this aim, a well known and often used way
to assess homophily is to compare the values obtained in the data with those obtained in
a proper null model. Several possibilities have been considered in the literature. For in-
stance, one can consider an ensemble of random networks in which each individual has
the same number of links as in the real data i.e., an ensemble of networks with fixed de-
gree sequence, sampling this ensemble by simply reshuffling links at random [37]. Such
a procedure was used for instance in [4, 13]. In this ensemble however, structures and
correlations in the network are not fixed (they are indeed destroyed by the reshuffling
procedure), while they might be relevant, in particular in social contexts. For instance, the
number of triangles is not fixed in this ensemble, so that this procedure is not suited to
test for triadic homophily. One possibility would then be to use as null model an ensem-
ble of random graphs in which, for each node, its degree and the number of triangles to
which it belongs are fixed, as defined in [38]. Such a null model however still disregards
higher order structures and correlations such as communities or groups of individuals. To
deal with this issue, several authors have used, instead of ensembles of random networks
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that keep only a specific set of properties of the original network, a null model in which the
network structure is kept completely intact, but in which each possible permutation of the
attributes among the nodes is equally probable: this null model is sampled by randomly
reshuffling the attributes among nodes, equivalently to the permutations used in QAP
procedures [39–41]. Homophily has been measured in this way for instance with respect
to gender in school children [13], with respect to academic performance in students [42],
for temporal motifs in communication networks [15] and with respect to gender in online
relationships, using dyadic and triadic measures [36]. We consider here this standard null
model and reshuffling procedure to sample it. In addition, we show in the Supporting In-
formation (SI) (Additional file 1) an example of results obtained when considering instead
as null model an ensemble of random graphs with fixed degrees and numbers of triangles
for each node [38]. In each case, we sample the null model by performing 100 reshuffling
and compute the homophily indices for each. The empirical value is then compared to
the resulting distribution (shown in figures as a boxplot, with the box extremities repre-
senting the 25th and 75th percentiles of the distributions, and whiskers at the 5th, 10th,
90th and 95th percentiles). It is considered that the data reveals an absence of homophily
if the data point falls within the box (“No”), and that we have respectively weak (“W”),
strong (“S”) and very strong (“VS”) degrees of homophily if the data point lies respectively
between the 75th and the 90th percentiles, between the 90th and the 95th percentiles,
and above the 95th percentile. In addition, we find in few cases evidence for heterophily,
i.e., the tendency to have less homophilic dyads, triads or motifs with respect to the null
model. Similarly to the homophily patterns, we consider that we have respectively weak
(“Whet”), strong (“Shet”) and very strong (“VShet”) degrees of heterophily when the data
point lies respectively between the 10th and the 25th percentiles, between the 5th and
the 10th percentiles, and below the 5th percentile of the null model distribution. (Note
that the use of these percentile values is obviously somewhat arbitrary—even if the ones
we use are quite usual—, but we remind that the main goal of our paper will be to assess
whether homophily patterns are exhibited consistently across different layers of the social
network: the main requirement is thus to have a consistent way of measuring homophily
in the different layers.)

Finally, and for the sake of simplicity, we will also envision a coarser classification of
patterns, in which we group the cases “W”, “No” and “Whet” together (and as no evidence
for homophily nor heterophily), and we consider as evidence for homophily (resp. het-
erophily) both “S” and “VS” cases (resp. “Shet” and “VShet”).

2.2 Networks comparison
The data at hand defines different types of relationship among students: specifically, com-
munication, co-presence, friendship and trust relations. It is worth noting that these data
are available with different temporal resolutions throughout the 12-month study period.
To enable a meaningful comparison of these networks, we resort to two distinct metrics:

• The Pearson correlation coefficient between the weights of links between individuals
within the two considered networks. If one of the network is directed and the other
undirected, we first convert the directed one into its undirected counterpart: for each
pair of nodes (i, j), the resulting weight is the sum of the weights on the directed edges
i → j and j → i.
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• The cosine similarity for each node i, which measures the similarity between this node
and its neighborhoods in the two networks. If wij,1 and wij,2 denote the weights on the
links from i to j respectively in networks 1 and 2, the cosine similarity of i is defined as

sim1,2(i) =
∑

j wij,1wij,2
√∑

j w2
ij,1

√∑
j w2

ij,2

. (3)

We compute the distribution of sim1,2(i) for a pair of networks and compare it with
two null models: in the first one, we keep the link structure and reshuffle the weights
on the links; in the second, we reshuffle the links while keeping the degree of each
node fixed [37].

While these measures give us an idea of the topological similarity of networks, our goal
here is also to provide a way to estimate whether homophily patterns are exhibited con-
sistently across different networks. To this aim, we tabulate for each network and each ho-
mophily index used—dyadic homophily, triadic homophily, etc.—the occurrences corre-
sponding to an absence of homophily, weak, strong, or very strong evidence of homophily
(or heterophily). We then compute the number of concordant and discordant cases for
each pair of networks. For instance, we track the number of indices for which no evidence
of homophily is found in one network, while strong evidence is uncovered in the sec-
ond network. This gives us a first indication with respect to whether homophily patterns
are similar across two networks. Moreover, we compare these numbers to a null model
defined as follows: for each network and each homophily index, we reshuffle the “No”,
“W”, “S”, “VS”, “Whet”, “Shet”, “VShet” cases, keeping their number fixed, and compute again
the number of concordant and discordant indices. If the empirical number of concordant
cases falls outside the confidence interval of the resulting distribution for the null model,
it indicates that the number of concordant cases obtained is not just due for instance to
a large majority of “No” cases. Thus, it is a strong indication that the homophily patterns
between networks are similar enough so that information on homophily can be obtained
from either.

Note that this comparison procedure can be performed independently of the way in
which homophily (or lack thereof ) is assessed, as long as this way is consistent across
layers. Note also that it can be applied to arbitrary numbers of layers, of attributes and of
homophily indicators.

3 Results
3.1 Description of network characteristics
We first present an overview of some descriptive characteristics of the data under inves-
tigation.

Figure 2 shows the normalized number of calls events as a function of the hour of the
day, summed over all days of data collection, and as a function of the day of the week,
summed over all weeks. As expected, communication events display clear daily and weekly
patterns, with almost no calls at night, an increase during the day, and a peak around 6–
7 p.m. around the end of class time. It is worth adding that all participants dwelled on
campus from Monday to Friday as part of their residential program requirements. Fewer
calls were placed during weekends, with instead more calls on Fridays and Mondays. We
show in the SI the timelines for co-presence events. Interestingly, we observe in this case a



Manivannan et al. EPJ Data Science  (2018) 7:34 Page 10 of 26

Figure 2 Timelines of communication events. (a) Number of calls between participants on an hourly basis
throughout the day. (b) Aggregated duration of calls on an hourly basis throughout the day. (c) Number of
calls on a daily basis throughout the week. (d) Aggregated duration of calls on a daily basis throughout the
week. Each data point is normalized by the number of individuals present at that time and the error bars go
from the 10th to the 90th percentile of the distribution of values over different individuals and different days
or weeks

peak on Thursdays, which may be attributed to the fact most Singaporean students leaved
the campus on Friday evenings. During weekends, co-presence peaks in the evenings, es-
pecially on Sunday when students come back to stay on campus in preparation for school
the next day. Finally, we show in the SI the full timeline of numbers and aggregated dura-
tions of communication and co-presence events at a weekly resolution.

As expected in this type of networks, edge weights (number and aggregated durations
of events) show broad distributions spanning several orders of magnitude (see Supporting
Information). On the other hand, node degree distributions are narrow as the population
under investigation is of relatively small size (35 students). We note that, even consider-
ing yearly aggregation, the networks are far from being fully connected, especially for the
communication network: each student had on average communicated only with less than
10 other students, and the maximal degree is 22, in line with results on limited communi-
cation capacities observed in larger systems [8]. Finally, Fig. 3 displays the distribution of
weights in the questionnaire networks. Most links carry the minimum possible weight in
all cases, but this tendency decreases over time in both questions (see Sect. 2 for the exact
phrasing), while the fraction of strong friendships tends to increase, and the distribution
tends towards a bimodal shape.

3.1.1 Comparison between successive terms
Table 3 and Fig. 4 illustrate the temporal evolution of the different networks at the term
level. The communication networks aggregated in the second and third terms are very
strongly correlated, while they are only moderately correlated with the first term network.
On the other hand, the co-presence networks in different terms show weak correlations.
For both networks, the cosine similarity distribution extends over a quite broad range
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Figure 3 Histograms of weights for the networks defined by the two questionnaires. (a) Q1. (b) Q2

Table 3 Pearson correlation coefficients between term-aggregated networks

(a) Communication vs. communication (p = 0 for all entries)

Duration-T1 Duration-T2 Duration-T3 Number-T1 Number-T2 Number-T3

Duration-T1 1.0 0.57 0.59 0.89 0.49 0.59
Duration-T2 0.57 1.0 0.89 0.6 0.9 0.88
Duration-T3 0.59 0.89 1.0 0.52 0.77 0.9

Number-T1 0.89 0.6 0.52 1.0 0.56 0.57
Number-T2 0.49 0.9 0.77 0.56 1.0 0.9
Number-T3 0.59 0.88 0.9 0.57 0.9 1.0

(b) Co-presence vs. co-presence

Duration-T1 Duration-T2 Duration-T3 Number-T1 Number-T2 Number-T3

Duration-T1 1.0 (p = 0.0) 0.4 (p = 0.0) 0.44 (p = 0.0) 0.93 (p = 0.0) 0.37 (p = 0.0) 0.2 (p = 0.04)
Duration-T2 0.4 (p = 0.0) 1.0 (p = 0.0) 0.41 (p = 0.0) 0.32 (p = 0.0) 0.91 (p = 0.0) 0.3 (p = 0.002)
Duration-T3 0.44 (p = 0.0) 0.41 (p = 0.0) 1.0 (p = 0.0) 0.48 (p = 0.0) 0.43 (p = 0.0) 0.87 (p = 0.0)

Number-T1 0.93 (p = 0.0) 0.32 (p = 0.0) 0.48 (p = 0.0) 1.0 (p = 0.0) 0.35 (p = 0.0) 0.3 (p = 0.002)
Number-T2 0.37 (p = 0.0) 0.91 (p = 0.0) 0.43 (p = 0.0) 0.35 (p = 0.0) 1.0 (p = 0.0) 0.44 (p = 0.0)
Number-T3 0.2 (p = 0.04) 0.3 (p = 0.002) 0.87 (p = 0.0) 0.3 (p = 0.002) 0.44 (p = 0.0) 1.0 (p = 0.0)

(c) Questionnaire vs. questionnaire (p = 0 for all entries)

Q1-T0 Q1-T1 Q1-T2 Q1-T3 Q2-T0 Q2-T1 Q2-T2 Q2-T3

Q1-T0 1.0 0.65 0.58 0.51 0.62 0.55 0.52 0.43
Q1-T1 0.65 1.0 0.81 0.77 0.47 0.71 0.7 0.63
Q1-T2 0.58 0.81 1.0 0.77 0.37 0.6 0.73 0.59
Q1-T3 0.51 0.77 0.77 1.0 0.28 0.52 0.63 0.73

Q2-T0 0.62 0.47 0.37 0.28 1.0 0.58 0.49 0.34
Q2-T1 0.55 0.71 0.6 0.52 0.58 1.0 0.71 0.59
Q2-T2 0.52 0.7 0.73 0.63 0.49 0.71 1.0 0.65
Q2-T3 0.43 0.63 0.59 0.73 0.34 0.59 0.65 1.0

(Fig. 4), and show larger values than in the two null models considered, with lowest me-
dian value for the similarities between the non-successive terms T1 and T3. Finally, for
each type of questionnaire question, the correlation between the weights decrease as the
time between questionnaires increases. In particular, the network constructed from the
questionnaire answered at the start of the study shows the weakest correlation with suc-
cessive questionnaires, which may be attributed to the fact that the students did not know
each other well at that stage. Cosine similarities between different terms take very large
values, much larger than in the null model with reshuffled weights (Fig. 4).
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Figure 4 Boxplots of the cosine similarity distributions within the networks aggregated in different terms (T1,
T2, T3), compared with the same distributions for networks with reshuffled weights (RW) or links (RL).
(a) Communication networks—weights given by aggregated call durations. (b) Co-presence
networks—weights given by aggregated durations. (c) Questionnaire—Q1. (d) Questionnaire—Q2. For the
questionnaire cases the RL and RW procedures are equivalent as the networks are fully connected

3.1.2 Comparison between the communication, co-presence, friendship and trust
networks

We found no significant correlation between the weights of edges in the yearly- or term-
aggregated communication and co-presence networks, showing that these networks cor-
respond potentially to quite different interaction patterns (the cosine similarities between
these networks show also quite low values). On the other hand, both communication and
co-presence weights show weak but significant correlations with the weights resulting
from the two questionnaires Q1 and Q2. The values of the cosine similarities of neigh-
borhoods of nodes (i) between communication and questionnaires, and (ii) between co-
presence and questionnaires, display moreover values much larger than in the null models
with reshuffled weights or edges. Finally, in each term, the weights reported in Q1 and Q2
are strongly correlated (but distinct), and the cosine similarities of neighborhoods of nodes
in the two questionnaire networks are close to 1 (see Supporting Information).

To explore in more details the comparison between pairs of networks, we consider the
properties of links either (i) common to two networks or (ii) present only in one of two
networks. Figure 5 displays the complementary cumulative distribution function (CCDF)
of edge weights for links common to the communication and co-presence networks, as
well as the CCDF of weights for links present in only one of the two networks. Note that
many links are present only in the co-presence network, while few are present only in the
call network, which is not surprising given the much denser nature of the co-presence
network. A clear difference is observed between the distributions of co-presence weights,
with broader distributions for links common to both networks than for links present only
in the co-presence networks: students who communicated by phone calls also tended to
spend more time in co-presence, but a broad distribution is obtained even for the links
between students who did not communicate by phone. On the other hand, no clear dif-
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Figure 5 CCDF of weights of links common to communication and co-presence networks, compared to the
CCDF of weights of links present only in one of these networks. Top plots: CCDF of the weights in the
communication network. Bottom plots: CCDF of the weights in the co-presence network

ference is observed in the communication weights between pairs of students who were at
least once in co-presence and pairs who were not, maybe because of the lack of statistics
for the latter: very few pairs of students indeed communicated but were never detected in
co-presence.

We also compare the communication links and weights for the various weight categories
in the questionnaires as shown in Fig. 6. As the questionnaire weight w increases, the frac-
tion of links with that weight that are also present in the communication network increases
strongly, from almost 0 for low weights to 60–70% for the strongest weights. This result
confirms earlier findings that stronger friendship relations correspond to more probable
communication. Interestingly, however, the average number or duration of these commu-
nications does not depend on the questionnaire weight category, except for the largest
weight category, for which larger average number and duration of communications are
observed: the pairs of closest friends have more frequent and longer communication pat-
terns with respect to other pairs of students. It is also worth highlighting that no such clear
tendency is observed when comparing questionnaire weights and co-presence patterns:
the fraction of links corresponding to co-presence barely increases with the questionnaire
weight, and the corresponding average co-presence duration (or number of events) does
not show any clear trend (not shown).

3.2 Homophily patterns in yearly-aggregated networks
We first present a brief study of the homophily patterns for the globally aggregated net-
works. We focus here mostly on the communication network, data for the co-presence
network being shown in the Supporting Information. Figure 7 gives a first indication of
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Figure 6 Communication between individuals as a function of friendship. Top plot: fraction of links
corresponding to a communication as a function of their weight in Q1. Bottom plot: average aggregated
duration of communication along a link (i.e., weight of the link in the communication network) as a function
of its weight in Q1

Figure 7 Distribution of the number of common attributes on an edge, compared with a null model with
reshuffled attributes. Attributes: Cohort class, Age, Gender, Nationality, GPA and First Language. Boxplot:
Whiskers—5th, 10th and 90th, 95th percentiles; box—25th and 75th percentiles

the presence of homophily in the communication and co-presence networks, by com-
paring the distribution of the number of shared attributes for individuals connected by a
link with the same distribution in the null model in which attributes are reshuffled across
nodes. Here, we consider the following six attributes: cohort class, age, gender, national-
ity, GPA, and first spoken language. Large values of the number of shared attributes are
over-represented with respect to the null model: in particular, a much larger fraction of
links connect nodes sharing all these attributes than in the null model, while the fraction
of links connecting nodes with no common attribute is smaller than in the null model.

Figure 8 goes further by showing the CCDF of edge weights in the communication net-
work, separately for edges between individuals with similar and different values for these
six attributes. All distributions are broad: both weak and strong links are observed in each
case, showing that one cannot separate these easily in two groups and guess from the
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Figure 8 Complementary cumulative distribution function (CCDF) of the edge weights in the yearly
aggregated communication network, for edges linking nodes with either the same attribute or different
values. Results are shown separately for different attributes

Figure 9 Dyadic homophily—yearly-aggregated communication network. Data (black dots) are compared
with the distribution (boxplots) obtained for a null model in which attributes are reshuffled among nodes.
ND gives the number of dyads on which the measure is performed. Boxplot: Whiskers—5th, 10th and 90th,
95th percentiles; box—25th and 75th percentiles

weight of a link if the two connected individuals share an attribute. On the other hand, the
distributions tend to be broader for edges linking nodes with the same value for several
attributes, and the largest weights link nodes with same nationality, gender, age and class.

Figures 9 and 10 show the homophily patterns with respect to gender, nationality, first
spoken language and GPA uncovered by investigating the fraction of weight carried re-
spectively by links and triangles between individuals with the same attribute, as described
in the Methods section. Very strong homophily patterns are found with respect to gender
and nationality, not only at the dyadic level but also for triangles: gender and national-
ity homophily determine which triangles, and not only which links, carry more weight in
the network. Homophily with respect to GPA is on the other hand absent or at most very
weak, while heterophilic patterns are observed for the first language.

Figure 11 investigates the social preference homophily patterns of each group of indi-
viduals. Both male and female students show a clear homophily pattern in their preferred
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Figure 10 Triadic homophily—yearly-aggregated communication network. Data (black dots) are compared
with the distribution (boxplots) obtained for a null model in which attributes are reshuffled among nodes.
N� gives the number of triads on which the statistics is made. Boxplot: Whiskers—5th, 10th and 90th, 95th
percentiles; box—25th and 75th percentiles

communication partner. Similarly, both Singaporean and Foreigners display homophilous
social preference. On the other hand, homophily with respect to GPA shows contrasting
trends: individuals with an above median GPA do not show homophily in their preferred
communication partner, while individuals who have low GPA (below median) do (more so
in terms of aggregated duration of communication than in terms of number of calls). For
first spoken language, a weak tendency toward heterophily is observed for non-Chinese
speaking students.

Finally, Fig. 12 exhibits strong homophily patterns observed in reciprocal and repeated
call motifs, both for gender and nationality. Only weak homophily is further observed with
respect to GPA. In the first spoken language case, we also observe some tendency toward
homophily, in contrast with the other indexes described above.

With respect to these attributes, various homophily patterns are thus observed when
aggregating over the whole dataset of one year without taking into account the timing of
communication events, but also when considering sequences of calls separated by short
time windows.

3.3 Evolution of homophily in communication across terms
We now turn to the study of how homophily patterns evolve across the year in the group of
students. To this aim, since questionnaire networks were collected once in each term, and
also to work with sufficient statistics, we consider term-aggregated networks of commu-
nication. We show here the results corresponding to homophily patterns in dyads, while
figures for triadic homophily and social preference are shown in the Supporting Informa-
tion. Gender homophily as revealed by the weight carried by dyads with the same gender
is very strong in all terms, and exhibits a clear increasing trend (Fig. 13(a) and (b)). The
same increasing trend is observed in the weight carried by homophilic triads, even if the
evidence for homophily is only weak with respect to the null model in the first term. In
terms of social preference patterns, homophily increases for males, from absent or weak
in the first two terms to very strong in the last term, while it is very strong in all terms for
females (see Supporting Information).

Homophily with respect to nationality is also very strong and stable across terms as mea-
sured by dyads. It weakens, however, in the third term as measured by triads. In terms of
social preference, interesting distinct patterns are found: homophily decreases strongly
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Figure 11 Homophily in social preference—yearly-aggregated communication network. Ma: Male; Fe:
Female; Si: Singaporean; Fo: Foreigner; AM: Above Median; BM: Below Median; Ch: Chinese; NC: Non-Chinese.
Data (black dots) are compared with the distribution (boxplots) obtained for a null model in which attributes
are reshuffled among nodes. Boxplot: Whiskers—5th, 10th and 90th, 95th percentiles; box—25th and 75th
percentiles

and becomes weak or absent in the third term for Singaporean students, but instead re-
main very strong and in fact increase for foreigners (see Supporting Information).

The tendency toward homophily with respect to GPA remains rather weak across all
terms with respect to all indicators, except in the first term for triads and in the third
term for dyads. On the other hand, several instances of heterophilic tendencies are found
with respect to the first spoken language. Finally, we find no clear tendency toward ho-
mophilous behavior of students with respect to their scores in the three psychological
questionnaires (see Supporting Information). Some tendency toward heterophilous be-
havior is even observed in some cases, in particular in the social preference of the students
with loneliness index below median.

3.4 Comparison between homophily in various networks
As discussed in the introduction, an important issue, besides the evidence for homophily
(or the lack thereof ) in each layer of interaction or relations available for analysis, is
whether the same or different conclusions are reached when investigating these different
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Figure 12 Homophily in temporal motifs—yearly-aggregated communication network. Motif
types—reciprocal and repeated events. Data (black dots) are compared with the distribution (boxplots)
obtained for a null model in which attributes are reshuffled among nodes. NTM gives the number of temporal
motifs in the network. Boxplot: Whiskers—5th, 10th and 90th, 95th percentiles; box—25th and 75th
percentiles

layers. As made clear from the comparison reported above, there are indeed significant
correlations between communication and friendship or trust networks, and the students
linked in the communication network tend also to have spent more time in co-presence.
However, these networks are very distinct both in terms of structure and weights.

In order to investigate if the layers are similar enough in terms of the homophily pat-
terns they exhibit, it is possible to thoroughly compare the results provided in the previ-
ous section for the communication network and in the Supporting Information for other
networks. Examples of such comparisons are given in Figs. 13 and 14: in these figures,
we can visually check if a given indicator shows homophily in each term for different net-
works. For instance in Fig. 13, we notice that there is dyadic homophily in all terms for
gender and nationality in the communication network, while in the co-presence network
there is homophily only in the first term for nationality, and in the first and third terms
for gender. Such a visual investigation, also found for instance in [4], is however limited
to only one type of indicator in each figure (e.g., one figure for dyadic homophily, one
for triadic, etc.), and only a few attributes. Overall, a systematic side-by-side comparison
of the figures showing whether homophily is present, for all pairs of layers and all pos-
sible indicators of homophily, would be difficult and tedious to carry out and would not
improve the holistic analysis of homophily. A first improved visual way enabling a more
holistic comparison of homophily across layers is given by Table 4 (see also Supporting
information). In this Table, we summarize the evidence for homophily or heterophily in
the different layers and terms, with respect to all the considered attributes. The use of col-
ors highlights cases in which the same answer is obtained in different layers (e.g., gender
and nationality homophily in communication and in both questionnaire networks). On
the one hand, however, this Table is still not easy to apprehend globally, and on the other
hand, one needs to draw a separate table for each type of homophily measure.

We thus perform one more summarizing step in order to reach more easily interpretable
results: for each pair of networks, we count the number of cases in which one network gives
a certain answer while the other network gives another answer, where by “case” we mean
“one homophily measure on one attribute for one term”. We tabulate these numbers for
each pair of networks and show the full tables in the Supporting Information. In Table 5,
we show the outcome of a simplified counting procedure in which we group “No”, “W” and
“Whet” as evidence for “No homophily nor heterophily pattern” on the one hand and “S”
and “VS” (resp. “Shet” and “VShet”) as evidence for homophily (resp. heterophily) on the



Manivannan et al. EPJ Data Science  (2018) 7:34 Page 19 of 26

Figure 13 Homophily in dyads with respect to several attributes—term aggregated communication and
co-presence networks. Data (black dots) are compared with the distribution (boxplots) obtained for a null
model in which attributes are reshuffled among nodes. ND gives the number of dyads on which the measure
is performed. Boxplot: Whiskers—5th, 10th and 90th, 95th percentiles; box—25th and 75th percentiles
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Figure 14 Concordant vs. discordant cases: Homophily in social preference in gender and
nationality—term-aggregated networks. Ma: Male; Fe: Female; Si: Singaporean; Fo: Foreigner. Data (black dots)
are compared with the distribution (boxplots) obtained for a null model in which attributes are reshuffled
among nodes. Boxplot: Whiskers—5th, 10th and 90th, 95th percentiles; box—25th and 75th percentiles

other hand. Note that this methodology could easily be adapted to answer more detailed
comparisons, for instance by separating attributes into different groups (e.g., considering
only homophily with respect to psychological indices), or on the opposite to include an
arbitrary number of homophily indicators and of attributes.

A first assessment of the results gathered in Table 5 indicates that concordant cases (on
the diagonals) are far more numerous than discordant ones. It is, however, important to
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Table 4 Summary of the dyadic homophily patterns found in the different networks, with respect to
the various attributes considered

deepen our analysis as this overall observation might simply be due to the large number
of indicators showing an absence of homophilous patterns. Indeed, if we consider a large
number of attributes and a large number of indicators, and only few of them show evidence
for homophily, then many concordant cases will be automatically observed, even if the
few cases of homophily are very different in distinct network layers. To check if this is
indeed the case, we resort to a comparison with the following null model: for each layer
and each homophily indicator (dyadic, triadic or social preference), we reshuffle at random
the answers (“VS”, “S”, “W”, “No”, “Whet”, “Shet” and “VShet”) across terms and attributes,
and compute for each reshuffling the number of concordant and discordant cases. We
present in Table 5 the confidence intervals (C.I.) defined by the 5th and 95th percentiles
of this null model, we emphasize in boldface the cases in which the empirical numbers are
outside the C.I. and we color in particular the cells in which the numbers of concordant
cases are above the C.I.

For the comparison between the two questionnaire networks, as well as between the
communication network and the questionnaire networks, the numbers of concordant
cases with and without homophily are both much larger than the upper bound of the
confidence intervals of the null model, while the numbers of cases in which one network
shows homophily while the other does not are smaller than the lower bound of the C.I.
These three networks have therefore overall similar homophily patterns, despite discrep-
ancies occurring in a number of specific cases.

On the other hand, comparisons involving the co-presence network lead mostly to num-
bers of concordant and discordant cases within the C.I. of the null model. This means that,
even if the co-presence network displays a similar “amount” of evidence for homophilous
behavior with respect to the other layers of the social network, the homophily patterns
are no more similar than random, given this amount. Hence, the co-presence homophily
patterns do not inform us about which specific attributes and which specific indicators
exhibit homophily patterns in the other networks.
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4 Discussion
The increased availability of data providing proxies for human behavior and social rela-
tionships, often in digital form, has led to a surge in the number of studies of social theories
and effects. Most such studies are, however, based on the analysis of one specific layer (e.g.,
phone call communications) of the population social network, which is best represented as
a multilayer network. It is now well established that the various network layers bear some
level of correlations but are far from being equivalent. However, it is still unclear to what
extent one can infer general conclusions from the study of only one layer. In this paper,
we have considered this issue—with a particular focus on homophily patterns—through
the lens of a dataset providing data on several layers of the same population, namely a
communication layer, a co-presence layer, and two questionnaires describing friendship
and trust relationships. The population under scrutiny is formed of first-year students in
an Asian university. Notably, the diversity of students in the population allows us to in-
vestigate homophily patterns along several dimensions: gender, nationality, first spoken
language, GPA and psychological indices assessed by questionnaires. It is worth adding
that most studies about homophily reported in the literature are concerned with popu-
lations having a homogeneous composition in terms of nationality and first language [4,
11–16].

In terms of direct comparison between networks, we found no correlation between the
weights of links in the co-presence and communication network, but significant corre-
lations between communication or co-presence and questionnaires networks. We also
found a clear correlation between communication (number and call volume) and reported
friendship strength, confirming results of other authors with other types of population [9,
11, 14, 16, 32, 33]. This latter point stands in stark contrast with the absence of correlation
between the amount of co-presence and friendship strength.

The strongest uncovered evidence of homophily is with respect to gender and nation-
ality in several indicators and layers, while weaker evidence concerns homophily with re-
spect to academic performance as measured by the GPA. No homophily was found with
respect to the first spoken language nor psychological indices (similarly to [4], even if for
different indices).

Most importantly, we have put forward here a systematic way of comparing homophily
patterns with respect to a heterogeneous group of attributes in the different layers of a
social network. This methodology is based on counting the numbers of concordant and
discordant indicators of homophily in each pair of networks. As a large number of concor-
dances might simply be due to a scarcity of indicators showing homophily, a crucial point
is to compare these numbers with a null model in which the results of the indicators are
reshuffled within each network and type of indicator. If the observed number of concor-
dant (resp. discordant) cases lies above (resp. below) the confidence interval of this null
model, it means that both networks yield an overall concordant picture of the homophily
patterns in the studied social network, in a way that is not simply due to an overall lack
of homophily. On the other hand, if the observed number of concordant cases falls within
the confidence interval of the null model, we can conclude that one cannot extract infor-
mation about homophily patterns in one network from the patterns in the other network.

In the specific case under study, we found that the communication and questionnaire
layers lead to similar conclusions in many cases—even if some minor discrepancies are
observed—and more than expected from the null model. This means that the communi-
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cation layer allows us to obtain information about homophilous trends in the friendship
and trust networks of this social network. On the other hand, the co-presence network
cannot be used to assess homophily patterns occurring in the other layers.

Our work has several limitations that are worth mentioning. First, from the experimen-
tal viewpoint, it could be argued that providing the participants with a new device might
have influenced some user behaviors in the early stages of the study. For instance, partic-
ipants might spend time exploring the features of the new device. However, it is unlikely
that the target behaviors of interest (i.e., chatting on mobile phone, co-presence activity)
had been changed. In supporting this, the communication networks in different terms
showed moderate to strong correlations. Moreover, the co-presence networks in different
terms were also significantly correlated with each other. Another obvious limitation is the
fact that our study is based on one single dataset of a specific population of limited size.
The population was, however, largely isolated, and data is available for a whole year, al-
lowing the analysis of the evolution of the homophily patterns along the year, as well as
the comparison with the evolution in the other layers. Moreover, we could not reliably use
messaging data, although messages nowadays represent a fair amount of communication
between individuals. Furthermore, we did not have access to any online social network on
which messages are also exchanged. The co-presence data had limited spatial resolution
owing to the particular choice of the Bluetooth technology. It might be that with another
technology yielding a higher spatial resolution, data on face-to-face interactions would
lead to different conclusions, and correspond to a larger similarity of homophily patterns
with the communication and questionnaire networks.

To conclude, we note that the methodology put forward to assess the similarity of ho-
mophily patterns in different layers of a social network is general and can be applied to
any dataset composed of several layers of interactions or relationships between individu-
als, and to any set of attributes for which homophily patterns are of interest. We therefore
hope that the present study will stimulate further similar dataset collections and investi-
gations into this crucial issue.
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