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Abstract
The main analytical model for describing the motion of magnetic domain walls is the 1-D

model formulated based on the profile of a Bloch wall. This model qualitatively describes the
motion of magnetic domain wall in nanowires, while it may fail to match experimental and
numerical results quantitatively. In recent years, the 1-D model has been further generalized by
the introduction of terms such as spin transfer torques and spin orbit torques. It has also been
used to describe the motion of different domain walls, including vortex walls. It seems that in
many such attempts, formalisms are not followed accurately and the main assumptions of the
model (such as the Bloch wall profile used in developing the model) are underestimated. In
this paper, we first derive an analytical model to describe the motion of a tilting Bloch wall in
perpendicularly magnetized materials using four collective coordinates. We then compare the
energy landscape predicted by this model to that of micromagnetic simulations, highlighting
the possibility of using such comparisons to develop corrections for the 1-D model.

Keywords: Magnetic domain wall motion, 1-D model, Analytical modeling of magnetic DW motion,

collectove coordinates approach

1 Introduction

One of the promising fields of technological advancement is the area of spintronics, in which both
charge and spin degrees of freedom of electrons are exploited to design devices with improved
performance, and power consumption at lower cost [1, 2]. Fuelled by the limitations of current
technologies in improving the performance of devices such as storage media, scientists have
focused on developing a fundamental understanding of spintronic phenomena and proposing
possible applications for these new discoveries [3, 4, 5, 6, 7].

Advances in manufacturing have led to the miniaturization of electronic components towards
nanoscale devices. Manipulating magnetic domain walls (DWs) within nanostructures has been
linked with applications in the development of spintronic logic [8, 9, 10], storage [11, 12, 13]
and sensing [14] devices. Such applications have led to increased interest within the scientific
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community in developing models which can qualitatively or quantitatively describe magnetic
domain wall motion under applied fields and currents.

In this work, after a brief review of magnetization dynamics, a one-dimensional model is
developed to describe the dynamics of a tilted Bloch wall in multilayer nanowires. Energy
predictions from this model for a case of field-driven DW motion are then compared with
micromagnetic simulations in order to assess possible approaches to improving the accuracy of
the analytical model.

2 Magnetization Dynamics: A Phenomenological Ap-
proach

The Landau-Lifshitz-Gilbert equation is a phenomenological relationship used to describe mag-
netization dynamics:

d�m

dt
= −γ �m× �H

eff + α�m× d�m

dt
(1)

in which γ is the gyromagnetic ratio, �m is the normalized magnetization vector, �Heff is
the effective magnetic field acting on the magnetization and α is the phenomenological Gilbert
damping, formulated based on the Lagrangian approach [15]. The LLG equation constitutes
two torques: a torque by the effective field trying to precess the magnetization, and a damping
torque perpendicular to the former.

The effective field in the LLG equation is key to understanding magnetization dynamics.
This field includes internal interactions within the magnetic material and may include external
stimulation of the system due to fields, currents and interfacial effects. The effective field is
related to the energy of the different interactions through �Heff = δE

δ�m . The major energy terms
inherent to a ferromagnetic sample include exchange, magnetic anisotropy, and magnetostatic
energies. Any applied external field will also contribute to the effective field through an associ-
ated Zeeman energy term. In the presence of an applied field, the total energy may be written
as:

E =

Exchange︷ ︸︸ ︷
A

3∑
i=1

|∇mi|2 +
Anisotropy︷ ︸︸ ︷

sin2θ(K0 +K1sin
2φ)−

Zeeman︷ ︸︸ ︷
μ0Ms

�Ha · �m (2)

In the above formulation, the magneostatic energy is included as shape anisotropy in the
anisotropy energy term with the constant K1, a formulation which is valid for nanowire ge-
ometries.

When a current is injected in a ferromagnetic material, it gives rise to spin transfer torques
(STTs) which can move a DW in this material [16, 17]. Two underlying mechanisms contribute
to DW motion through STT: Linear momentum transfer and electron reflection, and adiabatic
electron transmission.

These two processes can be modelled by adding two terms in the LLG equation: An adiabatic
term taking into account the ideal case of full spin reflection and a non-adiabatic term which
stems from spin relaxation and non-adiabatic effects during transmission. The torques on the
magnetization due to these terms may be written as [18, 19]:

τSTT =

adiabatic︷ ︸︸ ︷
−(�u · ∇)�m+

non−adiabatic︷ ︸︸ ︷
β �m× ((�u · ∇)�m) (3)
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in which β is the nonadiabaticity coefficient and �u =
�JPgμb

2eMs
, with J denoting current density

and P denoting the polarization rate of the current. The adiabatic torque is also known as
the in-plane or Slonczewski-like torque (the torque being in the same direction as the damping
torque), while the non-adiabatic term is also called the field-like torque, perpendicular torque
or β term (the torque being in the same direction as the torque due to the effective field). The
direction of DW motion in STT is the same as that of electron motion or opposite current flow.
Note that the non-adiabatic torque is the driving force in DWmotion, while the adiabatic torque
competes with damping. As is evident from the above models, in STT the magnetization of
each magnetic moment is coupled with that of other moments in the sample at other positions.

In recent years, DW studies have focused on complex heterostructures. In these structures,
interfacial effects also contribute to DW motion. Current dependant spin-orbit interactions are
observed in systems with a ferromagnetic layer sandwiched between two heavy metal layers
or a heavy metal layer and an oxide layer. Such effects stem from the fact that the flow
of electric current in a crystalline structure lacking inversion symmetry can transfer orbital
angular momentum from the lattice to the spins, giving rise to effects which can enhance the
STT or act on their own to move DWs.

Current dependant spin-orbit interactions include the Spin Hall Effect (SHE) and the Rashba
effect. In SHE, spin dependant scattering in the heavy metal layer leads to spin accumulation
at lateral boundaries with opposite spins accumulating on opposite boundaries [20]. This leads
to a spin current perpendicular to the charge current and interface normal. The Rashba effect
becomes important when the ferromagnetic layer is sandwiched between two dissimilar layers
(a heavy metal layer and an oxide layer for example). Simultaneous magnetization, spin orbit
interactions and broken inversion symmetry at the interface altogether lead to this effect. An
electric field is created between the sandwiching layers which affects spins in the ferromagnetic
layer.

The main torques stemming from these two effects may be modelled as [21]:

τSOT =

field−like︷ ︸︸ ︷
γτFL(�m× ûSOT )−

Slonczewski−like︷ ︸︸ ︷
γτSL �m× (�m× ûSOT ) (4)

in which ûSOT = Ĵ × n̂ is the direction of spin current when ĵ is the direction of current
flow in the heavy metal layer and n̂ is the interface normal. These two torques are called the
homogeneous torques, as higher order torques are not included in the above formulation [22, 23].
While both the SHE and Rashba effects contribute to these torques, it has been suggested [21]
that, effectively τSHE

FL << τSHE
SL = �ΦhJ

2eMst
in which Φh is the spin-hall angle which signifies the

strength of the spin-hall effect and t is the layer thickness. It has also been suggested that
τRashba
SL << τRashba

FL = αRJP
μBMs

in which αR is a parameter outlining the strength of the Rashba
effect.

An example of current independent spin-orbit interactions is the interfacial Dzyaloshinski-
Moriya Interaction (DMI) which stems from interfacial spin-orbit coupling. This effect may be
included in the effective field as:

HDMI = − �D · ( �S1 × �S2) (5)

where �D is the DMI vector. The energy associated with the DMI for a sample isotropic in
the plane, where the Dzyaloshinskii vector originated from symmetry breaking at the z surface,
may be calculated as [24]:

EDMI = D(mz∇.�m− (�m.∇)mz) (6)
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where D is a uniform constant signifying the strength of the DMI interaction.

Other effects may also be included in the LLG equation. For example, pinning is usually
modelled using a quadratic [25] or harmonic[26] pinning potential added to the energy landscape
of the system. Thermal effects and wire roughness may also be included as stochastic processes
changing the energy landscape of the system [27, 28]. Finally, the effect of defects may be
included using a non-linear dry friction dissipation model [29]. We will not include such effects
in this work.

3 Towards an Analytical Model

As previously mentioned, the LLG equation could be used to describe magnetization dynamics
in a ferromagnetic system. Yet, solving this equation requires quantification of magnetization
in Cartesian or spherical coordinates and discretization of the solution domain to solve the
equations, which can be time consuming and computationally costly.

Our aim is to change the coordinates used in the model to more collective physical coordi-
nates relating to the DW and to also reduce the number of degrees of freedom being studied
so the equations may be solved analytically. For such an approach, it seems reasonable to
develop a Lagrangian description of magnetization dynamics, so coordinate changes could be
properly applied. The Euler-Lagrange formulation has the added benefit of being capable of
incorporating dissipative functions, which stem from damping and Slonczewski-like torques.

Our aim is to solve the inverse problem of finding the Lagrangian and Rayleigh dissipation
function that can regenerate the LLG equation if put in the Euler-Lagrange-Rayleigh equation:

∂L

∂qi
− d

dt
(
∂L

∂q̇i
) +

∂F

∂q̇i
= 0 (7)

In this case, it seems simpler to use a set of spherical coordinates to describe magnetization.
We are interested in magnetic DW dynamics in a perpendicularly magnetized system made of a
heterostructure of a heavy metal layer, a ferromagnetic layer and another heavy metal layer (or
alternatively an oxide layer). The spherical coordinates selected for this problem are depicted in
Figure 1.a. The normalized magnetization vector in this case (assuming a constant saturation
magnetization, Ms) is:

�m = (sinθcosψ, sinθsinψ, cosθ) (8)

This helps in describing magnetization as a spinning top, aiding in the development of the
Lagrangian. Note that, while the coordinates θ and ψ are useful for calculations, they do not
posses physical meaning to collectively describe the dynamics of the DW.

It can be shown that the following Lagrangian density and dissipation density functions can
be used in the Euler-Lagrange equation to derive the LLG [30]:

d3L

dr3
= l = E + EDMI +

PrecessionTerm︷ ︸︸ ︷
Ms

γ
ψ̇cosθ

STT︷ ︸︸ ︷
−uMs

γ
ψ
d(cosθ)

dx

SOT︷ ︸︸ ︷
−μ0MsτFL �m · ûSOT (9)

d3F

dr3
= f =

αMs

2γ

[
d�m

dt
+

β

α
(�u · ∇)�m− μ0γτSL

α
�m× �uSOT

]2
(10)
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(a) Spherical coordinates used in this paper. (b) Collective coordinates (φ not shown).

(c) t=0, D=1 mJ/m2 (d) t=100ps, D=1 mJ/m2

(e) t=0, D=2 mJ/m2 (f) t=100ps, D=2 mJ/m2

Figure 1: The selected collective coordinates and snapshots from micromagnetic simulations
with an applied field of 10mT. (d) and (e) clearly show the tilting of the DW, when compared
to the initial DWs illustrated in (c) and (f) respectively. Note that (e) also shows the partial
deformation of the DW at high fields.

4 A Collective Coordinates Approach to Magnetic DW
Motion

The Lagrangian developed above, while not unique, can be used to derive the LLG equation
from the Euler-Lagrange equation. However, our aim is to develop a collective description of
DW motion; a description which does not rely on the properties of each single magnetic moment
in the system, but directly describes the motion of the DW as the entity being studied. To do
so we need to introduce assumptions in order to connect the spatial change of magnetization
with the coordinates of interest.

The system of interest in this paper is a multilayer perpendicularly magnetized nanostrip
containing a magnetic DW. To describe DW motion in this system, the following collective
coordinates were selected:

1. The position of the centre of the DW (q);

2. The tilt angle of the magnetization out of the plane of the DW (φ);

3. The domain wall width (Δ);

4. The tilt angle of the wall in the plane of the sample (χ) .
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The coordinates above are depicted in Figure 1.b. They were selected based on previous work
on this topic [31, 32, 30]; this is the first attempt to include all four coordinates together to
describe DW motion. Note that all these four coordinates are time dependent. The coordinate
χ was included in order to model the effects of the DMI, which tends to tilt the DW, as depicted
in Figure 1.d and f.

In order to move from a description based on spherical coordinates to collective coordinates,
the two coordinate systems need to be linked. To relate the two coordinate systems, we may
use the profile of a semi-elastic tilted Bloch or Néel wall as an ansatz:

θ = 2arctan

[
exp

(
(x− q)cosχ+ ysinχ

Δ

)]
(11)

along with ψ(x, y, t) = φ(t).

x
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(a) Variation of θ with x and y for Δ = 3 and χ = 45deg. The DW tilting angle can clearly be seen in this
figure.

(b) Variation of θ with the DW tilt angle (χ) for
Δ = 3 and y = 0.

(c) Variation of θ with DW width (Δ) for χ = 45deg
and y = 0.

Figure 2: Variation of the θ calculated from the ansatz with different parameters. (a) clearly
shows that the wall is tilting as we traverse the width of the material. (b) shows the effect of
changing χ and (c) highlights that changing Δ changes the width of the wall. It is clear that
the ansatz becomes invalid at high values of χ.

The ansatz above (Eq. 11) is a generalization of the original ansatz used by Slonczewski
[31] with the additional parameter χ added to account for the tilting of the wall and the DW
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width Δ included as a time dependant coordinate. The range for θ using this function is [0,π],
matching the magnetization behaviour in real systems. Figure 2 highlights the effect of changing
the ansatz parameters. It is evident that for large values of χ, the ansatz becomes invalid and
it no longer describes the right magnetization profile. Also note that the ansatz is not valid for
high values of DMI, as clear by the different tilting behaviour at high DMI strength in Figure
1.f.

The introduction of this ansatz links the spherical coordinates to our collective coordinates.
Yet, at the same time this means that the motion of the system is now constrained due to the
ansatz; the motion no longer follows the exact LLG equation, but a form of the LLG with addi-
tional torques which constrain the dynamics of the magnetic moments so that the requirements
of the ansatz are met. These constraints could also explain why micromagnetic simulations do
not exactly match 1-D model predictions in some cases (for examples see references [30, 33]).

The ansatz has the following properties which simplify integration of the Lagrangian and
dissipation density functions:

∂θ

∂x
=

cosχ

Δ
sinθ (12)

∂θ

∂y
=

sinχ

Δ
sinθ (13)

∂θ

∂t
= (−q̇ cosχ

Δ
+ χ̇

(q − x)sinχ+ ycosχ

Δ
− Δ̇

Δ

(x− q)cosχ+ ysinχ

Δ
)sinθ (14)

In Eq. 14, the term multiplying χ̇may alternatively be written in the form below, simplifying
calculations:

(q − x)sinχ+ ycosχ

Δ
=

y −Δsinχln(tan(θ/2))

Δcosχ
(15)

Plugging in the ansatz into the Lagrangian and Dissipation density functions, integrating
with respect to the x and y directions, and then plugging into the Euler-Lagrange equations,
we get the following four equations of motion for the DW in terms of the collective coordinates:

φ̇+ α
q̇

Δ
cosχ− α

χ̇

cosχ

w

2Δ
=β

u

Δ
cosχ+ μ0γ

[
Hz +

π

2
τSL (sinφuSOT,x − cosφuSOT,y)

]
(16)

q̇

Δ
cosχ− αφ̇− χ̇

cosχ

w

2Δ
=

γ

Ms
Kssin (2(φ− χ))− πDγ

2ΔMs
sin(φ− χ) +

u

Δ
cosχ

+ μ0γ
π

2
[Hxsinφ−Hycosφ] + μ0γτSLuSOT,z

(17)

α
π2

12

[
Δ̇

Δ
− χ̇

cosχ

]
=

γ

M2

[
A

Δ2
(1 + sin2χ)− (

Ku +Kssin
2(φ− χ)

)]

+
π

2
μ0γ (Hxcosφ+Hysinφ)

(18)
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α
π2

12

[
Δ̇

Δ
− χ̇

cosχ

(( w

πΔ

)2

+
sin2χ

2

)]
=

γ

Ms

[
A

Δ2

(
2cos3χ+ sinχ

)
+ sinχ

(
Ku +Kssin

2(φ− χ)
)− cosχKssin (2 (φ− χ))

]

+
πDγ

2ΔMs
sinφ+

π

2
μ0γsinχ [Hxcosφ+Hysinφ]

(19)

In the above equations, uSOT,i has been added to denote the direction of the spin-orbit
interaction. They will be equal to 1 if spin orbit interactions exist in the i direction, and
0 otherwise. Note that w is the width of the sample, which enters calculations due to the
inclusion of the y direction in the ansatz. Also note that, to simplify the above equations, the
effective applied fields were introduced, defined as Hi = Ha,i + τFLuSOT,i in which i denotes
the directions x, y and z.

5 Field Driven DW Motion: Energy Landscape Compar-
ison

It is known that 1-D model results may not quantitatively match those of micromagnetic sim-
ulations, while they have similar qualitative features. This could be attributed to constraints
on the magnetization dynamics introduced by the use of the ansatz. In order to improve the
quantitative predictive accuracy of the 1-D model, we hypothesize that the constraint torques
may be identified by comparing energies or torques predicted by the 1-D model description to
those from micromagnetics. These constraints could be added to the 1-D model as a correc-
tion. In this preliminary analysis, we look at the relationship between the difference in energy
predictions from the two models and the collective coordinates used of the 1-D model.

In the derivation of the 1-D model, several energy terms are included in the Lagrangian.

(a) Exchange energy. (b) Anisotropy energy.

Figure 3: Variation in the difference in the energies calculated from micromagnetic simulations
compared to the 1-D model for (a) exchange energy, and (b) anisotropy energy.
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(a) Variation of exchange energy ratio with DW tilt-
ing angel χ.

(b) Variation of exchange energy ratio with DW
width Δ.

(c) Variation of exchange energy ratio with DW out-
of-plane angel φ.

(d) Variation of exchange energy ratio with DW po-
sition q.

Figure 4: Variation of the difference in exchange energy calculated from micromagnetic simu-
lations compared to the 1-D model with (a) the DW tilt angle (χ), and (b) DW width (Δ).

These energy terms are integrated in the x direction in order to remove spatial dependence
and used to derive the four equations of motion listed in the previous section. The 1-D model
exchange and DMI energy terms, when integrated on the length of the wire will take the
following form:

EExchange =

∫ ∞

−∞
A|∇m|2dx =

2A

Δ

[
1

cosχ
+ 2sinχ

]
(20)

EDMI =

∫ ∞

−∞
D(mz∇.�m− (�m.∇)mz)dx =

πD

cosχ
cos(φ− χ) (21)

EAnisotropy =

∫ ∞

−∞

(
KU +Kssin

2 (φ− χ)
)
sin2θdx =

2Δ

cosχ

(
KU +Kssin

2(φ− χ)
)

(22)

The energy densities in each case can be calculated by dividing the above equations by the
length of the sample.
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In order to assess the predictive accuracy of these energy terms, micromagnetic simulations
were performed using the open source micromagnetic simulation environment mumax3 [34].
Simulations were performed with the following material properties: A = 10−11J/m, Ms =
0.6× 106A/m, K = 0J/m3, K0 = 0.59× 106J/m3, and α = 0.02. The sample was assumed to
be 768nm× 192nm× 3nm. The DMI strength was varied, D = 0, 1 and 2mJ/m2. Fields were
applied in the z direction from 2 mT to 10 mT. mumax3 can provide exchange and anisotropy
energy as outputs, while also calculating the collective coordinates of interest to us. Note that
the exchange energy output from Mumax3 is the sum of exchange and DMI energies [34].

We used the final prediction of the collective coordinates by the mumax3 simulation as the
basis of energy calculations using the 1-D model analytical form of the energies (Eqs. 20 and
22 above). We would expect that the 1-D model and micromagnetic simulation predict energies
that are nearly identical; however, this is not true as an energy difference exists, which could
be attributed to the constraining torques introduced by the ansatz. Figure 3 outlines how
the difference in the exchange and anisotropy energies varied with the applied field. Figure 4
illustrates the variation of the ratio of the exchange energy from mumax3 to that of the 1-D
model with the four collective coordinates for the case of D = 1 mJ/m2. Δ and χ are the
only coordinates that affect exchange energy according to Eq. 20; however, trends could be
seen in the figure with DW position and, to an extent, with φ. Based on Figure 4, the energy
ratios seem to follow strict functional forms which could be extracted as analytical corrections
to the 1-D model. As an example, using regression analysis, the following equation could be
used to describe the ratio of exchange energy at a DMI value of 0.001 J/m2 in terms of the
two collective coordinates which directly affect exchange energy according to the model, with
an R2 value of 0.9943:

Emumax/E1−Dmodel = a0 + a1χ+ a2Δ+ a3χ
2 + a4Δχ (23)

with a0 = −0.5785, a1 = −2.367, a2 = 3.769 × 107, a3 = −1.528, and a4 = 9.207 × 107.
The coefficients listed here are only valid for the specific case of D = 1 mJ/m2, material
properties noted above and the specific geometry studied. In fact, further studies are needed to
understand the relationship between the coefficients in such energy difference functions and the
input parameters of the simulation. However, overall, it seems that analytical descriptions of
the constraint forces could be extracted on the basis of such energy analysis and added to the
Lagrangian during the derivation of the 1-D model. This new Lagrangian will lead to additional
corrective terms in the final description of the dynamics, improving the accuracy of the 1-D
model. The comparison of the energy landscape of the two models may also help identify new
coordinates or ansatz, leading to overall improvements of analytical modelling of DW motion.

6 Conclusion and Outlook

In this paper, we first derived the 1-D model for the motion of a tilting Bloch domain wall
in perpendicularly magnetized ferromagnetic materials. We then showed preliminary results of
how corrections could be developed by comparing the energy landscape of the 1-D model to
that predicted from micromagnetic simulations.

We are now performing further studies to develop analytical functional forms for the cor-
rective energy terms based on material properties and the collective coordinates in order to
introduce additional terms in the 1-D model Lagrangian with the hope of improving the quan-
titative accuracy of this model.
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