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Abstract The increasing amount of data in biomechanics

research has greatly increased the importance of develop-

ing advanced multivariate analysis and machine learning

techniques, which are better able to handle ‘‘big data’’.

Consequently, advances in data science methods will

expand the knowledge for testing new hypotheses about

biomechanical risk factors associated with walking and

running gait-related musculoskeletal injury. This paper

begins with a brief introduction to an automated three-

dimensional (3D) biomechanical gait data collection sys-

tem: 3D GAIT, followed by how the studies in the field of

gait biomechanics fit the quantities in the 5 V’s definition

of big data: volume, velocity, variety, veracity, and value.

Next, we provide a review of recent research and devel-

opment in multivariate and machine learning methods-

based gait analysis that can be applied to big data analytics.

These modern biomechanical gait analysis methods include

several main modules such as initial input features,

dimensionality reduction (feature selection and extraction),

and learning algorithms (classification and clustering).

Finally, a promising big data exploration tool called

‘‘topological data analysis’’ and directions for future

research are outlined and discussed.

Keywords Data science � Biomechanics � Gait �
Kinematics � Principal component analysis � Support vector

machine � Topological data analysis

1 Introduction

Biomechanical gait analysis is commonly used to analyse

sport performance and evaluate pathologic gait. Significant

advances in motion capture equipment, research method-

ologies, and data analysis techniques have enabled a ple-

thora of studies that have advanced our understanding of

gait biomechanics. Despite these advances, however, much

of the biomechanical research over the past 20 years has

investigated the influence of potential injury risk factors in

isolation [1]. More likely, multiple biomechanical and

clinical variables interact with one another and operate as

combined risk factors to the point that traditional biome-

chanical analysis methods (e.g., analysis of several discrete

variables, such as peak angles, together with a statistical

hypothesis test, such as t test or the analysis of variance

(ANOVA) [2, 3]) cannot capture the complexity of these

relationships. In response to these shortcomings, advanced

multivariate analysis and machine learning methods such

as principal component analysis (PCA) and support vector

machine (SVM) have been used to identify these complex

associations [2, 3]. However, to build accurate classifica-

tion models, an adequate number of samples is needed,

which grows exponentially with the number of features

used in the analysis [4]. Therefore, to directly meet this

need the University of Calgary group (Ferber, Osis) have

developed the infrastructure and established a worldwide

and growing network of clinical and research partners all

linked through an automated three-dimensional (3D)

biomechanical gait data collection system: 3D GAIT.
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Considering that traditional data analytics may not be able

to handle these large volumes of data, appropriate ‘‘big

data’’ analysis methods must also be developed [5, 6].

This paper begins with an introduction to the 3D GAIT

system, followed by an overview of a big data problem in

gait biomechanics using the 5 V’s: volume, velocity,

variety, veracity, and value [7]. Next, a comprehensive

overview of existing methods on the role of big data ana-

lytics is presented. We discuss the main components of

modern biomechanical gait analysis involving: initial input

features, dimensionality reduction using feature selection

and feature extraction, and learning algorithms via classi-

fication and clustering. Finally, a promising big data

exploration tool called ‘‘topological data analysis’’ is dis-

cussed along with future research directions.

2 Data Collection System

The 3D GAIT system is a deployed turnkey motion capture

platform specifically designed for gait analysis using a

treadmill. The overall system design is a nexus of three

main principles: ease-of-use/automation, biomechanics best

practices, and data science best practices. Consequently, the

system uses off-the-shelf passive motion capture technol-

ogy, consisting of between three and six infrared cameras

(Vicon Motion Systems, Oxford) along with spherical

retroreflective markers that are pre-configured for ease of

placement on the subject. Rigid clusters of markers are

strapped to the subject’s thighs, shanks and pelvis, and

markers are taped to the shoes to define foot movement

(Fig. 1). Additional markers are also placed on the specific

anatomical landmarks and are used to define the location of

joint centers. During a treadmill session, the cameras

operate at 200 Hz for 30 s, collecting *150,000 data points

representing the 3D coordinates of each marker. These

marker data are then transformed using rigid-body kine-

matics [8, 9] into joint angles, which are 3D representations

of body movements, between segments, over time.

Joint angles from treadmill gait represent a set of non-

independent, time-series waveforms, and there are several

types of analyses that can be undertaken. In terms of

biomechanics best practices, it is often considered appro-

priate to determine a ‘‘characteristic’’ pattern of motion that

is representative of the movements for a given subject.

Therefore, the 3D GAIT system derives a ‘‘characteristic’’

pattern from a spatio-temporal normalized set of gait cycles,

which are segmented using a machine learning approach to

account for inter-subject variability in technique [10, 11].

These normalized gait cycles can then be analyzed by: (1)

collapsing into a single representative time-series data set

by various averaging techniques (i.e., median, weighted

nearest-neighbor interpolant), and/or (2) extracting discrete

features from each cycle separately, and merging into a

representative feature set for a given subject (i.e., median

peak angle, mean angular excursion). In the latter case, 3D

GAIT software generates a feature vector of 74 variables for

both left and right sides, representing a substantial number

of dimensions in the final data set. These feature vectors and

time-series curves are then presented to the user to inform

assessment, rehabilitation and training tasks.

After processing, and according to best practices in data

science, the final data set is anonymized and packaged for

transport. Marker data from the motion capture system,

along with biomechanical feature vectors and demographic

information (i.e., height, mass, age, etc.) are securely

transmitted via end-to-end encryption to the central server

for further processing and storage in a research database.

These aggregate data, along with critical subject charac-

teristics, allow the potential to statistically model lower

limb injury and disease outside of the laboratory setting.

Post-hoc analysis also provides the opportunity to develop

updated biomechanical models and techniques, which can

then inform future modifications to the deployed software.

Despite advances in 3D motion analysis, there are some

limitation inherent within any 3D gait analysis methodol-

ogy. For example, variability in kinematic variables may be

attributed to measurement error, skin marker movement,

marker re-application errors, and inherent physiological

variability during human locomotion. While the first three

Fig. 1 Marker placement for standard biomechanical gait analysis
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factors are independent of the patient population itself, it is

possible that physiological variability may be different in a

clinical population. Moreover, set-up and operation of 3D

gait systems requires calibration by an trained expert, and

the time required to operate these systems limits its prac-

ticality, especially in a clinical setting.

3 Big Data Characteristics

There is no universal definition of the term ‘‘big data’’ and

a rough definition would be datasets whose size or structure

are beyond the ability of traditional data collection and

analysis tools to process, within a reasonable time [5, 6].

This definition also implies that many traditional analytics

may not be able to be applied directly to big data. To

sufficiently describe big data, and to incorporate other

facets of its nature, the definition of big data has expanded

beyond limitations of data size, to include several key

attributes such as variety, velocity, veracity and value, in

order to propose a new complete definition of the term ‘‘big

data’’ (e.g. 3 V’s [12] and 5 V’s [7]). Data gathered for

biomechanics research exhibits many of these qualities and

can be considered to be ‘‘big data’’, in the light of the 5 V’s

definition, as follows.

3.1 Volume (Quantity of Data)

Volume refers to vast amounts of data. While traditional

biomechanical analysis generally involves only a few

variables and low subject numbers, recent advancements in

data collection technology generate more data for each

subject, and modern biomechanical research is continually

involving big volume datasets. Specifically, the number of

variables per subject has increased to *50–150 discrete

variables [2, 3], several hundred to thousand variables for

joint angle time-series data [13, 14], and several thousand

to hundred thousand variables for marker coordinate time-

series data [15, 16]. Although most of these studies con-

tinue to involve only a small cohort of subjects (e.g., 10–30

subjects [17, 18]) in the analysis, it is generally recom-

mended to expand and further test proposed data science

techniques and/or models using datasets with greater sub-

ject numbers to determine whether results are similar in

different populations. The aforementioned research data-

base can provide the necessary large cohort of subjects for

such hypothesis-driven research (e.g., 483 subjects [2]).

3.2 Variety (Different Data Categories)

Variety applies to data that exists in multiple types and/or

captured from different sources. For example, recent

biomechanical research involves data from 3D motion

capture as well as clinical data such as self-reported

pain/function and lab exams [19, 20]. These data would

include continuous, discrete, and categorical data and thus

sophisticated statistical methods need to be employed.

3.3 Velocity (Fast Generation of New Data)

Velocity refers to the pace at which new data is created and

collected. Walking and running gait related-injuries are

often chronic in nature and rehabilitation often takes

weeks-to-months. In order to monitor the progress of a

rehabilitation program, gait data are generally collected at

baseline, and some data are collected once a week over

several weeks of the program [19, 20]. On average, 25 new

patients are added each week to the UCalgary research

database, and 12–15 new clinic partners are added each

year.

3.4 Veracity (Quality of Data)

Veracity refers to noisy, erroneous, or incomplete data and

in biomechanics research this term can easily apply as data

are often captured through different sensors and systems, as

well involving measurement errors associated with kine-

matic data. Sources of error can result from many factors

such as soft tissue artifact, electrical interference, and

improper digitization and placement of retro-reflective

markers. Although in general, there is a large divide

between clinical research and clinical practice. Data from

standard 3D motion capture systems are generally of high

quality. Despite this, there is the possibility of incomplete

clinical data, due to missing self-reports and lab exams.

Fortunately, big data analytics can handle incomplete data

sets when necessary using data science techniques such as

k-nearest neighbors to impute the missing values [21].

3.5 Value (In the Big Data)

Although the potential value associated with these complex

and large data sets is very high, the real value of big data

analytics in gait biomechanics still remains to be proven,

and more sophisticated analytics, which incorporate a pri-

ori knowledge, are necessary. For instance, suitable tech-

niques for extracting useful information can lead to high

value outcomes even in situations with low data veracity.

Further, multivariate analysis and machine learning meth-

ods could potentially be utilized as an automated system

for detecting gait changes related to injury [3, 22]. How-

ever, more research is necessary to advance these ideas. It

is also important to note that although not all the studies in

the field of gait biomechanics fit all 5 V’s of big data, data

lacking one of the attributes can still be analysed using

complex data science methods.
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4 Initial Input Features

Most investigations of walking and running gait biome-

chanics involve kinematic data and have focused on

determining gait waveform events such as joint angles at

touchdown, toe-off, mid-stance, and mid-swing [23].

Descriptive statistics such as peak angles, excursion, and

range of motion are also commonly extracted from the gait

waveform [23]. However, these traditional approaches call

for a priori selection of features, which relies on sufficient

background knowledge and/or subjective opinion. Conse-

quently, a large proportion of the kinematic data are dis-

carded, whereas they may contain meaningful information

related to the between-group differences.

In contrast, modern data science methods involve the

following main components of initial input features,

dimensionality reduction using feature selection and feature

extraction, and learning algorithms via classification and

clustering (Fig. 2). A summary of some previous contribu-

tions involving their clinical application has been presented

in Table 1. By expanding initial input features, and analysing

the entire gait waveform, new insights can be derived from

the data to help improve clinical practice. For example,

Phinyomark et al. [13] examined differences in gait kine-

matics between healthy runners as compared to runners with

iliotibial band syndrome (ITBS), the second most common

running-related injury and the most common cause of lateral

knee pain, using the entire gait waveform together with a

feature selection approach. They found that female ITBS

runners exhibited greater hip external rotation angles during

56–58% of the running gait cycle while male ITBS runners

exhibited significantly greater ankle internal rotation angles

during 70–72% of the running gait cycle as compared with

their respective healthy controls. The results suggest that

clinicians should focus on strengthening proximal muscles

for female runners and distal muscles for male runners to

prevent ITBS injury, and these meaningful joint angles are

obtained by examining the entire set of input data. Hence,

either a set of representative variables [2, 3, 24] or the entire

gait waveforms [13, 14] across joints and planes of motion

should be employed as the initial set of input features.

Another input feature method involves a position

matrix, which is based on the marker position data [15, 16].

The size of an initial feature vector based on 3D marker

position is usually larger than an initial input vector based

on joint angles. However, more data does not necessarily

mean more useful information since it may contain more

ambiguous or erroneous data such as soft tissue movement

artefact. While similar results obtained from the same

statistical group and supervised learning classification

approaches were found in a comparison between two pre-

vious studies: one with joint angle data [2] and the other

with marker position data [25], the clinical relevance of

marker position data is questionable. Thus, joint kinematic

angles are recommended to use as initial input features to

improve the clinical relevance of the results.

Due to the fact that some dimensionality reduction and

machine learning methods require an adequate number of

samples to obtain stable results, the dimensionality of the

initial input features used in the analysis should be care-

fully chosen. For example, Barrett and Kline [26] recom-

mended that the number of subjects should be at least 50

for a PCA approach. Unfortunately, previous research

involving a PCA approach have utilized small cohorts of

subjects (n = 10–30) [17, 18]. Thus, to minimize the high-

dimensionality of the data, big data in terms of big volume

(i.e., a large cohort of subjects) are needed to re-evaluate

the proposed model and find a consensus among various

models or studies.

5 Dimensionality Reduction

To analyze a large number of biomechanical gait variables

involving many joints and planes of motion, techniques to

retain information that is important for class discrimination

Fig. 2 The main components of modern biomechanical gait analysis
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and discard that which is irrelevant are necessary. To

determine which data should be retained and which can be

discarded, dimensionality reduction has been used.

Specifically, dimensionality reduction can be defined as the

process of reducing data size or the number of initial input

features, and this approach is expected to be able to operate

effectively in big data analytics. Although the size of the

data in most current studies might be efficiently processed

using traditional multivariate and machine learning meth-

ods in a single high performance computer, to process

larger-scale and more complex data in future studies, it is

necessary to re-design and change the way the traditional

multivariate and machine learning methods are computed.

One way is to use more efficient data analysis methods that

can accelerate the computation time or to reduce the

memory cost for the analysis. Another way is to create

methods that are capable of analyzing big data by modi-

fying traditional methods that work on a parallel computing

environment or even to develop new methods that work

naturally on a parallel computing or a cloud computing

environment. It should be noted that these approaches not

only reduce the computational cost, but can also possibly

improve classification accuracy by reducing the noise and

improving the clinical relevance of the results by selecting

more interpretable features.

5.1 Feature Selection

Instead of choosing the appropriate features based on

investigator’s background knowledge, feature selection

Table 1 Summary of biomechanical gait analysis studies using data science methods and their research question of interest

Reference Number

of

subjects

Initial input features Dimensionality reduction Leaning

algorithms

Research question of interest

[13] 96 900 features (9 running

kinematic waveforms)

MR (the best 3 angles/

waveform)

– Differences between male and female

runners experiencing ITBS at the time

of testing and healthy gender- and age-

matched runners

[2] 483 72 features (running

kinematic variables)

MR (the best 8–62 PCs) SVM

(78.4–100%)

Gender- and age-related differences in

healthy runners

[27] 34 31 features (running

kinematic variables)

SFS (the best 6 features) SVM (100%) Age-differences in healthy runners

[40] 92 51 features (running

kinematic and kinetic

variables)

Several feature extraction

methods ? AdaBoost

(as part of the classifier)

AdaBoost

(84.7–100%)

Differences between gender, shod/

barefoot running, and runners with and

without PFP

[47] 40 505 features (5 running

kinematic waveforms)

PCA (the first 3 PCs/

waveform)

– Differences between female runners with

previous ITBS and female healthy

runners

[19] 72 902 features (9 running

kinematic waveforms ? 2

clinical variables)

PCA (only kinematic

waveforms) ? SFS (the

best 2 PCs)

LDA (78.1%) Prediction of the response to exercise

treatment for patients with PFP

[20] 98 604 features (6 walking

kinematic waveforms ? 4

clinical variables)

PCA (only kinematic

waveforms) ? SFS (the

best 6 PCs and 1 clinical

variable)

LDA (85.4%) Prediction of the response to exercise

treatment for patients with knee OA

[45] 200 4 features (running

kinematic variables) or 100

features (a running

kinematic waveform)

PCA, Kernel PCA (the

first 7 or 10 PCs)

– Gender- and age-differences in healthy

runners

[28] 11 3939 features (39 running

marker position

waveforms)

PCA, PCA with SVM,

ICA ? MR

– Differences between movements resulting

from wearing shoes with different

midsoles

[14] 121 900 features (9 running

kinematic waveforms)

PCA (the first 4 PCs/

waveform)

HCA Defining distinct groups of healthy

runners and to investigate the practical

implications of clustering healthy

subjects

[67] 88 3636 features (36 running

marker position

waveforms)

SOFM k-Means Defining functional groups of runners and

to understand whether the defined

groups required group-specific footwear

features
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approaches using data science methods return the best

subset of the initial input features. These methods aim to

maximize a features’ relevancy and/or minimize a features’

redundancy using a combination of an objective function

with a search strategy.

5.1.1 Objective Function

There are two types of measures to score features: wrapper

and filter. Wrapper methods use a specific classifier with a

cross-validation method to provide a score, or a classifi-

cation rate, for each feature subset. Measures applied using

this method include a linear discriminant analysis (LDA)

[19, 20] and SVM [27]. Although wrapper methods typi-

cally provide the best performing feature set for a specific

classifier (since the characteristics of the selected features

match well with the characteristics of the classifier), there

are no guarantees that this feature subset will perform best

for other classifiers. Moreover, the computational cost of

wrapper methods is higher than filter methods and to per-

form wrapper methods for big data, extensive computa-

tional time to search the best feature subset is necessary,

thus parallelized implementations of cross-validation may

be ideal.

In contrast, filter methods use interclass distance/simi-

larity, correlation, or information-theoretic measures, to

score features. Measures applied in this field include the

effect size (i.e., Cohen’s d [2, 3, 13, 28]) and the outcomes

of statistical tests (i.e., t-test). Although mutual information

has not been applied in this field yet [29], this measure

offers potential value when initial features consist of both

categorical data (e.g., demographic data and clinical data)

and continuous/discrete data (e.g., kinematic data). While

filter methods generally provide lower prediction perfor-

mance than wrapper methods, the selected feature subset is

more generalisable and thus more useful for understanding

the associations between features. Filter methods can also

be used as a pre-processing step [13] for feature extraction,

allowing for more stable results when the dimensionality of

initial input is high. Filter methods are also less computa-

tionally expensive and often easier to implement than

multi-level wrapper functions.

5.1.2 Search Strategy

The simplest and most popular search approach is to apply

an objective function, such as the filter method, to each

feature individually to determine the relevance of the fea-

ture related to the target class (or the classification vari-

able), and then select the top-ranked (or the best) features

according to these outcome scores. This approach is typi-

cally called a univariate feature selection or maximum-

relevance (MR) selection method. Improvements in

classification and interpretation have been observed con-

sistently among previous studies that have applied this

approach [2, 3, 24]. The top-ranked features, however,

could be correlated among themselves and have different

robustness ability. Therefore, features selected according to

their discriminative powers do not guarantee a better fea-

ture set. Thus, one solution is to include minimum redun-

dancy criteria (i.e., features should maximally dissimilar to

each other) such as implemented in a minimum redun-

dancy–maximum relevance algorithm [29].

Another popular search approach in the data science

field is sequential feature selection (SFS) algorithms. This

family of ‘‘greedy’’ search algorithms creates a subset of

features by adding or removing one feature at a time, based

on a score obtained from a wrapper method, and then

chooses the subset that best increases the classification

accuracy while also minimizing the feature subset size.

This algorithm has achieved good classification perfor-

mance to select a subset of discrete variables in several

investigations. For example, Fukuchi et al. [27] applied a

sequential forward selection to search for the best subset of

features among thirty-one kinematic variables in identify-

ing age-related differences in running gait biomechanics.

This algorithm consistently selected the knee flexion

excursion angle (a decrease in the angle among older

runners), which has been usually reported in the literature

using classical inferential statistics [30, 31]. The results can

be used to better understand the greater incidence of inju-

ries among older walkers and runners which might be due

to age-related changes in gait patterns [32]. In addition,

Watari et al. [19] and Kobsar et al. [20] used this approach

to search the best feature subset from a mixed group of

baseline kinematic, clinical, and patient-reported outcome

variables, achieving a good performance (78–85%) in

predicting treatment outcome in patients with patellofe-

moral pain (PFP) and knee osteoarthritis (OA), respec-

tively. It is important to note that PFP is the most common

injury among runners [33] and PFP has been associated

with the development of knee OA since between 25 and

35% of patients report little-to-no improvements in their

symptoms following treatment. The findings of both stud-

ies support the use of feature selection of baseline kine-

matic variables to predict the treatment outcome for

patients with PFP and knee OA, which is a significant step

towards a method to aid clinicians by providing evidence-

informed decisions regarding optimal treatment strategies

for patients.

Unfortunately, the SFS and related algorithms use an

incremental greedy strategy for feature selection and tend

to become trapped in local minima, particularly when

dimensionality is very high. To deal with higher-dimen-

sional data in future studies, algorithms need to incorporate

randomness into their search procedure to escape local
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minima. Some potential and well-known population-based

metaheuristic methods are genetic algorithm (GA) [34], ant

colony optimization [35], particle swarm optimization [36],

and harmony search [37]. To our knowledge, no prior

studies have applied these advanced search techniques in

walking and/or running biomechanical research. These

search techniques have also been developed to work in

parallel computing and can be used for big data analytics

such as parallel computing version of GA [38].

Finally, feature selection algorithms can be also

embedded within learning algorithms such as decision tree

and regularized trees [39]. Specifically, an AdaBoost,

Adaptive Boosting, algorithm improves the performance of

other learning algorithms (as called weak learners) by

combining their outputs into a weighted sum/vote (a strong

classifier) that represents the final output/decision.

Although embedded methods can reduce the cost of

exploring larger search spaces, they could still yield poor

generalization performance (like the wrapper methods).

For example, Eskofier et al. [40] applied AdaBoost with

decision trees as weak classifiers, to select the best feature

subsets from kinematic and kinetic running data. Good

classification results (84–100% accuracy) were found for

all experiments: gender, shod/barefoot, and injury groups.

However, while this technique appears promising, the

aforementioned study [40] involved a relatively small data

set (n = 12) so future research involving much larger

amounts of data should be employed.

5.2 Feature Extraction

Instead of selecting a subset of initial input features, feature

extraction approaches transform a set of values in an original

feature space into a set of values in a new lower-dimensional

space. In other words, feature projection or feature trans-

formation methods attempt to determine the best combina-

tion of the initial input features. It is important to note that

gait biomechanical features can be extracted in time domain,

frequency domain, and time–frequency representation

[23, 41–43]. Features can be also based on either linear or

non-linear analysis as well as based on either supervised- or

unsupervised-learning approach [28, 41, 42, 44–46].

5.2.1 Linear Unsupervised Feature Extraction

Investigations of walking and running gait biomechanics are

mostly based on the PCA method, which involve the com-

mon idea of dimensionality reduction to create a new set of

uncorrelated variables, known as principal components

(PCs). The PCs are linear combinations of the original

possibly correlated variables, and this method has demon-

strated classification accuracies between 80 and 100% in

identifying differences in running gait patterns between

different cohorts [2, 3, 15, 16, 24, 25]. Often, however,

researchers account for nearly all of the between-group

variance from the original features using the first few, or

lower-order, PCs [47, 48]. In these analyses, only a set of the

first few PCs are retained, whereas the remaining set of

intermediate- and higher-order PCs are ignored. Unfortu-

nately, there is no guarantee that the difference between the

groups of interest will be in the direction of the first few, or

high-variance, PCs and focusing only on first PCs, which are

associated with the most dominant movement patterns (e.g.

gender- and age-related differences, or differences between

runners with and without ITBS [3, 25, 47]), may exclude

important information necessary for class separability

between groups of interest. In contrast, intermediate- and

higher-order PCs are often associated with subtle movement

patterns. For example, Phinyomark et al. [3] showed that

these higher-order PCs could be potentially useful in mon-

itoring the progress of treatment outcomes for injured

patients or athletes and thereby predicting rehabilitation

success or risk of injury reoccurrence. The higher-order PCs

showing differences between baseline and following a

6-week muscle strengthening program for runners with PFP

also exhibited a moderate and significant linear correlation

with clinical outcome data [3] while the first few PCs have

no significant correlation. In addition, Nigg et al. [25] used

the higher-order PCs to investigate the effects of shoe

midsole hardness on running kinematics.

While meaningful features derived from the PCA

methods can be identified, there are several ways to

interpret the biomechanical and clinical meaning of these

features. Using the visual inspection of the shape of the PC

loading vector, several PC feature types can be defined

such as magnitude features, difference operator features,

and phase shift features [23, 49]. For instance, features

extracted from the first PC generally capture the magnitude

information and thus show strong correlation with discrete

variables in the magnitude group (such as joint angles at

touchdown and toe-off) [23]. Traditional solutions for

waveform analysis are to compare the differences between

two representative original gait waveforms chosen from

some quantiles of the PC-scores/features for the PC of

interest [48]. However, the observed differences between

raw gait waveforms generally involve not only the

biomechanical features extracted from the PC of interest

but also the remaining information captured by other uns-

elected PCs. To isolate the inter-subject variance explained

by the PCs of interest, we can use reconstructed gait

waveforms by reversing a single [49] or a set [50] of

interested PCs back to the original space, instead of raw

gait waveforms. For instance, a meaning set of 156 PCs

was used to reconstruct fourteen different gait waveforms

and these reconstructed waveforms can be used to illustrate

and identify subtle systematic differences in gait movement
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patterns for runners with high and low weekly running

mileage [50].

For interpreting PCs computed from discrete variables,

the correlation (Pearson’s r) between initial input features

and PC features is computed to provide the information

shared between them [51]. The variables with the highest

correlation (maximum value of r) or strong correlations

(for example, r[ 0.67 [2]) with each chosen PC have been

used to interpret its meaning. To aid in interpreting inter-

mediate- and higher-order PCs, which generally demon-

strate weak correlations with input features, Phinyomark

et al. [3] proposed two different approaches: (1) the per-

centage of sum of the squared correlation coefficients

between each of the PCs and all the original variables in

the interested joint and/or plane of motion, and (2) the

percentage of sum of the squared correlation coefficients

between each of the original variables and all the PCs that

are needed to yield the maximum classification perfor-

mance between groups of interest. These approaches have

been successful in interpreting the biomechanical meaning

of PCs in several clinical research questions of interest

(e.g., differences in walking gait patterns between subjects

with and without knee OA [24]).

The standard PCA method often encounters difficulties

when data are non-linear or non-Gaussian distributed.

Although some kinematic variables of interest are normally

distributed for both injured and non-injured runners [2],

based on our preliminary work, the probability density of

running gait kinematics in transverse plane kinematics may

not be Gaussian and thus non-linear. Therefore, feature

projection methods with non-Gaussian and/or non-linearity

assumptions should be investigated. Specifically, since

standard PCA considers only the second-order statistics

(i.e., co-variance), this method relies heavily upon the

Gaussian features. In contrast with PCA, independent

component analysis (ICA) employs higher-order statistics

and exploits inherently non-Gaussian features of the data.

5.2.2 Non-linear Unsupervised Feature Extraction

Data transformation methods can also be employed in a

non-linear manner and the standard PCA method can be

extended to model data distributions in high-dimensional

space by using a kernel technique called ‘‘kernel PCA’’.

The performance of this non-linear feature projection-

based method for identifying differences in running gait

patterns between different cohorts increases as compared to

the linear PCA [45]. Unfortunately, the computational cost

of these non-linear methods is high in comparison to the

linear methods, and may cause a problem in big data

analysis. One solution is to create a linear-nonlinear feature

projection by using a linear projection-based method (e.g.

PCA) to reduce dimensionality of the initial input features

and then transforming the reduced and projected features

into a new high-class-separability feature space using

nonlinear mapping by a nonlinear projection-based method

(e.g., self-organizing feature maps (SOFM)) [46].

Fractal analysis is used to assess fractal, or self-similarity,

characteristics of data by determining the fractal dimension

of data. Instead of considering variability to be random [52],

fractal analysis considers variability as long-term correla-

tions. These methods have been widely used to study many

biomedical data [52–56] involving the complex fluctuations

in gait patterns or dynamic stability (e.g. gait variability:

stride interval variability and the variability of the center-of-

mass) [41, 57]. We can use information obtained from these

studies to quantify human gait movement and its changes

with aging and disease and to identify changes in biome-

chanics after a therapeutic intervention/rehabilitation pro-

tocol [30]. There are numerous definitions of fractal

dimension, and several potential techniques of fractal anal-

ysis include detrended fluctuation analysis (DFA), the

maximum Lyapunov exponent (MLE), critical exponent

analysis and variance fractal dimension. Specifically, DFA

can be used to quantify stride interval dynamics while MLE

quantifies local dynamic stability [58, 59]. Unfortunately, to

apply fractal analysis very long time-series are required (i.e.,

hundreds to thousands of gait cycles are necessary). On the

other hand, in clinical practice, 3D gait kinematics and EMG

are measured during a short period, particularly for subjects

with certain pathologies [41].

5.2.3 Supervised Feature Extraction

A combination of SVM and ICA as a supervised-unsu-

pervised feature projection has shown better performance

in classifying kinematic running data with two different

shoe conditions as compared to the linear PCA method

[28]. These supervised feature projection methods not only

reduce the dimensionality of the initial input features but

they also improve class separability. Other supervised

methods of dimensionality reduction should be investi-

gated in future studies such as LDA and its extended ver-

sions (e.g., uncorrelated LDA, orthogonal LDA, orthogonal

fuzzy neighborhood discriminant analysis, generalized

discriminant analysis, LDA via QR-decomposition, and a

combination of LDA, fuzzy logic and the differential

evolution optimization technique) [44].

6 Machine Learning

6.1 Supervised Machine Learning

After a final feature vector is created, either a supervised or

an unsupervised learning approach is needed to perform the

Big Data in Gait Biomechanics 251

123



classification or clustering. For classification, the most

popular supervised learning method in this field is the SVM

classifier [2–4, 15, 16, 22–25, 27, 28, 50, 60–62]. SVM

builds a model that predicts whether a new subject best fits

in one category or the other (i.e., a binary linear classifier)

and we can also extend it for multi-class classification by

reducing the single multiclass problem into multiple binary

classification problems (i.e., building binary classifiers

which discriminate either between one of the class labels

and the rest (one-versus-all) or between every pairs of

classes (one-versus-one). As one example, although SVM

can efficiently perform a nonlinear classification, Fukuchi

et al. [27] compared the classification performance of

several linear and nonlinear kernels and found that a linear

kernel exhibits better performance in identifying age-re-

lated differences in running gait biomechanics as compared

to non-linear kernels involving polynomial and Gaussian

radial basis function kernels. For walking gait biome-

chanics, the best SVM model has been also found to be the

linear SVM (e.g., to detect age-related changes in walking

gait patterns [60], to identify walking gait pattern of

patients with PFP [61], and to identify walking gait pattern

of patients with OA as well predicting gait improvement

after knee replacement surgery [62]). Non-linear kernels

have also been found to overfit the data as compared to the

linear model [62].

Hence, for a more robust model, an LDA classifier is

recommended [63]. This classifier has been able to suc-

cessfully predict individual treatment success to an exer-

cise intervention in knee OA patients using a combination

of baseline patient-reported outcome measures and kine-

matic variables [19, 20]. Lee et al. [64] shows that LDA

could be applied successfully to discriminate walking gait

patterns with an unknow load condition. Further, to esti-

mate the generalisation capability of a given classifier,

either a leave-one-out cross-validation method (for small

sample size) or a k-fold cross-validation method (for large

sample size) should be performed. For a ten-fold cross

validation, as an example, input features for a classifier are

randomly partitioned into 10 equally sized subgroups and a

single subgroup is retained as testing data while the

remaining nine subgroups are used as training data for the

classification model. The cross-validation process is then

repeated 10 times, and a single classification rate, or con-

fidence interval, is computed from the 10 iterations.

6.2 Unsupervised Machine Learning

In contrast, when target classes are not available, naı̈ve

clustering or cluster analysis is needed. In brief, a cluster

analysis method is used to measure the similarities in gait

data within a heterogeneous set of individuals and then

group sets of similar observations, or patterns, are created.

For example, Phinyomark et al. [14] applied hierarchical

cluster analysis (HCA) to determine if running gait patterns

for 121 healthy subjects could be classified into homoge-

neous subgroups using 3D kinematic data. Two distinct

running gait patterns were found with the main between-

group differences occurring in frontal and sagittal plane

knee angles, independent of age, height, weight, and run-

ning speed. When these two groups were separately com-

pared to a large cohort of runners experiencing PFP, the

most common running related injury, two different out-

comes were shown for differences in peak knee abduction

angles. This technique has been also applied on walking

gait patterns of normal subjects, and the results show there

are similarities between walking and running studies.

Specifically, Simonson and Alkjær [65] found significant

differences between two sub-groups of walkers based on

sagittal plane knee kinematics while Mezghani et al. [66]

found significant differences between four sub-groups of

walkers based on frontal plane knee kinematics. Consid-

ering these similarities, the primary differences in walking

and running gait patterns of healthy subjects can be

observed in frontal and sagittal plan knee joint angles. In a

similar manner, Hoerzer et al. [67] use a k-means clustering

algorithm to define eight functional groups based on their

distinctive gait patterns to understand whether the defined

groups required group-specific footwear features. It should

be noted that k stands for number of clusters and is an input

parameter for the algorithm. Thus, an inappropriate choice

of k may yield poor results. These results suggest that

variability observed in gait patterns in a sample of subjects

could be the result of different gait strategies represented

within the sample, rather than because of another dis-

criminating factor (i.e., injury status). Further, previous

studies have used the HCA approach to identify distinct

walking gait patterns among patients (e.g., cerebral palsy

[68], chronic stroke [69], and Charcot-Marie-Tooth disease

[70]) and thereby clinicians can use these defined sub-

groups to assess the effects of different treatments via

tracking changes in specific gait patterns in each group of

patients.

7 Topological Data Analysis

Recently, a number of techniques rooted in algebraic

topology have been proposed as novel tools for data sci-

ence analysis and pattern recognition. The fundamentally

new character of these tools, collectively referred to as

TDA or topological data analysis, stems from abandoning

the standard measures between data points (or nodes, in the

case of similarity networks) as the fundamental building

block, and focusing on extracting and understanding the

‘‘shape’’ of data at the mesoscopic scale. In doing so, this
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method allows for the extraction of relevant insights from

complex and unstructured data without the need to rely on

specific models or hypotheses. In addition, topology is

written in the language of set theory and provides a natural

candidate to approach, in a formal way, higher-order

dimensional patterns [71].

Algebraic topology techniques have been recently used

with success in biological and neurological contexts and

play a key role in understanding of complex systems in a

wide range of fields by extracting useful information from

big datasets [72–76], thanks to their ability to capture

macro- and meso-scale coordination from local informa-

tion [77]. We can now begin to understand that geometry

and topology make useful contributions to the analysis of

data and can be leveraged to enhance machine-learning

approaches by providing new, non-trivial features. While

geometry can be intuitively regarded as the study of dis-

tance functions, topology captures robust information

about shapes in high-dimensional spaces and is therefore

invariant under deformations, rotations and many of the

transformations that would corrupt geometrical features. In

this paper, two major TDA techniques are presented, which

can be considered as potential big data analytics for run-

ning gait analysis: (1) topological simplification, as

exemplified by the Mapper algorithm [78–80], and (2)

persistent homology [81, 82].

7.1 Topological Simplification

Topological simplification refers to a set of techniques that

can extract a topological backbone from an unstructured

data cloud. The most well-known technique was originally

introduced by Singh et al. [78] and has found many

applications both in research and in industry [79, 80]. For

example, if a metrical or similarity structure is available, it

is possible to produce controlled simplications of the

structure by means of a series of local clusterings in

overlapping regions of the data space, and then linking

together clusters that share common data points. This is the

basis of the Mapper algorithm (Fig. 3). Specifically, this

algorithm relies on two main modules: a filter function and

a clustering protocol. The filter function is used to define a

set of overlapping regions that slice the point cloud data.

Within each region, the points are then clustered according

to the chosen clustering protocol. Because of the overlap

between regions, some clusters in adjacent regions will

have common points. The Mapper graph is then con-

structed considering the clusters as nodes and adding an

edge between two clusters whenever they have a non-

empty intersection, hence yielding a simplified skeleton-

like representation of the original point cloud data. This

method is based on topological ideas in the sense that the

described construction tends to preserve the notion of

nearness in the data cloud, but discard the effects of large

distances which often carry little meaning or are scarcely

reliable in applications.

The output of this topological simplification approach

has been used in several cases as cluster analysis to extract

non-trivial qualitative information from large datasets that

was hard to discern when studying the dataset globally.

Nicolau et al. [79], for instance, detected a previously

unknown subtype of breast cancer characterized by a

greatly reduced mortality while Lum et al. [80] and Nielson

et al. [83] identified a number of new subgroups in datasets

as diverse as genomic data, NBA players, and spinal cord

injuries.

More interestingly, it is possible to use the output of the

algorithm to engineer relevant features for further classi-

fications as feature selection. Guo and Banerjee [84]

selected, topologically, a set of key process variables in a

manufacturing pipeline that affected the final yield and

reduced the monitoring and control costs. Specifically,

after the Mapper graph is constructed, we can define fun-

damental and interesting subgroups (in which their shapes

persist over a large-scale change of the resolution param-

eters), and then statistical tests (like t-test or ANOVA) can

be performed among the subgroups to select the best dis-

criminatory features.

The aforementioned approaches have shown potential,

and are therefore good candidates as a way to build sim-

plicial complexes used to compute persistent homology

that convey local summaries of the dataset’s features.

However, one of the main limitations of Mapper is that it

requires a specific choice of scales, in the definitions of the

bins, of their overlap, and also in the choice of the

underlying filter function. This limitation is typically dealt

with by swiping across a range of parameters and ensuring

that the result is stable, but there is no formal way to

choose the optimal parameter set. This problem is a com-

mon one for tools that are based on set theoretic concepts,

because in most applications the sets need to be defined,

and that entails a choice of parameters. Persistent homol-

ogy, however, turns this limitation upside down by

embedding this scaling problem in its definition.

7.2 Persistent Homology

Persistent homology studies the shape of data across a

range of scales [81]. It does this by studying the homology

of a point cloud, i.e., the patterns of holes in all dimensions

that define the multidimensional shape of a dataset. To do

this, one must produce a simplicial approximation to the

dataset. Specifically, a simplicial complex is a topological

space constructed by the simplices where simplices are

points, lines, triangles, and their n-dimensional counter-

parts. We can obtain a simplicial complex from a graph
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where simplices are nodes (in dimension zero), edges (di-

mension one), full triangles (dimension two), tetrahedron

(dimension three), and so on (Fig. 4). It needs to respect a

consistency rule requiring that the intersection of any pair

of simplices in a simplicial complex is another simplex in

the same simplicial complex. The generality of their defi-

nition allows simplicial complexes to describe relational

patterns that include interactions between any number of

elements, potentially also in different dimensions.

There are two kinds of inputs from where we are able to

construct a simplicial complex. First, simplicial complexes

can build from networks (e.g. real-world complex networks

[85, 86], spreading processes [87], and structural and

functional brain networks [73, 76]), via clique complexes

(Fig. 5). A clique complex from a network is formed by the

sets of vertices in the network’s cliques. A clique is a

subset of vertices such that they induce a complete sub-

graph. That is, every two distinct vertices in the clique are

adjacent. Converting a graph to a simplicial complex

reveals mesoscopic organizational structure that was not

appreciable at the network level, thanks to the non-locality

of the topological invariants of the simplicial complex.

Second, if a set of data points with metrical information

is given, it is possible to construct a simplicial complex by

leveraging the metrical structure via Cech or Rips-Vietoris

simplicial complexes [82], i.e., simplicial complexes

whose simplices are defined in terms of overlapping

neighborhoods of the data points. When the data comes

with a metric, the typical way of doing this is by con-

structing a Cech complex (Fig. 6): one considers the

neighbourhood of radius r of each point; whenever two

neighbourhoods overlap one adds the 1-simplex formed by

the corresponding two points, when three neighbourhoods

overlap one adds the corresponding 2-simplex, and so on.

The obvious problem here is that there is no a priori way to

choose the value of the radius r.

Persistent homology solves the problem of select a

radius r through focusing, by design, on the features that

Fig. 3 Pipeline of topological

simplification (the Mapper

algorithm)
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live across intervals of values and assigns an importance to

them proportional to the length of such intervals (Fig. 7a)

with the obvious implication that features surviving across

many scales are more meaningful than those that live only

for short intervals. This setup appears deceptively simple,

but it has been proven to be extremely powerful, versatile,

and robust to noise, both at the theoretical and applied level

[88]. Indeed, the range of applications has been steadily

growing over the recent few years, spanning very diverse

fields, e.g. viral evolution [72], brain imaging [73, 76],

sensor coverage [86], vision [89], population genetics [90],

and dynamical systems [91, 92]. A few applications also

show that using persistent homology information to

enhance classification or clustering schemes can indeed be

very powerful, and can highlight non-trivial groups that

were previously undiscernible.

The reason of the efficacy of homological information in

enhancing clustering scheme lies in the fact that topolog-

ical information is shaped by mesoscopic properties of the

data that require the coordination of a large number of

points and cannot be described only by local properties. In

this way homology captures hidden correlations in the data

that are hard to describe using standard statistical tools.

7.3 Topological Methods for Machine Learning

in Gait Analysis

Machine learning approaches involving dimensionality

reduction (see Sect. 5) and learning algorithms (see

Sect. 6) still remain largely unknown in running biome-

chanical research and their full potential has not been yet to

be realised. Regardless, TDA methods would largely ben-

efit running gait analysis and should also be investigated in

future studies. As one example, the analysis of running gait

data could involve the first TDA technique (Sect. 7.1) as

cluster analysis and/or feature selection while we can apply

the second TDA technique (Sect. 7.2) as feature extraction.

Thus, we propose that novel TDA methods can be used

either instead of or together with existing machine learning

methods.

For instance, applying TDA as a cluster analysis method

could overcome the aforementioned disadvantages of

techniques such as HCA which is not very robust to out-

liers, or the k-mean clustering method that requires the

number of clusters to be specified in advance. Furthermore,

in biomechanical gait analysis it is widely known that

variability of the data is very high which involves within-

trial, between-trial, intra-subject and inter-subject vari-

abilities, including several kinds of noise. Vardaxis et al.

[93] showed that the distinct groups of normal subjects

Fig. 4 Simplicial complex and 0-, 1-, and 2-dimensional simplices

Fig. 5 Clique complex where cliques of size one, two, three, and four

are shown as small red disks, black line segments, light blue triangles,

and dark blue tetrahedral, respectively

Fig. 6 Cech complex where 1-simplex and 2-simplices are shown as

red line and blue full triangles, respectively
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identified by HCA applied to 3D gait data remained

unchanged only up to the removal of three subjects. In

contrast, TDA methods describe the global topological

structure of the point cloud data rather than their local

geometric behavior, and are thereby robust to missing data

and small errors, making TDA a good candidate to cluster

running gait patterns with large volumes of sparse data.

Similar to other manifold learning algorithms [94], TDA

methods also allow the researcher to unfold and capture

non-linear structures that are not well described by linear

separation algorithms (e.g. the Swiss roll). Generally,

biomechanical gait variables interact with one another in a

complex non-linear fashion due to the intrinsic non-linear

dynamics of human movement. In addition, thanks to the

local nature of the clustering, TDA methods naturally

provide a separation of the global clustering problem into a

set of many smaller problems, which are immediately

amenable to parallelization. In this way, Mapper and other

related algorithms can address problems that utilize large,

high-dimensional data sets.

It is also possible to couple TDA with other machine

learning approaches to gain deeper insights into running

gait data. For example, the use of persistent homology as a

novel feature extraction method, combined with a classifier

(e.g. SVM), could create a pattern recognition system to

study the subtle changes or differences in gait patterns.

There are several techniques that could be applied to

extract meaningful features [e.g., Betti numbers and bar-

codes [Fig. 7b)] from gait data. For example, persistent

homology TDA techniques may be able to deal with

biomechanical data collected during walking or running,

which has a quasi-periodic temporal dependence. Using

techniques such as those proposed by Pokorny et al. [74],

researchers can enhance trajectory classification in a 3D

space with different obstructions by studying the relative

homology of the space once the starting and ending points

of the trajectories were identified. Specifically, the persis-

tent homology TDA techniques naturally describe periodic

or recurrent behaviours—as well as departures from

these—and are therefore suitable to extract robust

(a)

(b)

Fig. 7 a Cech complex where a fixed set of points (step 1) can be transformed into different Cech complexes based on a proximity parameter

r. b Barcode of H0 (the number of connected components) and H1 (the number of cycles) according to the evolution of proximity parameter r
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trajectories in high dimensional spaces, which can be then

directly interpreted as features of typical and atypical gait

datasets. Finally, large datasets can be effectively subdi-

vided and studied in parallel via chunk homology, which

has a cubic complexity in the number of chunks or the

maximal size of the chunks. The global homological

structure is then recovered easily by collating the results of

the mutually independent (in this case, acyclic) chunks

[95]. Hence, these techniques can be applied to data with

high-dimensionality, temporal dependence, high variabil-

ity, and nonlinear relationships, which are prominent

challenges in the analysis of gait data [41, 42].

8 Conclusions

In recent years, technological advances now provide

researchers with large amounts of data, which can be

explored for meaningful patterns. For instance, the 3D

GAIT system is an automated 3D biomechanical gait data

collection system wherein all data are transferred to a

central research database. While traditional data analytics

cannot handle these large volumes of data, various ‘‘big

data’’ statistical methods should be investigated and

developed. All of the methods discussed in this paper show

promise, provide inspiration for future work, and demon-

strate the potential of using data science methods in run-

ning gait biomechanics research.
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8. Söderkvist, I., & Wedin, P. A. (1993). Determining the move-

ments of the skeleton using well-configured markers. Journal of

Biomechanics, 26(12), 1473–1477.

9. Cole, G. K., Nigg, B. M., Ronsky, J. L., & Yeadon, M. R. (1993).

Application of the joint coordinate system to three-dimensional

joint attitude and movement representation: A standardization

proposal. Journal of Biomechanical Engineering, 115(4A),

344–349.

10. Osis, S. T., Hettinga, B. A., Leitch, J., & Ferber, R. (2014).

Predicting timing of foot strike during running, independent of

striking technique, using principal component analysis of joint

angles. Journal of Biomechanics, 47(11), 2786–2789.

11. Osis, S.T., Hettinga, B. A., & Ferber, R. (2015). Predicting timing

of foot strike for treadmill walking and running with a principal

component model of gait. In Proceedings of XXV Congress of the

International Society of Biomechanics.

12. Laney, D. (2001). 3D data management: Controlling data volume,

velocity, and variety. META Group. Retrived October 14, 2016,

from http://blogs.gartner.com/doug-laney/files/2012/01/ad949-

3D-Data-Management-Controlling-Data-Volume-Velocity-and-

Variety.pdf.

13. Phinyomark, A., Osis, S. T., Hettinga, B. A., Leigh, R., & Ferber,

R. (2015). Gender differences in gait kinematics in runners with

iliotibial band syndrome. Scandinavian Journal of Medicine and

Science in Sports, 25(6), 744–753.

14. Phinyomark, A., Osis, S. T., Hettinga, B. A., & Ferber, R. (2015).

Kinematic gait patterns in healthy runners: A hierarchical cluster

analysis. Journal of Biomechanics, 48(14), 3897–3904.

15. Eskofier, B. M., Federolf, P., Kugler, P. F., & Nigg, B. M. (2013).

Marker-based classification of young-elderly gait pattern differ-

ences via direct PCA feature extraction and SVMs. Computer

Methods in Biomechanics and Biomedical Engineering, 16(4),

435–442.

16. Maurer, C., Federolf, P., von Tscharner, V., Stirling, L., & Nigg,

B. M. (2012). Discrimination of gender-, speed-, and shoe-de-

pendent movement patterns in runners using full-body kinemat-

ics. Gait & Posture, 36(1), 40–45.

17. Maurer, C., von Tscharner, V., Samsom, M., Baltich, J., & Nigg,

B. M. (2013). Extraction of basic movement from whole-body

movement, based on gait variability. Physiological Reports, 1(3),

e00049.

18. Federolf, P., Tecante, K., & Nigg, B. (2012). A holistic approach

to study the temporal variability in gait. Gait & Posture, 45(7),

1127–1132.

19. Watari, R., Kobsar, D., Phinyomark, A., Osis, S. T., & Ferber, R.

(2016). Determination of patellofemoral pain sub-groups and

development of a method for predicting treatment outcome using

running gait kinematics. Clinical Biomechanics, 38, 13–21.

20. Kobsar, D., Osis, S. T., Hettinga, B. A., & Ferber, R. (2015). Gait

biomechanics and patient-reported function as predictors of

response to a hip strengthening exercise intervention in patients

with knee osteoarthritis. PLoS ONE, 10, e0139923.

Big Data in Gait Biomechanics 257

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf


21. Batista, G. E. A. P. A., & Monard, M. C. (2002). A study of k-

nearest neighbour as an imputation method. In A. Abraham, J.

Ruiz-Del-Solar, & M. Koppen (Eds.), Soft computing systems:

Design, management and applications (pp. 251–260). Amster-

dam: IOS Press.

22. Lai, D. T. H., Levinger, P., Begg, R. K., Gilleard, W. L., &

Palaniswami, M. (2009). Automatic recognition of gait patterns

exhibiting patellofemoral pain syndrome using a support vector

machine approach. IEEE Transactions on Information Technol-

ogy in Biomedicine, 13(5), 810–817.

23. Phinyomark, A., Osis, S. T., Kobsar, D., Hettinga, B. A., Leigh,

R., & Ferber, R. (2016). Biomechanical features of running gait

data associated with iliotibial band syndrome: discrete variables

versus principal component analysis. In E. Kyriacou, S. Chris-

tofides, C. S. Pattichis (Eds.), XIV Mediterranean Conference on

Medical and Biological Engineering and Computing 2016 (pp.

580–585). Springer.

24. Phinyomark, A., Osis, S. T., Hettinga, B. A., Kobsar, D., &

Ferber, R. (2015). Gender differences in gait kinematics for

patients with knee osteoarthritis. BMC Musculoskeletal Disor-

ders, 17, 157.

25. Nigg, B. M., Baltich, J., Maurer, C., & Federolf, P. (2012). Shoe

midsole hardness, sex and age effects on lower extremity kinematics

during running. Journal of Biomechanics, 45(9), 1692–1697.

26. Barrett, P. T., & Kline, P. (1981). The observation to variable

ratio in factor analysis. Personality Study and Group Behaviour,

1(1), 23–33.

27. Fukuchi, R. K., Eskofier, B. M., Duarte, M., & Ferber, R. (2011).

Support vector machines for detecting age-related changes in

running kinematics. Journal of Biomechanics, 44(3), 540–542.

28. Von Tscharner, V., Enders, H., & Maurer, C. (2013). Subspace

identification and classification of healthy human gait. PLoS

ONE, 8(7), e65063.

29. Ding, C., & Peng, H. (2005). Minimum redundancy feature

selection from microarray gene expression data. Journal of

Bioinformatics and Computational Biology, 3(2), 185–205.

30. Bus, S. A. (2003). Ground reaction forces and kinematics in

distance running in older-aged men. Medicine and Science in

Sports and Exercise, 35(7), 1167–1175.

31. Karamanidis, K., & Arampatzis, A. (2005). Mechanical and

morphological properties of different muscle-tendon units in the

lower extremity and running mechanics: Effect of aging and

physical activity. Journal of Experimental Biology, 208(20),

3907–3923.

32. Brach, J. S., McGurl, D., Wert, D., Vanswearingen, J. M., Perera,

S., Cham, R., et al. (2011). Validation of a measure of smooth-

ness of walking. Journals of Gerontology: Series A, 66(1),

136–141.

33. Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C.,

Lloyd-Smith, D. R., & Zumbo, B. D. (2002). A retrospective

case-control analysis of 2002 running injuries. British Journal of

Sports Medicine, 36(2), 95–101.

34. Srinivas, M., & Patnaik, L. M. (1994). Genetic algorithms: A

survey. Computer, 27(6), 17–26.

35. Dorigo, M. (1992). Optimization, Learning and Natural Algo-

rithms. PhD thesis, Politecnico di Milano, Italy.

36. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization.

In Proceedings of IEEE International Conference on Neural

Networks.

37. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new

heuristic optimization algorithm: Harmony search. Simulation,

76(2), 60–68.
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