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In large photosynthetic chromophore-protein complexes not all chromophores are coupled strongly,
and thus the situation is well described by formation of delocalized states in certain domains of
strongly coupled chromophores. In order to describe excitation energy transfer among different do-
mains without performing extensive numerical calculations, one of the most popular techniques is a
generalization of Förster theory to multichromophoric aggregates (generalized Förster theory) pro-
posed by Sumi [J. Phys. Chem. B 103, 252 (1999)] and Scholes and Fleming [J. Phys. Chem. B 104,
1854 (2000)]. The aim of this paper is twofold. In the first place, by means of analytic continua-
tion and a time convolutionless quantum master equation approach, a theory of emission lineshape
of multichromophoric systems or molecular aggregates is proposed. In the second place, a compre-
hensive framework that allows for a clear, compact, and effective study of the multichromophoric
approach in the full general version proposed by Jang, Newton, and Silbey [Phys. Rev. Lett. 92,
218301 (2004)] is developed. We apply the present theory to simple paradigmatic systems and we
show on one hand the effectiveness of time-convolutionless techniques in deriving lineshape op-
erators and on the other hand we show how the multichromophoric approach can give significant
improvements in the determination of energy transfer rates in particular when the systems under
study are not the purely Förster regime. The presented scheme allows for an effective implementa-
tion of the multichromophoric Förster approach which may be of use for simulating energy transfer
dynamics in large photosynthetic aggregates, for which massive computational resources are usually
required. Furthermore, our method allows for a systematic comparison of multichromophoric Föster
and generalized Förster theories and for a clear understanding of their respective limits of validity.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803694]

I. INTRODUCTION

The refinement of laser spectroscopic techniques in past
few decades has dramatically improved the possibility of
studying those systems that are at the basis of the presence of
life on Earth.1 Indeed, the main photosynthetic chromophore-
protein complexes have been in past decades structurally char-
acterized at the molecular and atomic level and their abil-
ity of realizing almost perfect energy transfer processes is
currently fostering huge research efforts aimed at unveiling
the fundamental mechanisms at the basis of their remarkably
high quantum efficiency.2, 3 More recently, the presence of
exquisitely quantum mechanical effects in the energy transfer
process has been revealed in different photosynthetic com-
plexes even at physiological temperatures.4–15 The observa-
tions of long-lived electronic quantum coherence in photo-
synthetic excitation energy transfer (EET) raised questions
about the role of the protein environment in protecting this
coherence and the significance of the quantum coherence in
light harvesting efficiency. In order to elucidate the origin
of the long-lived quantum coherence and its functional roles
in EET processes, much theoretical efforts have been de-
voted to construct theories to describe quantum dynamics of

photosynthetic EET.16–58 Generally, quantum dynamic sim-
ulations of large and complex molecular systems require
massive computer resources, and it is sometimes difficult to
obtain physical insights into them even if such extensive sim-
ulations are doable. In large photosynthetic chromophore-
protein complexes, however, not all chromophores are cou-
pled strongly but the situation is well described by formation
of delocalized states in certain domains of strongly coupled
chromophores. The standard Redfield theory59 or the mod-
ified Redfield theory60–62 are employed to describe energy
relaxation within the domains; however, a theory is needed
for describing excitation energy transfer between the exciton
states in different domains. For this purpose, Förster theory63

has been extended to describe this transfer, namely, the gen-
eralized Förster theory (GFT).64–67 The original theory must
be modified in order to include the details of the complexes;
in particular, when the distance between donor and acceptor
aggregates is comparable with their physical size one has to
properly account for the interaction between excitonic states
belonging to different subunits. Subsequently, the theory has
been extended68 in order to account the intra-subunits quan-
tum coherence; within this framework the distinction in dif-
ferent subunits becomes possible when the intra-electronic
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couplings among the chromophores belonging to a subunit
Jintra is much greater than the electronic couplings Jinter be-
tween chromophores belonging to different subunits, and
when the strength of the system-bath interaction measured by
the reorganization energy λ is such that Jinter � λ � Jintra.
This approach is termed the multichromophoric Förster the-
ory (MCFT). It may represent a simplified but effective theory
for the description of energy transfer processes taking place
in large photosynthetic natural and artificial69–76 complexes
where the computational efforts required by the full quantum
simulations may be prohibitive. Despite these potential ad-
vantages MCFT has been applied in its full generality only in
very limited cases and in general its original simplified ver-
sion, the GFT, is usually preferred.77 Furthermore, a general
discussion on the limits of validity of MCFT and GFT is still
missing, and this is mainly due to the difficulty of expressing
the theory within a compact framework.

The main goal of the present paper is to provide such
a general and effective framework. The present analysis is
based on analytic continuation and second-order perturbative
time convolutionless (TCL2) quantum master equation tech-
niques for the evaluation of lineshape operators,78, 79 which
are the main tools of the theory. The application of these meth-
ods allows for a variety of fundamental and interesting results
that are organized as follows: In Sec. II we give a brief review
of the MCFT and of the main problems that one has to face in
order to evaluate the inter-subunits transfer rates. In Sec. III
we first review the formalism for the derivation of the exact
master equations for the emission lineshape operators based
on analytic continuation and we derive (Sec. III A) a general
detailed balance condition for the multichromophoric case. In
Sec. III B we derive the TCL2 general formalism of MCFT
and we show how its limits of validity can be discussed on the
basis of physical arguments. In Sec. III C we briefly discuss
generalized Förster theory and we show how one can derive
such simplified description starting from our general frame-
work. In Sec. IV we apply our theory to simple but relevant
multichromophoric systems: on one hand we discuss the ad-
equacy of TCL2 techniques in deriving lineshape operators,
and on the other hand we study the limits of validity of the
full TCL2 MCFT and compare it with an accurate example of
GF theory. Section V is devoted to concluding remarks.

II. MULTICHROMOPHORIC TRANSITION RATES:
PRELIMINARIES

Multichromophoric Förster theory is a second order per-
turbation theory with respect to the electronic coupling be-
tween different aggregates that can be developed starting with
the Frenkel exciton Hamiltonian of the overall photosynthetic
complex. In particular, we consider the following form of
electronic excitation and bath Hamiltonians:

Heb =
∑
N

HN
eb +

∑
NM

HNM, (2.1)

HN
eb = HN + HN

b + V N
eb , (2.2)

where

HN =
∑

n

εN
n |N, n〉〈N, n| +

∑
nm

JN
nm|N, n〉〈N,m|, (2.3)

HNM =
∑
nm

JNM
nm |N, n〉〈M,m| (2.4)

model the electronic Hamiltonian of subunit N and the inter-
action Hamiltonian between subunits N and M, respectively.
We use capital indices for labeling aggregates and lowercase
letters for labeling chromophores inside the aggregate: |N, n〉
is the excited state of chromophore n inside aggregate N, and
εN
n is its site energy (the Franck-Condon energy). In the en-

ergy eigenstate (exciton) basis the Hamiltonian for the aggre-
gate N reads

HN =
∑

k

¯ωN
k

∣∣εN
k

〉〈
εN
k

∣∣ (2.5)

and UN
nk = 〈N, n|εN

k 〉 is the change of basis matrix. The states
|εN

k 〉 represent the excitons of subunit N which are delocalized
among the aggregate’s chromophores |N, n〉. Within each sub-
unit the coupling to the bath degrees of freedom is modeled
as

V N
eb =

∑
n

|N, n〉〈N, n| uN
n ≡

∑
n

V N
n uN

n , (2.6a)

HN
b =

∑
n

H
N,n
b , (2.6b)

where
∑

N HN
b = ∑

ξ ¯ω
b(ξ )

[
p(ξ )2 + q(ξ )2

]
/2 model a set

of harmonic oscillators, p(ξ ) and q(ξ ) are dimensionless coor-
dinates, and ωb(ξ ) is the frequency of the phonon mode ξ . The
bath operators uN

n are defined by uN
n = −∑

ξ ¯ω
b(ξ )d(ξ )Nn qξ

where d(ξ )Nn is the dimensionless displacement of the equi-
librium configuration of the ξ th phonon mode between the
ground state and the excited electronic state of the nth site
in the Nth aggregate. The reorganization energy associated
with the nth pigment is characterized with the displacements
as λN

n = ∑
ξ ¯ω

b(ξ )[d(ξ )Nn ]2/2. It is assumed that [HN
b ,HM

eb ]
= [V N

eb ,HM
eb ] = 0 for N �= M, i.e., the baths of different sub-

units are independent.
The MC approach consists of an electronic excitation

hopping model among aggregates. As shown in Appendix A,
MCFT can be derived from the full quantum evolution of the
exciton-phonon system by: (i) applying second order pertur-
bation techniques with respect to HNM, based on the assump-
tion that JNM

nm � JN
nm, λ, and (ii) assuming that the donor ag-

gregate D equilibrates on time scales which are much shorter
than those characterizing the transfer to the acceptor A. The
first approximation permits to obtain a classical-like mas-
ter equation for the aggregates populations, with multichro-
mophoric rates. The equilibration assumption allows to sim-
plify the problem in that the rates are independent of the actual
donor’s initial excited state; and the non-equilibrium dynam-
ical features of the donor subunits are thereby neglected. The
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resultant multichromophoric (MC) rates read

kA←D = 2

¯2
�

∫ ∞

0
dt Tr[AA(t)JADFD(t)†JDA] (2.7)

= 1

2π¯2

∫ ∞

−∞
dω Tr

[
ÂA(ω)JADF̂D(ω)JDA

]
(2.8)

≡
∑

aa′dd ′

JAD
ad JAD

a′d ′

2π¯2

∫ ∞

−∞
dω ÂA

a′a(ω)F̂ D
dd ′(ω). (2.9)

In the above expressions we used the following notation for
Fourier transformed operators f̂ (ω) = ∫ ∞

−∞ dt eiωtf (t) and
we have defined the MC lineshape operators (LSOs) as

AN
aa′ (t) = 〈N, a| Tr

b

[
e− i

¯
HN

eb t 1 ⊗ ρN
b e

i
¯
HN

b t
]|N, a′〉, (2.10)

FN
dd ′ (t) = 〈N, d| Tr

b

[
e− i

¯
HN

eb t ρN
eb e

i
¯
HN

b t
]|N, d ′〉, (2.11)

where the properties AN(t)† = AN(−t) and FN(t)† = FN( − t)
are satisfied. Trb Ô indicates the partial trace of an operator Ô

over the bath degrees of freedom. In the compact expressions,
Eqs. (2.7) and (2.8), a matrix multiplication between the line-
shape operators and the matrix JAD with elements JAD

ad is un-
derstood. The two thermal states are defined by ρN

eb ∝ e−βHN
eb

and ρb ∝ e−βHN
b , where β is the inverse temperature and the

normalization is understood.
The above expressions are the starting point of the MC

approach. In order to assess its validity there are two or-
ders of problem to confront. One set of problems is related
to the theoretical techniques employed for the evaluation of
the LSOs. Explicit expressions are known for monomers80, 81

but, in general cases, Eqs. (2.10) and (2.11) cannot be ex-
actly evaluated because of the interaction, mediated by the
bath, between the aggregate’s excitons. In order to proceed
further one has to employ perturbative techniques with re-
spect to the system bath interaction, simulating the dynam-
ics of the operators AN(t) and FN(t) via non-Markovian quan-
tum master equations. One of the standard techniques is a
second-order perturbative time-convolution (TC2) quantum
master equation. However, this approach has fatal flaws, even
for monomers, in producing absorption lineshapes in the non-
Markovian regimes corresponding to natural situations.22, 82 It
is thus obviously outside the bounds of possibility to apply the
TC2 approach to multichromophoric situations. One is there-
fore forced to look for a different approach, and this naturally
leads to the application of the TCL2 method, which is able to
reproduce accurate absorptive lineshape of a monomer.

The other subtle point that has to be taken into ac-
count is the very difference between absorption and emission
LSOs. Owing to the equilibration hypothesis of the donor sub-
unit, the emission LSO in Eq. (2.11) has an “initial state,”
ρN

eb �= 1 ⊗ ρN
b . This introduces further complications as the

electronic degrees of freedom are correlated with the bath. In
the TCL2 approach to the LSOs developed in the present pa-
per this issue is treated in a simple way exploiting an identity
which relates absorption and emission lineshape: F(t) is ob-
tained from A(t) owing to the analytical continuation identity
F(t) ∝ A(t − i¯β). This point will be extensively discussed in
Sec. III.

The second set of problems that one has to face in or-
der to asses the limits of validity and the accuracy of the MC
approach is the comparison with the alternative, simpler tech-
niques that are used in the vast majority of the literature. In
general, the basis used for the expression of kA←D is irrele-
vant, however one can express the multichromophoric LSOs
in Eqs. (2.10) and (2.11) in the exciton basis and see that
the distinctive feature of MCFT lies in the presence of off-
diagonal terms,

AN (t) =
∑

k

AN
k,k(t)

∣∣εN
k

〉〈
εN
k

∣∣ +
∑
k �=k′

AN
k,k′(t)|εN

k 〉〈εN
k′ |,

(2.12)
where AN

k,k′(t) = 〈εN
k |AN (t)|εN

k′ 〉 and analogously for FN(t).
Correspondingly one can write kA←D = kA←D

diag + kA←D
off-diag and

the off-diagonal contribution is meant to take into account
the complex intra-subunit dynamics. In the literature typically
only the diagonal terms are considered, and this choice leads
to the generalized Förster rates as

kA←D
diag =

∑
k


(J̃ Ak,D
 )2

2π¯2

∫ ∞

−∞
dω ÂA

k,k(ω)F̂ D

,
(ω), (2.13)

where J̃ Ak,D
 = ∑
ad UA

ak JAD
ad UD

d
, and UA, UD are the accep-
tor and donor unitary operators that allow to diagonalize the
respective electronic Hamiltonians. The usual Förster theory
is included as a particular case: in Ref. 64 it has been shown
that the multichromophoric rate kA←D reduces to the Förster
rate kAk←D
 when only two specific optically allowed exciton
states Ak and D
 have non-vanishing average electrostatic in-
teractions J̃ Ak,D
 while all the other J̃ Ah,Dm, (h,m) �= (k, 
)
are vanishingly small, e.g., in the reaction center of purple
bacteria. Another example of diagonal theory has been em-
ployed for describing the rapid excitation energy transfer be-
tween two circular aggregates, B800 and B850, in the light-
harvesting 2 complex (LH2) of purple bacteria.64–67

While the above approximation is widely used, the
framework developed in our paper will allow us to investigate
the role of the off-diagonal terms in determining the overall
transfer rate. In particular, our benchmark technique will be a
diagonal approach based on TCL equations that is in many
aspects more accurate than the ones used in the literature
(Sec. III C).

III. EVALUATION OF THE LINESHAPE OPERATOR

In this section we lay down the general theory for the
evaluation of the LSOs. We derive the exact expressions for
the lineshapes operators and this will be the starting point for
the subsequent derivation and study of the second order ap-
proximations in the TCL picture.

Let us consider the absorption lineshape and, in order to
simplify the notation, let us remove the index of the aggre-
gate. A master equation for the lineshape operator has been
derived in Ref. 68 using projection operator perturbative tech-
niques. Here we derive formally exact expressions exploit-
ing the Gaussian nature of the bath fluctuations. Setting χA(t)
= e−iHebt/¯ 1 ⊗ ρb eiHbt/¯ then in the “asymmetric interaction
picture” defined by χA

I (t) = ei(H+Hb)t/¯ χA(t) e−iHbt/¯ the
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following equation of motion is satisfied:

χ̇A
I (t) = − i

¯
Veb(t) χA

I (t) (3.1)

yielding

χA
I (t) = T+ e− i

¯

∫ t

0 ds Veb(s) χA(0), (3.2)

where Veb(t) = ei(H+Hb)t/¯ Veb e−i(H+Hb)t/¯ and T+ is the stan-
dard time ordered product, i.e., the Dyson series. It is im-
portant to stress that Eq. (3.1) is not a Liouville equation,
as the operator Veb(t) acts only to the right. The absorption
LSO follows from Eq. (3.1) by tracing out the bath degrees of
freedom. When the system-bath coupling in Eq. (2.6) is con-
sidered, the Gaussian property of the phonon bath yields the
operators un to satisfy the Wick theorem. Hence, proceeding
along the same lines of Ref. 22 we find

AI(t) = T+e
− 1
¯2

∑
aa′

∫ t

0 ds
∫ s

0 ds ′ Caa′ (s−s ′)Va (s) Va′ (s ′)
A(0), (3.3)

where Caa′ (t − s) = Tr [ρb ua(t) ua′(s)] is the bath correlation
function. Despite not being essential, in this paper, we as-
sume that the bath acts independently on the different chro-
mophores as usual, i.e.,

Caa′(t) = C(t) δaa′ . (3.4)

The bath correlation function can be expressed in terms of the
spectral density J(ω) as

C(t) = ¯
π

∫ ∞

−∞
dω

J (ω)

eβ¯ω − 1
eiωt , (3.5)

where J(ω) has been extended to negative frequencies, J(−ω)
= −J(ω). The spectral density J(ω) and the reorganization en-
ergy λ are related with each other via λ = ∫ ∞

0 dω J (ω)/(πω).
The absorption LSO is then

A(t) = e− i
¯
HtT+e

− 1
¯2

∑
a

∫ t

0 ds
∫ s

0 ds ′ C(s−s ′)Va (s) Va (s ′)
. (3.6)

From Eq. (3.3) we obtain an equation of motion for the LSO
that, in the interaction picture, reads

d

dt
AI(t) =

∫ t

0
ds T+ [K(t, s) AI(t)] , (3.7)

where the dissipation kernel is

K(t, s) = − 1

¯2
C(t − s)

∑
a

Va(t) Va(s). (3.8)

It is important to stress that Eq. (3.7) is formally exact pro-
vided that the expansions in Eqs. (3.6) and (3.8) are inserted
in the time ordered integral. The latter however mixes the op-
erators entering in Eqs. (3.6) and (3.8) making Eq. (3.7) not
suitable for practical calculations.

Trying to proceed similarly for deriving the emission
lineshape operator leads to complications as the Wick the-
orem cannot be applied straightforwardly due to excitation-
environment correlations corresponding to the Stokes shift in
χF(0) = F(0). A possible solution to this problem would be to
consider the equilibrated state ρeb as a state resulting from an
initially factorized state ρ f (ti) = ρe(ti) ⊗ ρb(ti) correspond-
ing to the Franck-Condon transition and letting ti → −∞.
Such an approach can be analyzed with the help of time-
evolutions of quantum master equations. However, here we

consider a much simplified description. Our approach con-
sists in exploiting the identity,

F (t) = A(t − i¯β)/Z with Z = Tr A(−i¯β), (3.9)

which can be derived straightforwardly from Eqs. (2.10) and
(2.11). The analytic continuation identity permits to tackle
the unfactorized initial condition in a simple way. In the fre-
quency domain the above identity reads

F̂ (ω) = e−β¯ω

Z
Â(ω) with Z =

∫
dω

e−β¯ω

2π
Tr Â(ω)

(3.10)

and was used also by Sumi64 for expressing the emission line-
shape in terms of the absorption lineshape.

When the aggregate N consists of a single monomer the
above equations, Eqs. (3.6) and (3.9), can be evaluated exactly
without any approximations:

Amon(t) = e−iεt/¯e−g(t), (3.11)

Fmon(t) = e−i(ε−2λ)t/¯e−g∗(t), (3.12)

with

g(t) = 1

¯2

∫ t

0
ds

∫ s

0
ds ′ C(s ′) (3.13)

being the line-broadening function.80 The emission lineshape
directly follows from the absorption lineshape and Eq. (3.9).
Indeed, it is straightforward to show

g(t − i¯β) = g∗(t) − i

¯
2λt − βλ. (3.14)

In Secs. III B and III C we derive approximated expres-
sion for the lineshapes by making use of lowest meaningful
order expansion, the second order, of the TCL approach. The
latter allows to account for all specific cases of system-bath
interactions and their performances will be compared in the
relevant situations in Sec. IV.

A. Multichromophoric detailed balance condition

Before analyzing the TCL derivation of LSO we discuss
how, owing to the analytical continuation identity described
above, the detailed balance condition (DBC) can be general-
ized to the multichromophoric scenarios. In the standard DBC
the ratio kD←A/kA←D only depends on the temperature and on
the energy difference between the donor and the acceptor. On
the other hand, it is possible to show that when the donors or
the acceptors are composed of aggregates, DBC depends also
on the details of aggregate, as the intra-aggregate electronic
interactions, and on the parameters of the bath. The multi-
chromophoric detailed balance condition naturally follows by
inserting the analytic continuation identity in the frequency
domain, Eq. (3.10), into the definition of the MC rate in
Eq. (2.8). It is straightforward to show that

kA←D

kD←A
= ZA

ZD
≡ Tr[e−βHA

eb ]

Tr[e−βHD
eb ]

, (3.15)

where HN
eb , for N = A, D, is the Hamiltonian in Eq. (2.2) of

the aggregate N which models both the electronic interaction
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among chromophores and the coupling with the environment.
The latter identity in Eq. (3.15) follows by using the rela-
tion between the partition functions ZN defined in Eq. (3.9)
and (3.10), together with the definition of AN(−i¯β). As for
the general features, the above equation does not depend on
the electronic interaction among the aggregates: it is given
by the ratio of the partition function of the two aggregates
so that it relies only on the details of the equilibrated state
of the single subunits. The latter however, as discussed in
Sec. III B, can be different from the Gibbs state, especially
for higher values of λ, and depends also in a non-trivial way
on the parameters of the bath.

B. Time-convolutionless formalism

In this section we present the main result of this paper. As
described below the application of TCL techniques allows for
a neat formal description of the multichromophoric approach
that is on one hand compact and general and on the other hand
it allows to pinpoint the main physically relevant issues at the
basis of the approach. Both the equilibrated state of the donor
subunit and the absorption and emission lineshapes can be de-
termined with equations that are formally consistent. Further-
more, one can separate the off-diagonal contributions from the
diagonal ones so that their relevance can be studied in terms
of the pigments’ electronic energies of a given subunit and of
the specific bath properties. Below we present the main results
starting from the absorption lineshape operator; the details of
the derivation are given in Appendix C where a general the-
ory of TCL approach for determining the LSOs is sketched
together with an analogous derivation with the TC2 method.

Within a TCL2 framework the absorption LSO can be
written as (see Appendix C)

ATCL(t) = aex(t) · a(t). (3.16)

In Eq. (3.16), aex(t) is defined as

aex(t) = e−iH t/¯ e−g(t), (3.17)

and a(t) is the matrix solution of the following differential
equation:

ȧ(t) = −O(t)a(t), (3.18)

where the matrix O is given by

Okk′(t) = 1

¯2
eiωk,k′ t

∫ t

0
ds C(s) 
kk′(s),


kk′(t) =
∑
k′′


k′′
k,k′(e−iωk′′ ,k′ t − 1),

(3.19)

with ωk′′,k′ = ωk′′ − ωk′ and 
k′′
k,k′ = ∑

a UakU
2
ak′′Uak′ . Equa-

tion (3.16) states that ATCL(t) is given by the product of a ma-
trix aex(t) diagonal in the exciton basis and the matrix a(t) that
contains the off-diagonal terms. This decomposition allows to
separate the different contributes of multichromophoric line-
shapes and to discuss their physical interpretation. The aex(t)
factor describes the lineshapes corresponding to excitons of
the aggregate: the kth diagonal element is the lineshape cor-
responding to kth exciton with energy ¯ωk. Note that each
excitonic lineshape can be determined exactly without any

approximation: the interaction with the bath is taken into ac-
count by means of the line-broadening function g(t). On the
other hand, the matrix valued quantity a(t) takes into account
the bath-induced interaction between the excitons. Its phys-
ical interpretation is more intricate: the matrix operator O(t)
depends in the first place on the relation between the exciton
and site basis through the tensor 
k′′

k,k′ , i.e., on the electronic
structure of each aggregate; when the resulting matrix 
(t)
is diagonal so it is a(t), and this in particular happens in the
trivial case, i.e., when site and exciton basis coincide. On the
other hand, O(t) also depends on the relations between typi-
cal frequencies of the system, ωk′′,k′ , and typical frequencies
of the bath that determine the behavior of C(s). In particular,
if ωk,k′ are smaller than all the typical frequencies of the bath
(high-temperature, Markovian case), then eiωk,k′ t � 1: the op-
erator O(t) is essentially null on the relevant time scales of the
bath and hence a(t) is close to the identity; in this case the be-
havior of the aggregate is well approximated by the lineshapes
of the aggregate’s independent excitons. When the typical fre-
quencies of the aggregate are comparable or greater than those
of the bath, then the details of the aggregate have to be con-
sidered and they can give rise to a modification of the diago-
nal elements or to the occurrence of some off-diagonal terms.
Relevant examples are discussed in Secs. IV A and IV B.

We now present the result pertaining to the emission
LSO. Owing to the analytic continuation identity in Eqs. (3.9)
and (3.14) one can derive compact expressions for the emis-
sion LSO which are similar to those obtained for the absorp-
tion lineshape,

F TCL(t) = fex(t) · f (t), (3.20)

where fex(t) is given as

fex(t) = e−βH e−i(H−2λ)t/¯ e−g∗(t) (3.21)

and f (t) is the matrix solution of the differential equation,

ḟ (t) = −O(t − i¯β)f (t) (3.22)

with the initial condition

f (0) = a(−i¯β)/ Tr ATCL(−i¯β). (3.23)

The latter is obtained by numerical integration of Eq. (3.18)
in the imaginary time.

As in the case of ATCL(t), the emission LSO can be fac-
torized in two contributions: fex(t) is diagonal in the exciton
basis and it is given by the emission lineshapes of the ag-
gregate’s independent excitons. The bath-induced interaction
among the latter is taken into account by the matrix valued op-
erator f (t), that can be determined via Eq. (3.22) in which the
operator O(t) has the same structure described in Eq. (3.19). It
follows that impact of the aggregate’s electronic features and
of the bath’s properties in the definition of f (t) is similar to
that described for a(t). Also the determination of the equili-
brated state F (0) = ρTCL

e = Trb ρeb involves the same formal
structure previously described; one has:

ρTCL
e = aex(−i¯β) · a(−i¯β)/ Tr ATCL(−i¯β), (3.24)

where aex( − i¯β) = e−β(H − λ) and a(−i¯β) is the solution
of ȧ(−i¯τ ) = −O(−i¯τ ) a(−i¯τ ) where the integration in-
terval is [0, β = 1/kBT] with kB and T being the Boltzmann
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constant and temperature, respectively. Therefore, the same
above discussion holds. The structure of the operator O(−i¯τ )
is the same as before: the details of the aggregate Hamilto-
nian are encoded in the same tensor 
k′′

k,k′ , while the “dynami-
cal” aspects are determined by the comparison of the relevant
frequencies of the system ωk′′k′ with the thermal correlation
frequency ωT = 1/β¯. In particular, when ωk′′k′ � ωT , e.g.,
high temperature regime, one has that e−τωkk′ ≈ 1 and the in-
tegration interval is small; therefore a(−i¯β) ≈ 1, the off-
diagonal term in ρTCL

e is vanishingly small and the only effect
is a renormalization of the exciton energies that in general,
and depending on λ, can lead to an equilibrated state differ-
ent from the Gibbs state. In the opposite case, ωk′′k′ � ωT ,
i.e., in particular at low temperature, the integration interval
grows and the off-diagonal terms in ρTCL

e come into play. The
above features will be discussed in some relevant examples in
Secs. IV A and IV B. The above discussion clearly highlights
that within the TCL2 picture developed in this paper, each
steps of the MC approach can be easily analyzed by studying
a single matrix valued operator O that embeds all the struc-
tural and physical features of the given system under observa-
tion. Equations (3.16)–(3.23) provide a compact and general
framework within which all further possible and relevant ap-
proximations can be discussed in a clear way.

C. Generalized Förster theory

Most of the literature about electronic energy transfer
between molecular aggregates employs GFT for estimating
the transition rates between multichromophoric donors and
acceptors.64–67, 77, 83 Sometimes the internal exciton dynamics
within the aggregates is included phenomenologically with
the use of Redfield/modified Redfield theories.77, 83 However,
similar to the assumptions of MCFT, usually it is assumed that
the donor has reached its equilibrium state ρe before the trans-
fer takes place. In the latter case, the rate between aggregates
is given by the weighted sum of the Förster rate kAk←Dj from
every exciton Dj of the donor to every exciton Ak of the accep-
tor, and the weights are given by the probability of finding the
donor aggregate in the exciton Dj. The latter are given by the
equilibrated state, which in the simplest description is mod-
eled by a Gibbs state, although this is not accurate because
of system-bath interaction, which causes the Stokes shift.22, 84

Within the formalism developed in this paper the equilibrated
state is absorbed into the definition of the emission lineshape;
in this way one can show that GFT rates can be obtained as a
limiting case of the MCFT rates, provided that the lineshapes
are diagonal in the exciton basis, Eq. (2.13).

Equations (3.16)–(3.23) are the starting points for imple-
menting various approximations and thus for deriving differ-
ent GF expressions in a controlled way. A first way for obtain-
ing a GF expression is to neglect a(t), f (t), and a(−iβ¯) terms
in the evaluation of the absorption, emission line shapes. This
approximation is a very simple one: the excitons lineshapes
can be analytically evaluated, and the equilibrated state is the
aggregate Gibbs state.

A second GF expression can be derived following the
standard approach for evaluating the lineshapes in GFT,

which is based on the off-diagonal elements of a master equa-
tion which describes the dynamics within each aggregate.79 In
this case TCL2 approximation is usually employed, although
with some exceptions,85 as it reduces to the exact expression
for monomers. One can show that the GFT lineshapes can also
be obtained by implementing a secular approximation in the
general expression, Eq. (3.19): oscillating parts in Eq. (C1)
are selectively removed and the diagonal and off-diagonal el-
ements are completely decoupled. In particular, in the exciton
basis,

d

dt
AGF

k,k(t) =
(

−iωk − 1

¯2

∫ t

0
ds

∑
k′′


k′′
k,k C(s) e−iωk′′ ,ks

)

×AGF
k,k(t). (3.25)

Similar expressions hold for AGF
k,k′(t), however, since

AGF
k,k′(0) = 0, one has that AGF

k,k′(t) ≡ 0 for k �= k′. In other
words, the secular approximation decouples the diagonal
terms from the off-diagonal ones, forcing the LSO to be di-
agonal in the exciton basis. Equation (3.25) was obtained by
Renger and Marcus79 with different methods; furthermore,
in order to simplify the numerics, they treat in a Markovian
way the elements with k �= k′′ in (3.25). Our goal will be to
compare the accuracy of MCFT and GFT in describing the
dynamics within the aggregates; to this aim we consider the
more general expression (3.25) without any further approxi-
mation and in the following we will refer to it as GF-TCL2.
As for the emission lineshape we implement the analytic con-
tinuation identity, Eq. (3.9) in Eq. (3.25). In this way, no other
approximations are necessary in the description as the ana-
lytic continuation identity automatically considers the effect
of the stokes shift and of the equilibrated initial state. We note
however that the equilibrated initial states differ from the one
obtained with the multichromophoric approach, and this will
be more evident at low temperatures.

IV. ADEQUACY OF MULTICHROMOPHORIC
APPROACH

A. Time-convolutionless lineshapes

In order to test the adequacy of the MC-TCL2 ap-
proach we start by considering simple systems. Our first
goal is to compare the MC-TCL2 rates with those ob-
tainable with other relevant theories widely used in the
literature.19, 22, 28, 29, 32, 38, 39, 42, 46, 52, 57 One of such approaches
is the second-order cumulant time-nonlocal (2CTNL) quan-
tum dynamics, which takes into account environmental
reorganization processes or dynamic Stokes shifts.22 It imple-
ments a hierarchical representation86–89 for numerical calcula-
tions. The second theory is the time-convolution approach for
the evaluation of LSOs. Although even in the case of single
monomer’s absorption lineshapes TC2 master equations are
not able to reproduce the real lineshapes and give unphysical
results,22, 82 the only multichromophoric analysis available in
the literature68, 90, 91 used TC2 approximation for calculating
the LSO.
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We start by analyzing a simple but relevant model, i.e., a
trimer whose Hamiltonian is given as

H =
⎛
⎝ 200 100 2

100 100 2
2 2 0

⎞
⎠, (4.1)

where the values are given in cm−1. Since Jintra = 100 cm−1

� Jinter = 2 cm−1 the multichromophoric aggregate is clearly
formed by a dimer subunit and by a monomer weakly coupled
with the dimer. The exciton energies in the dimer are

¯ωdimer
+ � 261.8 cm−1, ¯ωdimer

− � 38.2 cm−1. (4.2)

The values used for this example are typical values that
can be found, for example, in biological systems.2 Gener-
ally spectral densities of real molecular systems exhibit com-
plex forms.79, 90, 92, 93 In this work, however, we take an Ohmic
spectral density with the Lorentz-Drude regularization (the
Lorentz-Drude spectral density),94

J (ω) = 2λω
γ

ω2 + γ 2
. (4.3)

This spectral density characterizes a reorganization energy λ

and a timescale of the bath-induced fluctuations or the bath re-
organization process γ −1 in a minimal fashion, both of which
control natures of EET dynamics.7, 22 Although the model
spectral density in Eq. (4.3) is employed for mathematical
convenience to perform numerical calculations, physical ar-
guments and conclusions in this work are not specific to this
form in Eq. (4.3). The electronic coupling between the dimer
and the monomer (Jinter) is chosen to be small in order to jus-
tify the second order perturbation theory which is one of the
assumptions in MCFT. In this section, the system is consid-
ered to be at room temperature, T = 300 K.

In our discussion we consider the energy transfer occur-
ring from the dimer subunit to the monomer. Indeed, the mul-
tichromophoric donor requires the evaluation of the dimers’
emission lineshapes that involve more and relevant approx-
imations. The back-transfer process from the monomer to
the dimer is not considered as it is related with the forward
transfer process via the generalized detailed balance condition
Eq. (3.15), and thus it does not convey further relevant infor-
mation.

The multichromophoric rates in Eq. (2.8) calculated
with time-convolutionless equations are shown in Fig. 1, for
γ = 530 cm−1 � ω± (Markovian regime) and γ = 53 cm−1

(non-Markovian regime).
As anticipated, in addition to the rates given by MCFT

we have also performed an exact full quantum calculation by
means of 2CTNL approach: the exact time evolution of the
trimer density matrix is obtained and then the rates are esti-
mated with a least-square algorithm. Furthermore, the rates
with time-convolution techniques with or without the use of
analytic continuations (see Appendix (B)) are shown for com-
parison.

In the Markovian regime (upper panel, Fig. 1) our sim-
ulations show that the TCL2 treatment gives excellent agree-
ment with the accurate full quantum calculations for all val-
ues of reorganization energy λ. On the other hand the TC2
approaches are accurate only in the weak coupling regime,
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FIG. 1. Multichromophoric rates vs. λ (cm−1) from the dimer to the
monomer for γ = 530 cm−1 (upper plot) and γ = 53 cm−1 (lower plot). In
the above, the MC curves are evaluated with the MCFT, where the lineshapes
are obtained with different theories. In particular, MC-TC2 is obtained from
Eqs. (B4) and (B5). In MC-TC2 + AC, the absorption is still calculated with
Eq. (B4) while the emission is obtained from Eq. (B6).

while in the strong coupling regime they completely fail to
reproduce the exact data. On the other hand, it is important
to emphasize that MC-TCL2 approach, despite being a sec-
ond order approximation, works excellently even in the strong
coupling regime.

In the lower panel of Fig. 1 are the reported rates for the
case γ = 53 cm−1, a value which is comparable with the fluc-
tuations timescales obtained in experiments. Here, the Marko-
vian approximation is not justified anymore, as ¯γ is of the
same order of the dimers energies, Eq. (4.2). As in the Marko-
vian case the agreement between the full quantum and the
MC-TCL2 description is extremely good for all values of λ.

The behavior of the MC-TC2 rates is more complex. The
introduction of an analytic continuation approach in the non-
Markovian does not lead to significant differences. While the
rates evaluated with this theories coincide and qualitatively
reproduce the exact one, a close look to the lineshapes in this
regime shows that TC2 master equations are not able to give
the correct physical description of the LSO: even for small
values of λ MC-TC2 lineshapes show two peaks. This phe-
nomenon, which becomes more evident for increasing λ, as
already discussed in Ref. 82, is completely unphysical. On
the other hand, this kind of drawback does not affect the
lineshapes derived with TCL2 approach for all values of pa-
rameters analyzed. However, the results of this section show
that the MCFT approach succeeds in determining the correct
transfer rates, and a second order treatment of the lineshapes,
as given by TCL2, is sufficient.
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FIG. 2. Rescaled rates for the Hamiltonian in Eq. (4.2) for T = 300 K and
γ = 53 cm−1 and different values of Jinter.

We conclude this section by analyzing the behavior of the
multichromophoric approach when the distinction between
subunits is no longer possible. In particular this happens when
the condition Jinter � λ is violated. In Fig. 2 we show the sim-
ulations for the normalized rate k̃D→A = (¯/Jinter)2kD→A for
the Hamiltonian in Eq. (4.2) and for growing values of Jinter

= J13 = J23. Owing to the rescaling the MC-TCL2 rates are
represented by a single curve and they are compared with the
rates obtained with full quantum simulation approach. While
the MC-TCL2 method is always able to capture the rates’
qualitative behavior, a quantitative agreement for large Jinter is
obtained only for high values of λ. The result is expected since
for growing values of Jinter the main hypotheses on which the
multichromophoric approach is based are no longer verified,
and in particular the dynamics within the dimer do not lead
to an equilibration of the subunit on timescales shorter than
those characterizing the energy transfer to the acceptor.

B. Multichromophoric vs. generalized Förster

In order to study the role of the off-diagonal terms and
thus describe the differences between MCFT and GFT we
consider this simple model of a trimer,

H =
⎛
⎝ E1 J12 J13

J12 E2 J23

J13 J23 0

⎞
⎠, (4.4)

where the first two sites form a strongly connected dimer,
whereas the coupling between the dimer and the trimer is
small, i.e., J12 � J13, J23. The dimer subunit can be diago-
nalized by an orthogonal matrix U(θ ), i.e., a rotation in the
energy space of the pigments in the dimer with some angle θ .
In the new basis the Hamiltonian takes the form⎛

⎝ ε + δ 0 J̃+
0 ε J̃−
J̃+ J̃− 0

⎞
⎠. (4.5)

As already mentioned the relation between exciton and site
basis encoded in U(θ ) determines the relevance of the off-
diagonal terms in the LSOs. Indeed, in the exciton basis the

operator in (3.19) that determines the dynamics of a(t) reads


(t) = 1

4

(
2α sin2 2θ α∗ sin 4θ

−α sin 4θ 2α∗ sin2 2θ

)
, (4.6)

α = 1 − e−iδt . (4.7)

In particular the latter is diagonal when θ = 0, i.e., the ex-
citons and site basis coincide and each site interacts indepen-
dently with its own bath. 
(t) is again diagonal when θ = π /4,
i.e., when the site energies are degenerate and the excitons
are given by the symmetric and antisymmetric superposition
of site basis states. In this case one can write the dimer-bath
interaction term in the exciton basis in the following way:∑

1,2

|i〉〈i| ui = 1(b1 + b2) + σx(b1 − b2), (4.8)

where σ x = |1〉〈2| + |2〉〈1|, and consequently one can rede-
fine the baths in terms of the center of mass coordinate b+
= (b1 + b2)/

√
2 and the difference between the baths coordi-

nates b− = (u1 − u2)/
√

2. Correspondingly one can decom-
pose the dimer’s Hamiltonian as H = H+ + H−, with H+
= ε1 + 1 ⊗ b+ + Hb+ , H− = δ|ε+〉〈ε+| + σx ⊗ b− + Hb− ,
and [H+, H−] = 0, i.e., the two baths are independent. Due
to symmetry of this specific interaction, the baths are unable
to distinguish the excitons. In particular the σ x terms swap
the two excitons and due to the bosonic properties of the
baths the interaction term in Eq. (3.6) (σxe

−iδ|ε+〉〈ε+|t σx) is
proportional to the identity, therefore no off-diagonal terms
appear in the LSOs. This fact, due to the bosonic properties of
the bath and Wick’s theorem, is not specific to second order
perturbation but it applies at any order of the perturbation
treatment.

Aside from the previous two special cases, in order to de-
scribe the relevance of off-diagonal terms one can focus on
Eq. (4.6) and fix the conditions for having maximal off di-
agonal elements. A necessary (although not sufficient) condi-
tion for maximizing the role of the off-diagonal terms is to set
θ = π /8. See Eq. (4.6). The other free parameters are (see
Eq. (4.5): the off-set with respect to the monomer’s site en-
ergy ε, the difference between the dimer’s excitons energies
δ, and the electronic couplings J−, J+. We chose to focus on
the following dimer Hamiltonian:(

253 63
63 126

)
, (4.9)

where δ = 180 cm−1 and ε = 100 cm−1. Indeed, as already
discussed in Sec. III B, the role of the off-diagonal elements
becomes important when the typical frequency of the system
δ/¯ is comparable with the smallest frequency of the bath.
In the non-Markovian high-temperature (T = 300 K) regime,
the latter corresponds to γ = 53 cm−1/¯(10 ps−1) � δ.

In terms of emission lineshapes the presence of the off-
diagonal terms is revealed in the global MC rate when:
(i) the monomer’s absorption lineshape sufficiently overlaps
with the off-diagonal terms; (ii) the effect is not screened by
the overlap of the monomer’s absorption lineshape with line-
shape corresponding to the highest dimer’s exciton; this lat-
ter point can be achieved if the two excitons’ lineshapes are
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FIG. 3. Emission lineshapes for Hamiltonian, Eq. (4.9); T = 300 K,
γ = 53 cm−1; λ = 10 cm−1 (a) and λ = 40 cm−1 (b).

sufficiently separated in frequency, and this is determined by
difference in energy between the excitons δ, and if λ is not too
high. Indeed, the emission lineshapes are shown, for λ = 10
and 40 cm−1 in Fig. 3, the absorption lineshape (not shown)
is centered in zero. When λ grows the lineshapes are more
broadened and the monomer’s absorption lineshape strongly
overlaps with both diagonal terms, thus reducing the rele-
vance of the off-diagonal terms.

In Fig. 5 we compare the rates obtained with MC-TCL2
approach for the Hamiltonian, Eq. (4.9), with the ones ob-
tained with full quantum simulations and with the generalized
Förster theory described in Eq. (3.25) (GF-TCL2) where the
lineshapes have been calculated by imposing the decoupling
of the diagonal terms. Our results show that the multichro-
mophoric approach properly reproduces the accurate rates. In
general the transfer rates are very small, as we have chosen
small electronic couplings among the dimer and the monomer
(J13 = 2 cm−1, J23 = 0) in order to maintain the distinction be-
tween the two subunits. The figure of merit able to quantify
the relevance of the off-diagonal terms is the rate’s relative
error �k = |kGF − kMC)|/kMC and it is plotted in the inset of
Fig. 4. We can see that the error between the MC-TCL2
and generalized Förster approach is quite relevant up to λ
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FIG. 4. Rates for the Hamiltonian in Eq. (4.9) for T = 300 K and
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Eq. (3.16), in GF-TCL it is given by Eq. (3.25). In every case, the emission
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≈ 20 cm−1; for λ = 10 cm−1, �k is around 27%. The be-
havior shown by �k is typical for the Hamiltonians with θ

≈ π /8 in the high temperature regime: the effects of the off-
diagonal terms are in general quite relevant in the “true” MC
regime, i.e., when Jinter � λ � Jintra and the second order per-
turbation theory at the basis of the approach holds. When λ

� Jintra the system enters in a Förster regime; as described
before, in this region the presence of off-diagonal terms of
the LSOs is screened due to the broadening of the excitons
lineshapes, therefore the generalized Förster methods are in
good agreement with the MC-TCL2.

We finally examine the effect of the temperature. We use
the following values γ = 53 cm−1 and T = 100 K and the
Hamiltonian in Eq. (4.9). For these values of temperature kBT
≈ 70 cm−1, it is comparable with γ and the typical energies
of the system. The results of our simulations in Fig. 5 show
that again we have two distinct regions. For λ < 90 cm−1 the
MC-TCL2 approach is in complete agreement with the accu-
rate rate, while the GF-TCL2 is far less accurate; indeed, as
shown in the inset of Fig. 5, the relative error �k between the
two rates is very large up to λ = 100, and it reaches its maxi-
mum �k = 65% at physiological values of the reorganization
energy, λ = 20 cm−1. On the contrary, for very large values
of λ we see that the best approximation is given by a gener-
alized Förster approach. This example highlights the limits of
validity of the MC-TCL2 approach. For values of reorganiza-
tion energy typical of biological systems and when Jinter � λ

� Jintra the multichromophoric approach is extremely accurate
in determining the transfer rates.

For very high values of λ and at low temperature the
method becomes less accurate. This is due, on one hand,
to the fact that in this region of the parameters the equili-
brated state of the dimer determined with MC-TCL2 equation,
Eq. (3.23), starts to significantly differ from the exact one;
in particular, its off-diagonal terms are orders of magnitude
smaller than the correct ones. On the other hand, the inclu-
sion of the off-diagonal terms in the emission lineshape equa-
tions leads to significant errors in the determination of the
overall rate, and this happens even if the MC-TCL2 equation,
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Eq. (3.22), is fed with the correct equilibrated initial state.
These facts are not relevant for the back transfer rate (not
shown); in this case the agreement of MC-TCL2 and the ac-
curate result is fairly good.

V. CONCLUSIONS

The study of energy transfer in large light harvesting
complexes can be simplified when these structures can be
divided into weakly coupled subunits of strongly interact-
ing chromophores, i.e., when Jinter � λ � Jintra, where
Jinter(intra) is the inter (intra) subunit electronic coupling and
λ is the reorganization energy measuring the strength of
the system-bath interaction. In this context, the multichro-
mophoric approach64, 68 was put forward to account for the
intra-subunits bath mediated coherent interaction in the deter-
mination of the incoherent inter-subunit energy transfer rates.
In principle, this approach allows to overcome the problem
posed by the massive computational resources required by the
sophisticated techniques available for the accurate simulation
of the quantum dynamics of the whole complexes. However,
a comprehensive discussion of the approach is still missing.

In this paper we provide a clear, compact, and general
picture of the multichromophoric approach that allows to
study its general scope and limits of validity. Our discussion
is based on the evaluation of lineshape operators with a new
approach based on analytic continuation and TCL2. The lat-
ter are found to be strictly necessary since the alternative time
convolution approach, despite being widely used in the liter-
ature, has severe limitations when real biological conditions
are considered.

The picture developed allows one to identify a Förster
like contribution that can be determined without approxima-
tions, and that describes the incoherent hopping among exci-
tons belonging to different aggregates. On the other hand, the
bath mediated coherent interaction between the excitons of a
given subunit is taken into account by an independent matrix
valued quantity whose off-diagonal terms are peculiar of the
multichromophoric theory.

In this way, one can immediately identify, on the basis of
the electronic properties of the subunits and of the typical bath
timescales, if and which multichromophoric (off-diagonal)
terms are relevant and must be taken into account, and to
derive simplified versions of the multichromophoric transfer
rates that encompass the (diagonal) generalized Förster theo-
ries used in the literature.

We have applied our general theory to simple prototypi-
cal examples of photosynthetic systems composed by a dimer
weakly coupled with a monomer. We have considered both
Markovian and non-Markovian regimes and we have com-
pared our results with those obtainable with other accurate
quantum dynamic simulations and with meaningful instances
of generalized Förster approximations that can be derived
within our approach. Our analysis shows that the TCL2 multi-
chromophoric theory is able to accurately describe the coher-
ent subunits dynamics and it can outperform the generalized
Förster techniques especially when Jinter � λ � Jintra.

The main limitations of the approach occur in the first
place when the subdivision in subunits is no longer possible,

i.e., Jinter ≈ λ and in the less obvious case of low temperatures
and extremely high values of reorganization energy.

In conclusion, our analysis provides a comprehensive and
general framework in which the multichromophoric approach
to energy transfer processes between complex photosynthetic
subunits can be discussed. While our numerical analysis has
focused on simple trimeric structures, the framework devel-
oped allows for the study of more complex systems and for
the judicious identification of the aggregates and regimes for
which a full multichromophoric picture is necessary.
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APPENDIX A: MULTICHROMOPHORIC
MASTER EQUATION

General expressions for the multichromophoric rates
have been obtained in Refs. 64 and 68. However, no general
formal derivation of how MCFT can result from a full quan-
tum approach is available in the literature. Indeed, the proof
performed in Ref. 68 is strictly valid only for a system com-
posed of two aggregates, a donor and an acceptor, and does
not take into account the back-transfer from the acceptor to
the donor. In this section we complete our theoretical descrip-
tion of MCFT by deriving the master equation of a multichro-
mophoric system using a time-convolutionless projection op-
erator formalism,78, 94

d

dt
P ρ̄eb(t) = K̄(t)P ρ̄eb(t) + Ī(t)Qρeb(0), (A1)

where Q ≡ 1 − P: the dynamics of the multichromophoric
populations can be obtained from the complete density ma-
trix ρ̄eb(t) by tracing out the irrelevant degrees of freedom by
means of the projection operator P . We follow the notation of
Sec. II and use the bar for explicitly referring to operators in
the interaction picture defined by the Hamiltonian

∑
N HN

eb .
We also set

P ρ̄eq(t) =
∑
N,n

P̄ N
n (t) �N

n ⊗ ρb, �N
n = |N, n〉〈N, n|,

(A2)
P̄ N

n (t) = Tr
b

[〈N, n|ρ̄eb(t)|N, n〉] .

Using a second-order perturbative approximation with respect
to the electronic interaction between different aggregates one
can show that Eq. (A1) reduces to

d

dt
P̄ N

n (t) =
∑
M,m

kNM
nm (t) P̄ M

m (t) − kMN
mn (t) P̄ N

n (t)

+ Ī(t)Qρeb(0), (A3)
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with the time-dependent rates

kNM
nm (t) = 2

¯
�

∫ t

0
ds WNM

nm (t, t − s),

(A4)
WNM

nm (t, s) = Tr
(
U−t [J ] �N

n U−s[J ] �M
m ⊗ ρb

)
,

where Ut [·] = e−itL/¯(·), L(·) = ∑
N [HN

eb, ·], and J
= ∑

NMHNM. In the following we show the further ap-
proximations needed to bring Eq. (A3) to the form of a Pauli
master equation for aggregates, i.e.,

d

dt
P N (t) =

∑
M

kNMP M (t) − kMNP N (t), (A5)

with P N (t) = ∑
n P N

n (t). First note that, as
∑

n �N
n com-

mutes with HN
eb , the populations of the aggregates are the

same in the Schrödinger and in the interaction picture, i.e.,
P N (t) = P̄ N (t). The inhomogeneous term in Eq. (A3) can be
removed formally only if Qρeq(0) = 0, namely, only if the
excitation is localized into a single chromophore at t = 0. If
on the other hand the excitation is initially distributed among
different excitons, even within a single aggregate, then an in-
homogeneous term is needed. In this paper however we do not
discuss in detail such an occurrence, as it is expected to affect
only the dynamics of the first femtoseconds.

The stationary rates are obtained by taking the limit of
t → ∞, assuming ergodicity.68 The multichromophoric rates
then arise by summing Eq. (A3) for different n and assuming
that the resulting rates are independent of m. Indeed,

WNM
m (s) = lim

t→∞

∑
n

WNM
nm (t, t − s)

= Tr
(
HMN Us[H

NM ] ρM
eb [m]

)
(A6)

with the equilibrated state

ρM
eb [m] ≡ Ut→∞

[
�M

m ⊗ ρb

]
. (A7)

If the above state is independent of m, i.e., if the state of the
aggregate M equilibrates to a state which is independent of the
initial position of the excitation, then the multichromophoric
rate in Eq. (2.7) follows by taking the limit t → ∞ in Eq. (A4)
owing to Eq. (A6), and assuming that the bath acts indepen-
dently on the different chromophores.

APPENDIX B: TIME-CONVOLUTION FORMALISM

The time-convolution master equation is one of the stan-
dard methods for describing non-Markovian open quantum
systems. It has been derived using projection operator tech-
niques by Nakajima95 and Zwanzig96 and has been applied68

for the evaluation of the LSOs in Eqs. (2.10) and (2.11).
Owing to the cumulant expansion formalism,97–100 it can be
shown that a second order time-convolution master equation
(TC2) for the absorption lineshape operator can be derived
from (3.7) by choosing the so-called chronological ordering
prescription,

d

dt
ATC(t) = − i

¯
H ATC(t) +

∫ t

0
ds KTC

(2) (t − s) ATC(s),

(B1)

h̄
β

t

FIG. 6. Complex contour C for the evaluation of the emission lineshape.

where KTC
(2) (t − s) = e−iH t/¯K(t, s)eiHs/¯, i.e.,

KTC
(2) (t) = − 1

¯2
C(t)

∑
a

|a〉〈a| e− i
¯
Ht |a〉〈a|. (B2)

as Va ≡ |a〉〈a| where |a〉 represent the excited state local-
ized in the chromophore of site a in the acceptor aggregate A.
Similarly,

d

dt
ATC(t − i¯β) = − i

¯
H ATC(t − i¯β)

+
∫ t−i¯β

0
dz KTC

(2) (t − i¯β − z) ATC(z),

so that, owing to Eq. (3.9), the emission LSO can be evalu-
ated by decomposing the above integral along the contour of
Fig. 6 as

d

dt
F TC(t) = − i

¯
H F TC(t)

+
∫ t

0
ds KTC

(2) (t − s) F TC(s) + I(2)(t), (B3)

where I(2)(t) = i
¯Z

∫ β

0 dτ KTC
(2)

(
t − i¯(β − τ )

)
e−τH . On the

other hand, the initial state F(0) = A(−i¯β)/Z is evaluated
using a second order expansion of Eq. (2.10). Equations (B1)
and (B3) were introduced in Ref. 91 for obtaining the multi-
chromophoric LSO. They are solved with the Fourier-Laplace
transform as

ÂTC
(2) (ω) = −2�

[
1

ω − H/¯− iK̃TC
(2) (ω)

]
, (B4)

F̂ TC
(2) (ω) = −2�

[
F(2)(0) + Ĩ(2)(ω)

ω − H/¯− iK̃TC
(2) (ω)

]
, (B5)

where we used the notation f̃ (ω) = ∫ ∞
0 dt eiωtf (t), and

F(2)(0) is second order expansion of the equilibrated state.
The lineshapes obtained with time-convolution master equa-
tions take the form of a Lorentzian with frequency-dependent
damping kernel K̃TC

(2) (ω). The above LSOs are not diagonal in
the exciton basis in general because of K̃TC

(2) (ω) and Ĩ(2)(ω): in
particular the dissipation kernel K̃TC

(2) (ω) is diagonal in the site
basis. (See Eq. (B2).) As the strength of both the dissipation
kernel and of the inhomogeneous term depends on λ, and in-
creases for increasing λ, the off-diagonal part of the lineshape
is expected to give a relevant contribution in the intermediate
and strong coupling regime.

Note that the emission lineshape can be obtained also
from Eq. (B4) once the analytic continuation identity,
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Eq. (3.10), is used. We call

F̂ TC+AC
(2) (ω) ∝ e−β¯ω ÂTC

(2) (ω) (B6)

such a TC2 expression. The latter is more easy to evaluate
as the second order equilibrated state and the inhomogeneous
term dot not enter in the expression. As shown in Sec. IV A,
Eqs. (3.10) and (B5) with Eq. (B4) give the same results when
the second order approximation is justified.

In Eq. (3.12), the unfactorized initial condition is the
origin of the stokes shift. On the other hand, in the time-
convolution master equation it introduces the inhomogeneous
term. The role of Ĩ(2)(ω) in Eq. (B5) can be better understood
by using the identity 1 + x ≈ (1 − x)−1 + O(x2),

F̂ TC
(2) (ω) � −2�

[
F (0)

ω − (H − S̃(ω))/¯− iK̃TC
(2) (ω)

]
, (B7)

where S̃(ω) = (¯ω − H )Ĩ(2)(ω)/F (0). The above expression
elucidates the role of the inhomogeneous term; indeed one
can see that the real part of Ĩ(2) contributes to the shift of
the eigenfrequencies of the system (Stokes shifts), while the
imaginary part contributes to both the width and the envelope
of the lineshape.

It is important to stress that Eqs. (B4) and (B5) do not
reduce to Eq. (3.12) when the aggregate consists of a single
monomer. The following section introduces a master equation
for LSOs where such a problem does not subsist.

APPENDIX C: TIME-CONVOLUTIONLESS FORMALISM

Time-convolutionless master equations can be obtained
from the generalized cumulant expansion by taking the so
called partial ordering prescription.97–101 In another widely
used formalism they are obtained from time-convolution mas-
ter equations formally resuming the perturbative series.78

Using a second order time-convolutionless approach for the
absorption lineshape operator, one can show that Eq. (3.7) re-
duces to

d

dt
ATCL(t) =

(
− i

¯
H +

∫ t

0
ds KTCL

(2) (s)

)
ATCL(t), (C1)

where KTCL
(2) (t − s) = e−iH t/¯K(t, s)eiHt/¯, i.e.,

KTCL
(2) (t) = − 1

¯2
C(t)

∑
a

|a〉〈a| e− i
¯
Ht |a〉〈a| e i

¯
Ht . (C2)

However, in this framework, the implementation of the sec-
ond order perturbation approach for the emission lineshape
operator results in the appearance of an inhomogeneous term
that describes the existence of unfactorized initial states,
Eq. (2.11)

d

dt
F TCL(t) = − i

¯
H F TCL(t)

+
∫ t

0
ds KTCL

(2) (t − s) F TCL(t) + ITCL
(2) (t).

From this expressions it is clear that, while the absorption
LSO reduces to Eq. (3.12) in the monomer limit, the same
does not take place for the emission lineshape. Indeed, the

above equation cannot reproduce the monomer case,

d

dt
Fmon(t) = −

[
i

¯
(ε − 2λ) − ġ∗(t)

]
Fmon(t) (C3)

as, in general, ITCL
(2) (t) �= (i/¯)2λFmon(t). In order to over-

come this problem the emission lineshape is obtained from
the absorption lineshape via the analytic continuation identity
(3.9),

d

dt
F TCL(t) =

(
− i

¯
H +

∫ t−i¯β

0
dz KTCL

(2) (z)

)
F TCL(t).

(C4)

In the above formulation the effect of the unfactorized equi-
librated state is accounted by a different homogeneous terms.
This is the prerequisite for obtaining a structure that satisfies
Eq. (C3) in the single monomer case: it is indeed straight-
forward to show that the solution of Eqs. (C1) and (C4) re-
duces to Eq. (3.12) for monomer aggregates, so that they of-
fer a more natural expression for the MC-LSOs. They have
been derived using the analytic continuation identity Eq. (3.9)
and the second-order time-convolutionless (TCL2) master
equation.

The TCL2 lineshape expression can be better understood
after some transformations. In the exciton basis the TCL2 dis-
sipation kernel in Eq. (C2) reads

KTCL
(2) (t) = − 1

¯2

∑
k,k′,k′′


k′′
k,k′ C(t) e−itωk′′ ,k′ |εk〉〈εk′ |, (C5)

where ωk′′,k′ = ωk′′ − ωk′ , 
k′′
k,k′ = ∑

a UakU
2
ak′′Uak′ and U is

the unitary matrix of the basis transformation. Inserting the
identity one has that∑

k′′

k′′

k,k′ e
−itωk′′ ,k′ = δkk′ +

∑
k′′


k′′
k,k′ (e−itωk′′ ,k′ − 1). (C6)

and accordingly

d

dt
ATCL(t) =

(
− i

¯
H − ġ(t)

−
∫ t

0
ds

C(s) 
(s)

¯2

)
ATCL(t), (C7)

where 
(t) = ∑
k,k′,k′′ 


k′′
k,k′ (e−itωk′′ ,k′ − 1)|εk〉〈εk′ |. Then it is

simple to show that Eq. (3.16) holds, namely, that ATCL(t)
= aex(t) · a(t), where aex(t) = e−iHt/¯ − g(t) and a(t) is the ma-
trix solution of the differential equation, Eq. (3.19).

APPENDIX D: CORRELATION FUNCTION

For the Lorentz-Drude spectral density in Eq. (4.3) it is
known that

C(t) =
∞∑

k=0

ck e−νk t , (D1)

where

c0 = ¯λγ

(
cot

(
β¯γ

2

)
− i

)
, ν0 = γ, (D2)
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ck = 4λ

β

γ νk

ν2
k − γ 2

, νk = 2πk

β¯
. (D3)

The other quantities such as the line-broadening function g(t)
or the operator elements O(t) in Eq. (3.19) are then obtained
from the above expressions. A computer algebra system is
then used both for summing the resulting series and for per-
forming the analytic continuations. It is found that the opera-
tor elements and the broadening function can be written as a
combination of hypergeometric and polygamma functions.102

The latter are then implemented for the numerical
simulations.

Since the function in Eq. (D1) is holomorphic, the
results of the analytic continuation in Eq. (3.22) do not
depend on the particularly chosen path in the complex plane,
and even a completely numerical treatment should be well de-
fined. This point is important for extending the present results
for different spectral densities where analytical results are not
available.
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