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Abstract

Background: The integration of empirical data in computational frameworks designed to model the spread of
infectious diseases poses a number of challenges that are becoming more pressing with the increasing availability
of high-resolution information on human mobility and contacts. This deluge of data has the potential to
revolutionize the computational efforts aimed at simulating scenarios, designing containment strategies, and
evaluating outcomes. However, the integration of highly detailed data sources yields models that are less
transparent and general in their applicability. Hence, given a specific disease model, it is crucial to assess which
representations of the raw data work best to inform the model, striking a balance between simplicity and detail.

Methods: We consider high-resolution data on the face-to-face interactions of individuals in a pediatric hospital
ward, obtained by using wearable proximity sensors. We simulate the spread of a disease in this community by
using an SEIR model on top of different mathematical representations of the empirical contact patterns. At the
most detailed level, we take into account all contacts between individuals and their exact timing and order. Then,
we build a hierarchy of coarse-grained representations of the contact patterns that preserve only partially the
temporal and structural information available in the data. We compare the dynamics of the SEIR model across these
representations.

Results: We show that a contact matrix that only contains average contact durations between role classes fails to
reproduce the size of the epidemic obtained using the high-resolution contact data and also fails to identify the
most at-risk classes. We introduce a contact matrix of probability distributions that takes into account the
heterogeneity of contact durations between (and within) classes of individuals, and we show that, in the case study
presented, this representation yields a good approximation of the epidemic spreading properties obtained by using
the high-resolution data.

Conclusions: Our results mark a first step towards the definition of synopses of high-resolution dynamic contact
networks, providing a compact representation of contact patterns that can correctly inform computational models
designed to discover risk groups and evaluate containment policies. We show in a typical case of a structured
population that this novel kind of representation can preserve in simulation quantitative features of the epidemics
that are crucial for their study and management.
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Background
Computational models and multi-scale numerical simu-
lations represent essential tools in the understanding of
the epidemic spread of infections, in particular to study
scenarios, and to design, evaluate and compare contain-
ment strategies. The applicability of such computational
studies crucially depends on informing transmission
models with actual data. We are currently witnessing an
important evolution as more and more data on human
mobility and behavioral patterns become accessible
[1-9]. For instance, data on human travel patterns and
mobility have been fed into large-scale models of epi-
demic spread at regional or planetary scale, providing
important modeling and prediction tools [10-14].
When considering smaller scales, the knowledge of

contact patterns among individuals becomes relevant for
identifying transmission routes, recognizing specific
transmission mechanisms, and targeting groups of indi-
viduals at risk with appropriate prevention strategies or
interventions such as prophylaxis or vaccination [15].
Several properties of the contact patterns are known to
bear a strong influence on spreading patterns, such as
the topological structure of the contact network, the
presence of individuals with a particularly large number
of contacts, the frequency and duration of contacts, and
the existence of communities [16-24].
The simplest approach to the description of contact

patterns is the homogeneous mixing assumption, which
postulates that each individual has an equal probability
of having contacts with any other individual in the
population [25]. A widely used refinement of this ap-
proach consists in dividing individuals into classes (cor-
responding for instance to different age groups or to
different social activities), and defining a contact matrix
between classes in terms of the average number (or dur-
ation) of the contacts that individuals in one given class
have with individuals in another given class. These
matrices are constructed using data from questionnaires
or diaries, time-use data [23,26-31], and more recently
by sensing room co-presence and close-range proximity
between individuals [32,33].
The use of models with structured populations can

help to define more refined analytical approaches [34].
In addition, it allows to perform numerical simulations
of epidemic spread in synthetic structured populations
with fixed rates of contacts between individuals belong-
ing to different classes, given by the (possibly empirical)
contact matrix elements [10,12,35-37]. These simula-
tions can also be used to compare vaccination strategies
targeting specific groups and to estimate which strat-
egies are most effective [35-41]. The use of contact
matrices for modeling contact patterns relies on a set of
restricted homogeneous mixing assumptions within each
class and on the representativeness of the average
mixing behavior between classes. However, such an ap-
proach neglects the strong fluctuations that are usually
observed in the distributions of the numbers and dura-
tions of contacts between two individuals of given clas-
ses, which are often modeled with negative binomial
distributions [23,29,31,42,43].
Overall, in the context of a specific modeling problem,

little is known about the level of detail that should be in-
corporated in modeling contact patterns. Coarse repre-
sentations such as the homogeneous mixing assumption
leave out crucial elements, but are analytically tractable
and can provide a coarse understanding of epidemic
processes. More realistic approaches are however needed
when the aim is to predict with quantitative accuracy
the outcomes of specific scenarios, to target groups of
individuals who are most at risk, and to quantitatively
evaluate and rank interventions and containment strat-
egies according to their effectiveness. In these cases it is
crucial to achieve realistic simulations to estimate quan-
tities such as the extinction probability or the attack
rate. However, very detailed representations may critic-
ally lack transparency about the specific role of the many
modeling assumptions they incorporate, and might yield
unnecessarily fine-grained predictions. For instance, in
order to evaluate the relative efficacy of targeted vaccin-
ation of different groups of persons, we do not need to
know the risk of infection of each individual — it is suf-
ficient to estimate the average attack rate in each group.
As technological advances keep enhancing our ability

to gather high-resolution data on proximity and face-to
-face interactions [4-9] and to integrate such data in
computational models, the issue of understanding what
is the most adequate data representation becomes there-
fore crucial, and the answer may depend on the specific
epidemic process under study as well as on the specific
goals of the modeling approach. This points to general
problems for data-rich scenarios such as the ones involv-
ing wearable sensors in real-world settings: What is the
right amount of information about individual interactions
that is appropriate for a given modeling task, so that the
relevant information is retained but the model stays as
parsimonious as possible [44]? What are the most useful
synopses of high-resolution contact network data?
Several studies have started to tackle such issues

within the framework of the description of human inter-
actions as static or dynamic contact networks, in the
case of unstructured populations [22,24,45-48]. It is
known that the heterogeneity of contact durations is a
crucial element that needs to be taken into account. On
the other hand, in a particular case [48] it was shown
that the dynamics of an SEIR (Susceptible, Exposed, In-
fectious, Recovered) process over an aggregated network
that only takes into account daily contact durations
achieves a good approximation of the transmission
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dynamics over the full time-varying contact network
with a temporal resolution of the order of minutes.
To date, the more complex case of a structured popu-

lation has not been investigated under this perspective
of data summarization. Here we address this problem
motivated by the needs of applications and interventions
aimed at the containment of diseases, such as identifying
groups of individuals that need to be prioritized in
deploying containment strategies such as vaccination
and prophylaxis.
The aim of the present paper is therefore to under-

stand whether and how different representations of the
contact patterns within a structured population might
lead, in simulation, to different estimates for the out-
comes of an epidemic process and for the attack rates
within groups of individuals: How faithful to the high-
resolution empirical data are the summarized represen-
tations of contact patterns, in terms of the spreading
process they yield and of the risk groups they identify?
Given a specific epidemic process to be modeled, what is
the optimal tradeoff between the compactness of the
data representation and the amount of detail retained in
the model? The answer to these questions lies in design-
ing compact yet informative representations of contact
patterns that can be used to model epidemics in struc-
tured communities (e.g., the case of nosocomial infec-
tions in hospitals). In such contexts, the design and
evaluation of prevention measures or containment pol-
icies is naturally based on targeting specific classes of in-
dividuals. For example, it is possible to prioritize the
vaccination of a certain class of individuals (e.g., nurses
in a hospital [35]), whereas no simple policy can be
based on a list of specific individuals. Therefore, it is im-
portant to build data representations that yield accurate
results at the level of groups of individuals and that, at
the same time, can be generalized in order to support
generic conclusions on the relative efficacy of different
strategies, and in particular of strategies targeting only
high risk groups.
Here we put forward such a representation and we val-

idate its appropriateness and usefulness in a case study
of structured population: to this aim, we leverage a high-
resolution dataset on the face-to-face proximity of indi-
viduals in a hospital ward, collected by the SocioPatterns
collaboration by using wireless wearable sensors. The
population is structured in different classes that corres-
pond to different roles in the hospital ward. The col-
lected data, described in detail in Ref. [33], include the
detailed time-ordered sequence of individuals’ contacts
between all subject pairs.
We consider various representations of the hospital

ward data, corresponding to different types and degrees
of aggregation. At the most detailed level, the raw data
can be viewed as a dynamic contact network, where all
the available information on the interactions between
pairs of individuals (contact times and durations) is ex-
plicit. We then construct static networks that project
away the temporal structure of the contacts but retain
the identity of each individual and the structure of her
contact network. At a coarser level, we consider the cus-
tomary contact matrix representation of the data, which
aggregates along the class dimension: All individuals be-
longing to the same role class are grouped together, and
the contact rate between two individuals of given classes
is given by the corresponding element of the contact
matrix. This representation, by definition, discards many
heterogeneities of contact behavior at the individual level
as well as the heterogeneities among contacts. Between
the contact matrix view and the individual-based net-
work view, other intermediate representations are pos-
sible. Here we introduce a novel representation based on
a contact matrix of distributions, designed to retain the
heterogeneous properties of contact durations among
pairs of individuals belonging to given role classes.
We then use an SEIR process to model the spread of

an infectious disease in a structured hospital population
whose contact patterns are described by using all of the
above representations, computed from the raw proximity
data. We simulate the distribution of attack rates for the
various role classes and compare these outcomes against
individual-based simulations that take into account the
most detailed description of the empirical contacts. Our
results highlight similarities and differences in the dy-
namics obtained for various aggregation levels of the
contact pattern representation. In particular, they show
that coarse representations that do not take into account
the heterogeneity of contact durations, such as the usual
contact matrix, yield rather bad estimates for the global
attack rate. Such representations also lead to a wrong
classification of role classes in terms of their relative risk
and could therefore lead to incorrect prioritization for
interventions such as targeted vaccination or prophy-
laxis. The novel representation that we put forward is
shown to strike a promising balance between simplicity
and generalizability on the one hand, and on the other
hand the ability to yield accurate evaluations of risk and
a correct prioritization of groups of individuals in the
design of targeted measures.

Methods
Data
The dataset we use [33] describes the contacts of 119 in-
dividuals in a general pediatric ward of the Bambino
Gesù Children’s Hospital in Rome, Italy, over a period of
one week (9-16 November 2009). The ward under study
is located in the Department of Pediatrics and is physic-
ally separated from other wards and facilities of the Hos-
pital. It has 44 beds arranged in 22 rooms with 2 beds
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each and mostly admits children with acute diseases
who do not require intensive care or surgery. Admitted
patients are accompanied by one person (parent or
tutor) who spends the night in the same room. Contacts,
defined as close proximity interactions, were measured
by using wearable badges that engage in bidirectional
low-power radio communication [7,8] and can assess the
face-to-face proximity of two individuals.
The study was approved by the Ethical Committee of

the Bambino Gesù Hospital [33]. As described in [33],
during the data collection period all healthcare workers
(HCWs) on duty, patients, parents or tutors were invited
to participate in the measurements. HCWs participated in
several meetings to receive information about the study
and all procedures were approved by the Ethical Commit-
tee of the hospital. Only 5 HCWs, 1 patient and 1 parent
declined. Some proximity sensing badges assigned to pa-
tients, parents or tutors were not continuously detected
by the receiving infrastructure and were missing for more
than 25% of the time they were assigned to the individuals.
These badges were excluded from the dataset, after assess-
ment of the robustness of the data statistical properties
with respect to this filtering procedure (see [33] for de-
tails). Overall, the data describes the contacts of 119 indi-
viduals, among which more than 90% of the HCWs who
were on duty in the ward during the chosen week. These
119 participants were associated with the following role
classes: 37 patients (P), 20 physicians (D), 21 nurses (N),
10 ward assistants (A), i.e., health care workers in charge
of cleaning the ward and distributing the meals, and 31
caregivers (C), who comprise tutors and non-professional
visitors. As data was collected during the pandemic period
when several patients with H1N1 infection were hospital-
ized, HCWs applied standard operating procedures to pre-
vent transmission of infection including hand hygiene,
face mask, wearing gowns and gloves. Specific guidelines
are however permanently adopted in the study hospital to
prevent cross transmission of respiratory infections, so
that the contact patterns were not specifically altered dur-
ing the data collection period.

Empirical contact patterns
An analysis of the recorded contact patterns is described
in Ref. [33]. At the most detailed level the data provide
an explicit representation of the time-varying contact
network of individuals, resolved at the fastest available
temporal scale (20 seconds). As discussed in the Introduc-
tion, our aim here is to compare different numerical simu-
lations of the spread of an infectious disease, where each
simulation is constructed on top of a specific mathemat-
ical representation of contact patterns, and all these repre-
sentations are derived from the same empirical data,
summarized or modeled at different levels of detail (e.g.,
individual-based contact network vs contact matrices). In
the following we describe the contact pattern representa-
tions we will use.
The representation that most closely corresponds to

the raw empirical data, here forth named “DYN”, is the
time-varying individual-based contact network, where
for each pair of individuals the precise starting and end-
ing times of individual contact events are available with
the finest temporal resolution of 20 seconds. When
simulating a process, such as the spread of an infectious
disease, characterized by longer time scales than the
available interval of one week, we simply play back the
recorded contact history over and over. Whereas other
procedures are possible for artificially extending the time
span of the empirical data, it was shown in [48] that the
simple repetition procedure gives robust results.
The DYN representation is thus the one that contains

the most detailed information on the empirical contact
patterns, and therefore we will consider it as the refer-
ence against which all the other representations have to
be compared.
Starting from the dynamical contact network represen-

tation (DYN), different aggregation procedures are pos-
sible that retain only selected features of the contact
network while aggregating over the others. At the most
aggregated level we consider, we disregard the topology
of the empirical contact network as well as the contact
heterogeneities and assume that each individual is in
contact with all others for the same average time. We
refer to this very coarse representation as “FULL”, be-
cause its contact structure is a fully connected graph,
with homogeneous contact durations.
As pointed out above, several intermediate representa-

tions can be designed between the fine-grained DYN repre-
sentation and the coarse-grained FULL one. We define a
space of possible representations by considering two quali-
tative features: the amount of information on the network
structure, and the amount of information on contacts
(times, durations, etc.). Figure 1 and Table 1 illustrate where
the representations we study, described in the rest of this
section, lie with respect to one another, and which proper-
ties of the empirical data they preserve.
The first two representations we consider are designed

to preserve the empirical structure of the contact net-
work (who has met whom). The first representation
(HET in Figure 1) is a static and weighted contact net-
work: individuals who have been in contact during the
data collection are linked by an edge that is weighted by
the total time they have spent in face-to-face proximity.
All the dynamical contact events are thus summarized
into a single contact graph that includes information on
the observed contacts between individuals (who has met
whom) and on the total (heterogeneous) duration of
these contacts, i.e., how long A and B have been in con-
tact. HET disregards information on the time of
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Figure 1 Schematic view of the considered contact patterns
representations according to the two qualitative features of
network detail and amount of information on contacts.

Machens et al. BMC Infectious Diseases 2013, 13:185 Page 5 of 15
http://www.biomedcentral.com/1471-2334/13/185
occurrence and on the temporal ordering of contacts. A
less informative static network representation can be
obtained from HET by removing the weight heterogen-
eity: this homogeneous network (HOM) is constructed
by retaining the topology of the HET network, while giv-
ing all links the same weight, set as the average total
duration of contacts between two individuals that have
met at least once.
The DYN, HET and HOM representations of the raw

data describing the contacts between the attendees of a
conference were compared in Ref. [48]. In the present
case of a hospital ward, however, role classes are present,
and the structure of the contact network is known to be
very different [33] because of the role structure. It is
therefore interesting to first verify the validity of the re-
sults of Ref. [48] in the case of a structured population.
The role structure of a hospital ward naturally lends it-

self to the definition of contact matrices that encode in a
very compact way the class heterogeneity of contact pat-
terns. Rows and columns of a contact matrix correspond
to role classes. The matrix entry for classes X and Y gives
the average contact time between any two members of
those respective classes. The contact matrix description is
Table 1 Summary of the properties of empirical contacts that
by the contact patterns representations investigated here

DYN HET

Temporal ordering of contacts

Individual edge weights X

Network topology X

Number of edges between different class pairs X

Total contact time between different class pairs X

Distribution of edge weights within each class pair X
not individual-based, hence in order to make contact with
the individual-based representations introduced above, as
well as with the empirical data, we define a network repre-
sentation of the contact matrix (CM) as follows. We build
a complete contact graph where each pair of individuals
(x,y), with x in class X and y in class Y, is linked by an edge
of weight wXY that depends only on the respective classes
of the individuals. We set wXY =WXY/(NXNY), where NX

is the number of individuals in class X, NY the number of
individuals in class Y, and WXY is the total time spent in
contact by any individual of class X with any individual of
class Y. In the case X = Y, we set wXX =WXX/(NX(NX-1)/
2)), where the denominator is the number of within-class
edges. Similarly to the FULL representation, the CM rep-
resentation does not preserve the topology of the empir-
ical contact network, but the more coarse-grained contact
structure between classes of individuals is retained by as-
sociating pairs of individuals with weights that depend on
their classes.
As already mentioned above, it is known [33] that the

distribution of cumulative contact durations between
pairs of individuals belonging to given categories dis-
plays large heterogeneities. In fact, as reported in other
studies [23,29,31,42,43], such distributions can often be
modeled as negative binomial distributions, which can
account for the broad fluctuations of contact durations
as well as for the comparatively high fraction of missing
links across the chosen classes. In order to account for
these heterogeneities, we define a new representation
based on a contact matrix of distributions. The matrix is
defined so that the entry for role classes X and Y con-
sists of the parameters of the negative binomial distribu-
tion that fits the empirical distribution of contact
durations between all pairs of individuals x in class X
and y in class Y.
Similarly to the customary contact matrices, the con-

tact matrix of distributions is not an individual-based
representation. Hence, in analogy to what we have done
above, we start from the Contact Matrix of Distributions
and define a corresponding network representation
(“CMD”, in the following): we build a complete contact
graph, where each pair of individuals (x,y), with x in class
are preserved (“X” marks) or not preserved (empty cells)

HOM CM CMD CMB FULL

X

X X X

X X X

X
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X and y in class Y, is linked by an edge whose weight wxy

is a random variable obtained by sampling the negative
binomial distribution with the parameters specified by
the (X,Y) entry of the contact matrix of distributions. A
weight wxy = 0 indicates that there is no link between indi-
viduals x and y. We remark that the detailed structure of
the empirical contact network is not retained in this repre-
sentation, but that the average number of links with non-
zero weight between each pair of classes is preserved.
Finally, we also report on an intermediate contact

matrix representation designed to capture the link dens-
ity and the average weights of the contact sub-network
connecting classes X and Y, without taking into account
the corresponding variance of edge weights. This is built
as a contact matrix of bimodal distributions (CMB, “B”
for “bimodal”) that are used in place of the negative bi-
nomial distributions. As in the CMD case, the matrix is
defined so that the entry for role classes X and Y con-
sists of the parameters of a bimodal distribution that
summarizes the empirical contacts between all pairs of
individuals x in class X and y in class Y. Specifically, let
us denote by EXY the number of observed edges between
individuals of classes X and Y, and by WXY the total time
spent in contact by any individual of class X with any in-
dividual of class Y. The (X,Y) entry is a bimodal distribu-
tion that assumes the value WXY/EXY (i.e., the average
observed weights between classes X and Y) with prob-
ability EXY/(NXNY), and the value 0 with probability
1- EXY /(NXNY). On building a network representation
from the matrix, for each pair of individuals (x,y), with x
in class X and y in class Y, we accordingly set wxy =WXY/
EXY with probability EXY/(NXNY), and wxy = 0 with prob-
ability 1- EXY /(NXNY). This representation is discussed in
the Additional file 1.

Infectious disease model
To simulate the spread of an epidemic we use an SEIR
model without births, deaths or introductions of individ-
uals. In this model, individuals can be in one of 4 dis-
tinct states: susceptible (S), exposed (E), infectious (I) or
recovered (R). Susceptible individuals can become ex-
posed with a given rate β, when they are in contact with
infectious individuals. Exposed individuals do not trans-
mit the disease through contacts with others, but be-
come infectious with a rate σ, where 1/σ is the average
duration of the latent period of the disease. Infectious
individuals can transmit the disease through contacts
with susceptible ones. Finally, infectious individuals be-
come recovered with rate v and acquire permanent im-
munity to the disease. The initial conditions we use
correspond to a population of susceptible individuals
and a single infectious individual chosen at random.
The transitions from the exposed to the infectious

state and from the infectious to the recovered state do
not depend on the contact behavior of each individual.
On the other hand, the probability that an infectious in-
dividual transmits the disease to a susceptible one does
depend on the duration of their contacts. In order to
compare the simulated spreading dynamics of an epi-
demic for different representations of the contact pat-
terns we need to adequately define the rate of infection β
for an infectious-susceptible pair, so that in all cases we
have the same average infection probability. In particular,
care must be taken in comparing time-varying network
representations with static network representations such
as HOM or HET. The corresponding procedure is detailed
in [48] and in the Supporting Text (Additional file 1).
We consider two different scenarios for the simulation

of epidemic spread: in the first scenario, the latent
period is set to 2 days and the average infectious period
is 1 day, whereas in the second scenario we halve these
intervals in order to better probe the interplay with the
fast temporal scale of human contacts. The parameters
we use are:

(i). scenario 1: 1/σ = 1 day, 1/ν = 2 days and β = 6.9 10-4

s-1(short latent and infectious periods)
(ii). scenario 2: 1/σ = 0.5 day, 1/ν = 1 day and β = 2.8 10-3

s-1 (very short latent and infectious periods).

For each scenario and each data representation (DYN,
HOM, HET), we performed 16,000 simulation runs of
the epidemic spread. In the CMD and CMB cases we
also performed 16,000 runs, obtained by generating
1,600 different contact network samples from the fitted
contact matrices of distributions, and by simulating for
each of them 10 realizations of the epidemic spread.
In the following we will keep the above “microscopic”

epidemiological parameters fixed, and we will simulate
an SEIR model over different representations of contact
patterns. An alternative approach to carry out this com-
parison consists in tuning the model parameters so that
the spread on the different contact pattern representa-
tions leads to the same basic reproductive number R0.
This procedure is considered in the Additional file 1 and
yields results that are similar to the ones reported below.

Analysis
The empirical contact data are analyzed and character-
ized in Ref. [33]. In order for the present paper to be
self-contained, we report here the contact matrix mea-
sured in the hospital ward as well as the newly intro-
duced contact matrix of distributions (CMD).
The simulated properties of epidemic spread, based on

different contact pattern representations, are quantified
and compared by means of several indicators that we
compute over an ensemble of stochastic realizations of
the epidemic process. We focus in particular on the



Table 2 Contact matrix between the different roles
(A: assistants; D: physicians; N: nurses; P: patients;
C: caregivers)

A D N P C

A 298 1.16 24.7 0.95 1.92

D 1.16 20.8 3.99 0.95 1.20

N 24.7 3.99 47.3 2.32 2.57

P 0.95 0.95 2.32 1.27 46.9

C 1.92 1.20 2.57 46.9 1.80

The number at row X and column Y gives the average over all pairs of
individuals x in X and y in Y of the average daily time, in seconds, that x and y
have spent in face-to-face proximity.
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number of recovered individuals at the end of the
spreading process: its distribution provides important in-
formation on the expected magnitude of the epidemics
and can hence be used to evaluate the effectiveness of
interventions. We study the impact on this distribution
of the choice of the initial seed (initial infectious individ-
ual) and compute the distributions of attack rates for
each role class, as such measures can be used to design
and evaluate containment policies targeting specific roles
or groups of individuals. Finally, we compute the extinc-
tion probability of the epidemics, as well as the fraction
of stochastic realizations that yield a global attack rate
lower than 10%.
For completeness, in the Additional file 1 we also consider

the peak time and the duration of the epidemic. We report
as well results on the expected number of secondary infec-
tions from an initially infected individual in a completely
susceptible host population (i.e., the basic reproduction
number [25]).
In all cases, the results of simulations are compared with

the spread simulated on the DYN representation, i.e., the
representation that incorporates the most detailed infor-
mation on the precise timing and duration of contacts.
For our purposes, the faithfulness of a data representation
is measured by how close the outcomes of the epidemics
spread based on that representation are to those of the
simulations based on the DYN representation.

Results
The dataset we use provides information on approximately
16,000 contact events, recorded during one week, among
119 individuals: 37 patients (31.1% of the total number of
individuals), 31 caregivers (26.1%), 20 physicians (16.8%), 21
nurses (17.6%), and 10 ward assistants (8.4%).
Table 2 reports the contact matrix defined on role classes:

the element at row X and column Y is the average over all
pairs of individuals x in X and y in Y of the total time that
x has spent in contact with y during the measurement
week, normalized to obtain daily contact durations.
Table 3 reports the parameters of the contact matrix

of distributions introduced above. As shown in the
Additional file 1, we fit a negative binomial distribution to
each empirical distribution of cumulated contact dura-
tions between members of classes X and Y and set the
(X,Y) entry of the matrix to the values of the two fitted
parameters. The negative binomial form allows the vari-
ance of the distribution to be much larger than its aver-
age, thus capturing in a simple way the breadth of the
empirical distribution. We remark that no zero-boosting
of the negative binomial distributions was necessary in
order to reproduce the fraction of missing links from the
members of class X and class Y. In other words, the frac-
tion of pairs of individuals x in X and y in Y for which
no contact was recorded (cumulated contact durations
equal to 0) is naturally reproduced by the simple form of
the negative binomial.
In the following we systematically discuss the results

corresponding to the second set of parameter values for
the SEIR model (very short latent and infectious periods)
and, when appropriate, point to differences with the re-
sults from the first parameter set, which are reported in
the Additional file 1. Moreover, since the FULL case cor-
responds to a very crude assumption of global homoge-
neous mixing that yields a strong overestimation of the
epidemic size, we include the corresponding results in
the Additional file 1 only.
Figure 2 and Table 4 summarize the distributions of

the final number of cases for the various contact pattern
representations.
When the epidemic reaches more than 10% of the

population, the distributions of its final size, shown in
Figure 2A, can be approximately grouped in two classes.
The distributions for the DYN, HET and CMD cases
overlap (and they are also very similar to one another
for the other parameter set, see Additional file 1). Con-
versely, the distributions for the HOM and CM cases
display a large overestimation of the final epidemic size,
with the CM case yielding a higher number of cases than
the HOM one.
The probability of extinction and the fraction of sto-

chastic runs that result in an attack rate lower than 10%
(Table 4) are much smaller in the HOM and CM cases.
The HET and CMD cases are comparable with one an-
other and both are still lower than the DYN case, but
closer to it (remember that DYN is the most informative
representation of all). The difference between the DYN
and the HET/CMD cases is smaller for the other param-
eter set (see Additional file 1), while even in that case
HOM and CM lead to a strong underestimation of the
extinction probability and of the fraction of runs with an
attack rate lower than 10%. Spreading simulations based
on the CMB representation (see Additional file 1) have an
intermediate performance but still provide a rather bad
approximation of the spreading patterns obtained from
the heterogeneous contact network (HET) and from the



Table 3 Negative binomial fit parameters m and r as provided by the R’s “fitdistr” function (see Additional file 1)

m parameter A D N P C

A 300(60) 1.2(0.2) 25(3) 0.95(0.16) 2.0(0.3)

D 1.2(0.2) 21(5) 4.0(0.6) 0.95(0.17) 1.2(0.2)

N 25(3) 4.0(0.6) 47(5) 2.3(0.4) 2.6(0.4)

P 0.95(0.16) 0.95(0.17) 2.3(0.4) 1.3(0.7) 47(16)

C 2.0(0.3) 1.2(0.2) 2.6(0.4) 47(16) 1.8(0.9)

r parameter A D N P C

A 0.615(0.014) 0.195(0.002) 0.404(0.0018) 0.136(0.0007) 0.215(0.0013)

D 0.195(0.002) 0.112(2.10-4) 0.1278(2.10-4) 0.0482(5.10-5) 0.0602(8.10-5)

N 0.404(0.0018) 0.1278(2.10-4) 0.3696(0.0013) 0.05652(4.10-5) 0.0845(9.10-5)

P 0.136(7.10-4) 0.0482(5.10-5) 0.0565(4.10-5) 0.00489(1.8.10-6) 0.00718(9.10-7)

C 0.215(0.0013) 0.0602(8.10-5) 0.0845(9.10-5) 0.00718(9.10-7) 0.009(6. 10-6)

The values at row X and column Y give the parameters obtained when fitting the empirical distribution of cumulated contact times between individuals of classes
X and Y. The parameter m corresponds to the average of the fitted distribution, while its variance is given by m+m2/r. The numbers in parenthesis are the
standard errors as given by the “fitdistr” function.
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CMD representation, which do include more information
about the statistical heterogeneity of contact durations.
Table 4 also shows that the role class of the seed indi-

vidual strongly influences the probability of extinction
and of obtaining an attack rate lower than 10%. For
larger epidemics, however, the choice of the seed does
not have a strong impact on the final epidemic size, as
seen in Figure 2B. For all contact representations, epi-
demics starting from a ward assistant are the most likely
to spread. On the other hand, epidemics starting from a
patient, a caregiver or a physician have a systematically
larger probability of affecting only a small fraction of
the population, except for the CM case in which this
Figure 2 Distributions of the final number of cases. A) Distribution of t
representations, averaged over all seeds, with the parameters 1/σ = 0.5 day
the final number of cases for the various contact patterns representations,
seed, for 1/σ = 0.5 days, 1/ν = 1 day and β = 2.8 10-3 s-1. Only epidemics wit
top of the rectangular boxes correspond to the 25th and 75th quantiles of
indicate the 5th and 95th percentiles.
probability is strongly underestimated and comparable
to the case in which the seed is a nurse.
Figure 3 shows the distribution of the fraction of indi-

viduals of each role class reached by the epidemic in the
various scenarios. The DYN, HET and CMD representa-
tions give very similar results for both sets of parameter
values: assistants and nurses are particularly affected,
while doctors, patients and caregivers have smaller at-
tack rates. On the other hand, for the HOM and CM
representations the distributions are very different, with
a strong global overestimation of the attack rates in
every class and an incorrect ranking of the risk probabil-
ities for the various role classes. In particular, in the CM
he final number of cases for the various contact pattern
s, 1/ν = 1 day and β = 2.8 10-3 s-1. B) Boxplots giving the distribution of
averaged over all seeds (“all”) and as a function of the class of the
h a final attack rate larger than 10% are considered. The bottom and
the distribution, the horizontal lines to the median, and the whiskers



Table 4 Extinction probability and fractions of runs leading to an attack rate (AR) lower than 10%, for the various
contact patterns representations and as a function of the role class of the seed

Seed
class

Number
of runs

DYN HET HOM CM CMD

Ext. Prob; AR <10% Ext. Prob; AR <10% Ext. Prob; AR <10% Ext. Prob; AR <10% Ext. Prob; AR <10%

All 16000 0.62 0.81 0.35 0.63 0.28 0.32 0.21 0.27 0.37 0.59

Assistants 1344 0.44 0.51 0.13 0.16 0.10 0.12 0.10 0.12 0.11 0.14

Doctors 2690 0.70 0.84 0.32 0.64 0.27 0.30 0.40 0.55 0.42 0.66

Nurses 2823 0.51 0.64 0.26 0.33 0.11 0.13 0.20 0.26 0.21 0.30

Patients 4975 0.68 0.90 0.40 0.79 0.39 0.44 0.18 0.23 0.47 0.74

Care-givers 4168 0.62 0.89 0.31 0.77 0.32 0.37 0.16 0.20 0.42 0.72

Parameter values are: 1/σ = 0.5 days, 1/ν = 1 day, and β = 2.8 10-3 s-1.
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case the attack rate for patients and caregivers is as high
as that for nurses and much higher than the one for doc-
tors, in contrast to the reference case of the DYN
representation.
Finally, Figure 4 and Table 5 report the temporal evolu-

tion of the number of infectious and recovered individuals
for the various contact pattern representations. The curves
show the simulated values averaged over the stochastic re-
alizations that result in an attack rate higher than 10%.
The epidemic peak is higher for the HOM and CM cases
and very similar for the DYN, HET and CMD representa-
tions. Consistently with the findings of Ref. [48], instead,
the time of the epidemic peak only slightly depends on the
specific representation (see Additional file 1).
The above comparison assumes that the epidemic pa-

rameters of the SEIR model are known and that their
values are characteristic of the “microscopic” dynamics
of the infectious disease, at the level of individual face-to-
face contacts. As discussed in the Methods section, an
alternative approach to carry out this comparison is to
tune the model parameters for each case (contact pattern
representation) so that all cases yield, in simulation, the
same average number of secondary infections from an
initially infected individual. The above comparison can
then be repeated. In the Additional file 1 we show that
the results reported above stay qualitatively similar.

Discussion
We have introduced and validated in a case study a
novel way of summarizing and using in simulation high-
resolution contact data that describe the interactions be-
tween individuals in a structured population. We based
our work on a high-resolution time-resolved dataset on
the face-to-face contacts of individuals in a hospital
ward. We have defined several representations of the
contact data that correspond to different levels of aggrega-
tion, from the high-resolution dynamical information on
all individual contacts (DYN), passing through several
intermediate representation that include individual-based
static networks (HOM and HET) and contact matrices
(CM, CMB and CMD), to the coarse homogeneous
mixing description (FULL). In particular, we have defined
a new representation in terms of a contact matrix of nega-
tive binomial distributions (CMD) that has the simplicity
of a contact matrix formulation but takes into account the
heterogeneity of contact durations between individuals.
To compare these representations and assess their

ability to correctly inform public health policies, such as
targeted vaccination strategies, we used each of the rep-
resentations to simulate the spread of an infectious dis-
ease, modeled by an SEIR model, and we compared the
results with the outcome of simulations based on the
most detailed representation (DYN), which we regard as
a gold standard.
The possibility to use a certain data representation de-

pends on the data at hand, and each representation has
advantages and limitations. In particular, both dynamical
and heterogeneous network representations (DYN and
HET, respectively) rely on a rather large amount of in-
formation on contact patterns. Although emerging per-
vasive technologies allow to gather such information in
diverse contexts [4,5,7,8], the data currently available re-
main scarce and there are no standard modeling proce-
dures to generalize contact measurements concerning a
specific population during a specific period to different
periods or to larger populations. In this respect, contact
matrix representations are very appealing in the case
of structured populations. This is precisely the case of
the data used here, in which individuals are grouped
according to their known role in the hospital ward. The
usual contact matrix representation gives, for each pair
of individuals, an average contact rate that only depends
on the respective roles of those individuals. Therefore, it
can be computed for one studied population and easily
generalized to larger ones (under the condition that the
set of roles stays similar). However, the customary con-
tact matrix representation suffers from an important
limitation: it only retains information on the average
contact durations of different role pairs, discarding all
the heterogeneities that are known to exist in the



Figure 3 Simulation results for the different classes of individuals. A-E) Distributions of the fraction of individuals of each class reached by
the spread, for the various contact pattern representations. F) Boxplots (boxes defined as in Figure 3) showing these distributions when the
global attack rate is larger than 10%. Here 1/σ = 0.5 days, 1/ν = 1 day and β = 2.8 10-3 s-1.
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contact properties of individuals that belong to given
role classes [33].
These considerations have prompted us to move beyond

the customary contact matrix representation, in particular
to take into account three important features of the empir-
ical data: 1) cumulative contact durations are known to
display important temporal and role-related heterogene-
ities, 2) empirical contact networks are sparse, and 3) the
density of links in the sub-networks restricted to given
role pairs strongly depends on the specific role pair [33].
We have therefore introduced a novel data representation
based on a matrix of contact duration distributions. For



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Temporal evolution of the fraction of infectious (panels A, C, E, G, I) and recovered (panels B, D, F, H, J) individuals, for the
various contact pattern representations, for the second set of parameter values (1/σ = 0.5 days, 1/ν = 1 day and β = 2.8 10-3 s-1). Only
runs with attack rate (AR) larger than 10% are taken into account. Bold lines represent the average values and thinner lines represent the
standard deviation of the number of infectious and recovered individuals.
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each role pair, we have fitted the distribution of the mea-
sured cumulative contact durations using a negative bino-
mial distribution. Interestingly, no zero-boosting was
needed to reproduce the fraction of links with zero weights,
i.e., the sparseness of the contact sub-networks that relate
one role class to another. This distributional representation
thus aggregates the individuals into role classes, but takes
into account the contact heterogeneities and the sparseness
of the contact network. At the same time, it retains the sim-
plicity and versatility of the usual contact matrix represen-
tation, as it can be easily used to construct the contact
patterns for a different or larger population.
We validated the usefulness of the proposed contact

matrix representation using data from a real-world en-
vironment, namely a high-resolution record of the con-
tacts within the structured population of a hospital
ward. We described these high-resolution contact pat-
terns using both the standard contact matrix representa-
tion and the representation we introduced here. We
then used the two representation to simulate the epi-
demic spread within the hospital community. Each rep-
resentation was evaluated by comparing the final size of
the epidemics, the impact of the seed role class, and the
final attack rates in each role class against simulations
based on the much richer network-based representations
(HET and DYN), which retain several heterogeneities
and correlations of the empirical dataset. Our results
show that the usual contact matrix representation leads to
an overall strong overestimation of the outbreak probabil-
ity and of the attack rate. Moreover, the relative risks of in-
dividuals belonging to different classes are not correctly
estimated from the simulations performed with the usual
contact matrix. On the other hand, the contact matrix
of distributions (CMD) affords a very good qualitative
and quantitative agreement with the spreading patterns
obtained with the heterogeneous network representation
Table 5 Summary of the average properties of the spread
with AR > 10%, for 1/σ = 0.5 days, 1/ν = 1 day and β = 2.8
10-3 s-1

Contact pattern Final size Peak time End time

DYN 45(13) 4.4(2.2) 10.5(3.0)

HET 57(9) 4.2(1.8) 10.6(2.6)

HOM 99(5) 3.2(0.9) 9.1(1.7)

CM 111(4) 4.2(1.3) 10.8(2.2)

CMD 62(13) 4.8(2.2) 11.8(3.1)

The values in parenthesis provide the standard deviations.
(HET), even though the CMD representation contains
significantly less information on the contact network
structure than HET (see Table 1). The agreement is signifi-
cantly better for the CMD representation than for CMB,
as CMD better takes into account the heterogeneity of
contact durations. The CMD representation, therefore,
provides an important improvement with respect to the
usual contact matrix description, as it allows to correctly
rank the groups of individuals according to their risk of
being infected and therefore to correctly inform policies
based on targeted vaccination of role classes.
We also note that the spreading dynamics over the

(static) network representation with heterogeneous
weights (HET) yields here a smaller probability of extinc-
tion than observed for the full dynamical contact data
(DYN). When restricting the comparison to outbreaks
with final attack rates higher than 10%, a small but sys-
tematic difference in the number of observed cases is ob-
served, while similar timings are obtained. These results
are somewhat different from the ones obtained in Ref [48]
for the case of contacts at a conference. This difference
might stem from various causes: first, conference at-
tendees mix more than individuals in a hospital and the
structure of the corresponding contact network is thus dif-
ferent from the hospital case [33]. Moreover, the present
hospital dataset is longer than the 2-days dataset used in
Ref [48], hence dynamical effects at multiple timescales
may play a stronger role. The difference between the sim-
ulations performed on the HET and DYN representations
are larger for faster propagations, consistently with the re-
sults of Ref. [49], according to which a very fast (determin-
istic) spreading phenomenon can result in very different
patterns on static and dynamic network representations.
In both cases (HET and DYN), the role class of the ini-

tial seed has a strong impact on the extinction probability
and on the probability of observing a large outbreak: if the
seed is a ward assistant or a nurse, the probability of a
large outbreak is much larger. In addition, assistants and
nurses have an overall larger risk compared to the other
role classes. These results are consistent with literature
that highlights the crucial importance of prioritizing
nurses for local infection control interventions [35].
In our analysis we have only considered two extreme

cases of temporal aggregation of the data. The DYN rep-
resentation retains the full temporal information, i.e., the
precise starting and ending time of each contact event.
Conversely, the static network and contact matrix repre-
sentations aggregate the contact behavior of individuals
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over a whole week. It is clearly possible to consider
intermediate temporal aggregation levels that include
some information on the activity schedules, for instance
at the daily scale. We have thus built daily contact net-
works, as well as daily contact matrices and daily contact
matrices of distributions: these representations take into
account the fact that not all individuals are present every
day, and that the contact patterns can vary from one day
to the next. The results of SEIR spreading simulations,
presented in the Additional file 1, are interestingly very
close to the ones of representations aggregated at a weekly
timescale, showing that weekly averaged data contain sub-
stantially enough information to correctly evaluate mitiga-
tion and containment measures.
We finally note that the study of time-resolved networks

is still in its infancy [50]. Recent studies [48,49,51-53] have
investigated models of epidemic spread on temporal net-
works and studied the role of the networks’ temporal prop-
erties, sometimes with contrasting results, as discussed in
Ref. [54]. The comparison is however difficult, because dif-
ferent datasets, different epidemic models, and different pa-
rameters values have been used [54]. In particular, many
studies have focused on processes that unfold rather fast
with respect to the temporal scale of the network dynamics,
so that the precise ordering of individual interactions is im-
portant, as well as the distribution of time intervals between
contacts. In our case, conversely, the timescales of the
spreading process and of the network dynamics are well
separated, which explains why static representations yield
results that are similar to the time-resolved representations
like DYN. More systematic investigations on the interplay
between the involved timescales, as well as studies using
different epidemic models on the same datasets would be
of strong interest for future research [54].

Conclusions
We have shown in a case study that the usual contact
matrix representation of empirical contact patterns in a
structured population can fail to correctly inform models of
epidemic spreading and of the ensuing relative risk for
groups. We have introduced an alternative representation
of the empirical contact data based on a contact matrix of
negative binomial distributions. This representation affords
a tradeoff between too coarse and too detailed representa-
tions of the data. We have shown in a specific case that it
allows to correctly model important features of epidemic
spread, and in particular to estimate the relative risk of indi-
viduals in different role classes, while simultaneously
maintaining a compact form that retains very little informa-
tion from the time-varying contact network it summarizes.
This is a step in the direction pointed by Ref. [44], as this
representation provides a synopsis that combines simplicity,
compactness of representation and modeling power, all of
which are essential features for guiding decision making in
public health contexts. These results provide insight about
the level of detail that should be sought when performing
measurement campaigns aimed at informing epidemic
models and at understanding the efficacy of interventions.
On the one hand, contact matrices containing only average
quantities are not refined enough, and it is crucial to meas-
ure the heterogeneities of contact durations between indi-
viduals of given classes; on the other hand, the exact
knowledge of who has been in contact with whom, over
time, and of the precise structure of the contact network
yields a description that is unnecessarily detailed and com-
plex to manage for most practical cases.
Some limitations of the present study need to be

discussed explicitly. First of all, the study was performed
based on data for a relatively small population (nearly one
hundred individuals), taken at one point in time, and con-
sidered diseases with short latent periods. On studying the
DYN case, the long but limited temporal span of the data
set required the generation of artificially extended activity
timelines, obtained by repeating the empirical timeline.
The static representations we considered do not take into
account behavioral variations across days of the week, nor
the heterogeneous amount of time spent by the various in-
dividuals in the ward. It is for instance possible that larger
differences between the results of the simulations on the
CMD and HET representations would be observed in lar-
ger populations because of specific network effects.
These limitations point to natural ways of extending the

work reported here. In order to validate our approach in
other contexts and for different categories of diseases, e.g.
with longer latent periods, it is crucially important to
measure high-resolution contact patterns in different
structured populations, in larger populations, and over
longer time scales. Moreover it would be important to
check the robustness of the fitting procedure based on
negative binomial distributions and to test other possible
functional forms that can fit the empirical distribution.
Other perspectives include testing data-driven contain-

ment strategies based on the various contact patterns
representations and understanding how the evaluation
of their performance depends on the representation, in
particular for the case of the novel representation de-
fined by the contact matrix of distributions we intro-
duced here. A particularly interesting validation would
be to extract a contact matrix of distributions from one
set of data, e.g. in a hospital, to use it to design efficient
containment strategies, and then to apply these strat-
egies to a simulated epidemic on another dataset for a
similar environment, for instance another hospital.
Additional file

Additional file 1: Supporting Text.
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