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Abstract. Motifs are small subgraph patterns that play a key role to-
wards understanding the structure and the function of biological and
social networks. The current de facto approach towards assessing the
statistical significance of a motif M relies on counting its occurrences
across the network, and comparing that count to its expected count un-
der some null generative model. This approach can be misleading due
to combinatorial artifacts. That is, there may be a large count for a mo-
tif due to multiple copies sharing many vertices and edges connected to
a subgraph, such as a clique, that completes the multiple copies of the
motif.
In this work we introduce the novel concept of an (f, q)-spanning motif.
A motifM is (f, q)-spanning if there exists a q-fraction of the nodes that
induces an f -fraction of the occurrences ofM in G. Intuitively, when f is
close to 1, and q close to 0, most of the occurrences ofM are localized in
a small set of nodes, and thus its statistical significance is likely to be due
to a combinatorial artifact. We propose efficient heuristics for finding the
maximum f for a given q and minimum q for a given f for which a motif
is (f, q)-spanning and evaluate them on real-world datasets. Our methods
successfully identify combinatorial artifacts that otherwise go undetected
using the standard approach for assessing statistical significance.
Finally, we leverage the motif structure of a network to design MotifS-
cope, an algorithm that takes as input a graph and two motifsM1,M2,
and finds subgraphs of the graph whereM1,M2 occur infrequently and
frequently respectively. We show that a good selection of M1,M2 al-
lows us to find anomalies in large networks, including bipartite cliques
in social graphs, and subgraphs rated with distrust in Bitcoin markets.

Keywords: motifs, graph mining, statistical significance, anomaly de-
tection

1 Introduction

Network motifs, or small induced subgraph patterns, are known to play a key
role in understanding the structure and function of various real-world networks,
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especially biological [28, 40], and social networks [47]. For example the feed-
forward loop (FFL) is one of the most significant subgraphs in the transcription
network of the bacteria Escherichia coli. The FFL has three nodes corresponding
to transcription factors. The transcription factor X regulates a second transcrip-
tion factor Y, and together they bind the regulatory region of a target gene Z,
jointly modulating its transcription rate [27]. In social networks, triangles (K3s)
are known to appear frequently despite the edge sparsity of the network [49].
Ugander, Backstrom, and Kleinberg [47] showed that on the other hand social
networks have very few cycles of length 4 (C4s). This sheer contrast in the counts
of K3s and C4s relates to human nature. Specifically, friends of friends are typi-
cally friends themselves, thus introducing edges that create K3s but remove C4s
[49]. An FFL and a C4 are shown in Figure 1(a).

Y

X Z

(a) (b)

Fig. 1: (a) A feed-forward loop (FFL, top) and a C4 (bottom). (b) Figure
source [17]: the subgraph M on the left appears to be statistically significant
in the network G on the right due to the presence of a large independent set,
and a large clique in G. The independent set creates

(
12
3

)
stars with three leaves,

while the large clique creates
(
9
4

)
smaller cliques of order 4, resulting in a total

count of
(
12
3

)
×

(
9
4

)
occurrences, leading to the misleading conclusion that M is

a statistically significant motif. We refer to this phenomenon as a combinatorial
artifact, see also [32, 17].

The de facto current approach towards assessing the statistical significance
of a motif M involves two steps: (i) counting the occurrences of M in the input
graph, and (ii) comparing that count to the expected number of occurrences of
M under a null generative model. This approach has been widely used in the lit-
erature since the early 2000s [28, 40], but nonetheless has significant drawbacks.
The proper choice of the null model is a concern that was raised soon after the
publication of the seminal work of Milo et al. [28], see the comment by Artzy
et al. [1]. A suitable null model should generate networks similar to the input
graph, as otherwise there is a danger of incorrectly assessing a motif as statisti-
cally significant (or not) due to an ill-posed null hypothesis. Also importantly,
the current approach suffers from combinatorial artifacts. As observed originally
by Lior Pachter in his blog [32], as well as by Grochow and Kellis [17], the ex-
istence of large independent sets and large cliques can obfuscate the relevance
of the count of a motif. Consider the motif M with fifteen nodes corresponding
to proteins shown in Figure 1(b) on the left as originally shown in [17]. A node
connected with a line to a set of nodes enclosed by a circle/oval denotes that the
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node is connected to all the nodes within that set. The closed circle/oval shows
the topology of the set of nodes within it. For example, we observe that the node
in the middle left is connected to three isolated nodes, whereas the two nodes
in the middle (both left and right) are connected to four nodes that form a K4.
Figure 1(b) on the right shows the input network. Due to the existence of a large
independent set, and a large clique, the number of occurrences of M is equal to(
12
3

)
×

(
9
4

)
. Such a high count may lead to the misleading assessment that M is

statistically significant. Indeed, combinatorial artifacts occur frequently in real-
world networks, which often contain large cliques and independent sets, similar
to Figure 1(b).

In this work we contribute towards understanding the motif structure of a
network (directed or undirected) in the following ways:

• We propose the novel concept of an (f, q)-spanning motif. Specifically, a
motif is (f, q)-spanning if there exists a subset of nodes S that induces an f -
fraction of the motifs, while being a q-fraction of the node set V . Intuitively, if f
is close to 1, and q is close to 0, the motif is likely to be a combinatorial artifact.
Based on dense subgraph discovery tools [15], we propose a heuristic algorithm
that allows us to test in near-linear time whether a motif is (f, q)-spanning.

• We propose MotifScope, a novel framework that leverages frequently
and infrequently appearing motifs to find anomalies in real-world networks. Our
framework uses heuristics to find a subgraph that induces many copies of a motif
M2 and few copies of a motif M1. We show that our framework allows us to
find anomalies in social and trust networks.

• We perform an extensive experimental evaluation of various classical and
state-of-the-art generative models as null models for assessing statistical signif-
icance, which highlights their similarities and differences, as well as the impor-
tance of choosing the models.

2 Related Work

Motifs. A motif is typically a subgraph of constant size. The goal of understand-
ing the motif structure of a network spans numerous disciplines, ranging from
systems biology [51] to social network analysis [47] and socio-economics [55], as
it sheds light into the building blocks of networks [28]. Motifs have found vari-
ous algorithmic and machine learning applications, under the umbrella of higher
order methods [23, 2, 46, 52].

Assessing the statistical significance of a motif. The de facto approach
for deciding if a motif M is statistically significant or not relies on comparing
its frequency fM to its expected frequency in a null random graph model [28].
While other approaches to assessing the statistical significance of motifs have
been proposed, e.g., [4]; in this work we focus on the prevalent approach as
introduced by Milo et al. [28]. Given the null model, one samples a large number
of networks with the same number of nodes, and counts the frequency of M; let
f̄M, σM be the average number of occurrences of M and the sample standard
deviation, respectively. The z-score is defined as
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z-score(M) = zM =
fM − f̄M

σM
.

Observe that the z-score of a motif can be negative; motifs that have a large
negative score, and thus appear less often than expected, are sometimes referred
in the literature as anti-motifs [28, 29].

An important issue is the choice of the null model. A common choice is
the configuration model, or one of its variants [5, 14, 10]. This family of models
generates a random (di)graph with a given (in-, out-)degree sequence(s). The
configuration model was used in the influential works of Milo et al. [28, 29].
However, their approach has received valid critique for a variety of reasons, such
as the lack of spatial characteristics [20, 1].

The densest subgraph problem aims to find the subgraph with the max-
imum average degree over all possible subgraphs [16, 8]. Higher-order extensions
have been recently proposed that maximize the average density of a small motif
such as a triangle [44, 30]. For this problem, as long as the number of nodes in
the small subgraph is constant, there exist both efficient polynomial time exact
algorithms [44], and faster greedy approximation algorithms [6, 8].

Graph-based Anomaly Detection is an intensively active area of graph
mining [31], with diverse industrial and scientific applications. We discuss related
works in greater detail in the Appendix.

3 How to Address Combinatorial Artifacts?

Problem definition. As discussed in Figure 1(b), the significance of the motif
on the left hand side does not truly represent statistically significant recurring
independent motifs, but rather this motif arises because of a combinatorial arti-
fact [32]. It appears around 30 000 times in a PPI network of S. cerevisiae, while
its occurrences are concentrated into less than 30 nodes. To help clarify such
situations, we provide the following definition.

Definition 1. A motif M is (f, q)-spanning in graph G(V,E) if there
exists a set of nodes S ⊆ V such that |S| ≤ q|V | and the induced subgraph
G[S] contains an (at least) f -fraction of the occurrences of M in G.

We will (loosely) say the statistical significance of a motif M according to
some null generative model is a combinatorial artifact if it is an (f, q)-spanning
motif in G(V,E) with q ≪ 1, and f close to 1.5

5 It is worth outlining that forcing f = 1, and thus simplifying the definition above to
a (1, q)- or just q-spanning motif is not a robust in the following sense. Consider a
graph that is the union of a linear number of node disjoint triangles, and a clique of
order

√
n. Each node in the graph participates in a triangle, and thus when f = 1,

then q = 1. However, notice that most of the triangle occurrences appear in the
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Our definition of an (f, q)-spanning motif naturally introduces the following
optimization problem.

Problem 1. Given a motif M and a graph G(V,E), what is the largest
possible fraction f of occurrences of M among all subgraphs with (at
most) q|V | nodes for a given value of q?

We implicitly assume that the motif M appears frequently in the graph, and has
been assessed statistically significant according to some null generative model;
our goal is to understand whether its (apparent) significance is due to a combi-
natorial artifact or not.
Hardness. Problem 1 is NP-hard, and this holds both when we require S ⊆ V

to have exactly k = q|V | nodes, and at most k nodes. The reduction is straight-
forward, and we omit all details. The idea of the proof is that if we could solve
Problem 1, then by setting the motif M to be a simple undirected edge, we would
be able to solve densest-k-subgraph (DkS) problem, and the densest-at-most-k-
subgraph (DamkS) problems respectively. Furthermore, we know that these two
problems are close in terms of approximation guarantees: if there exists an α-
approximation algorithm for the DamkS problem, then there exists an O(α2)
approximation algorithm for the DkS problem. The best known approximation
factor for the DkS is O(n−1/4) due to Bhaskara et al. [3].

Theorem 1. Problem 1 is NP-hard.

We also provide a formulation which aims to optimize q for a given f , stated as
the next problem.

Problem 2. Given a motif M with m(V ) total occurrences in a graph
G(V,E), what is the smallest possible size q|V | of the union of a set of
f ·m(V ) occurrences for a given value of f?

The results of Chlamtač et al. [9] yield the following corollary.

Corollary 1 (Theorem 1.1 [9]). Problem 2 is NP-hard. Furthermore, there
exists an O(

√
m(V ))-approximation algorithm that runs in polynomial time.

This corollary relates to their results for the minimum p-union problem
(MpU). Consider a hypergraph where each hyperedge corresponds to an oc-
currence of a motif. Problem 2 can be restated as a minimum p-union problem
(MpU), with p = f ·m(V ). However, their approximation algorithm is not prac-
tical for our purposes as it relies on computing maximum flows or solving linear

small clique, i.e., O(
√
n)3) = O(n3/2)≫ O(n). Thus for f = O( n3/2

n+n3/2 ) = 1− o(1),

q suddenly becomes O(
√
n

n
) = o(1). Similarly, a graph could have multiple distinct

smaller combinatorial artifacts, in which case f might be a constant further from 1
(e.g., 3 small subgraphs with each around 1/3 of the motif copies).
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programs, and we are interested in motifs with a large number of occurrences. We
therefore propose a more efficient heuristic that works for both problem variants.

Algorithm 1: CombArt(G(V,E),M, f)

1 Initialize S∗
f = ∅ ;

2 Count the total number m of occurrences of M in G;
3 while m(S⋆

f )/m < f ∧m(V ) > 0 do
4 S ← GreedyPeeling(G,M);
5 S⋆

f ← S⋆
f ∪ S;

6 E ← E\E[S∗
f ] ;

7 Update the motif count m(V );
8 Compute m(S⋆

f );

9 / ∗ E[S⋆
f ] is the set of edges in the induced subgraph G[S⋆

f ] ∗ / ;
10 q ← |S⋆

f |/|V | ;
11 return q ;

Proposed Heuristic. Our heuristic is based on the polynomially time solv-
able higher-order extension of the densest subgraph problem (DSP) due to
Tsourakakis et al. [44, 30]. Our algorithm is shown in pseudocode as Algorithm 1.
The algorithm6 runs as a black-box a greedy peeling algorithm until an f -fraction
of the motif occurrences in the graph have been covered by the subgraph S⋆

f .
In each round, the greedy algorithm provides a 1

|V (M)| -approximation to the

optimization problem ρ⋆ = maxS⊆V
m(S)
|S| . Here, m(S) is the number of induced

occurrences of motif M in S. Once the algorithm has covered an f -fraction of
M-occurrences in G, we compute q as |S⋆

f |/n where n is the number of nodes in
G.

4 MotifScope: Anomaly Detection via Motif Contrasting
A reason statistical significance of motifs is considered a worthwhile issue for
study is because it gives us important information about graph structure. In-
deed, the existence of subgraphs that occur either frequently or infrequently can
have interesting algorithmic implications and applications. Here we consider the
problem of using motif counts to determine anomalies in a graph structure, such
as a social network. Our results utilize the following natural problem.

Problem 3. Given a frequent motif M1, and an occurring but infrequent
motif M2 in a graph G, find the subset of nodes S ⊆ V that maximizes
the average density difference

max
S⊆V

m2(S)

|S|
− m1(S)

|S|
.

6 While it aims to solve Problem 2, with minor changes it becomes a heuristic for
Problem 1.
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Intuitively, an induced subgraph G[S] that contains many induced copies of
M2, but few induced copies of M1 differs significantly from the global network
G with respect to those two motifs, and therefore possibly in other interesting
ways. To solve Problem 3, we use the dense subgraph discovery framework of
Tsourakakis et al. [45] with negative weights. We provide an extension of this
approach for contrast of motif structures as follows: each node v is associated
with a score score(v) that is equal to m2(v) − m1(v). Intuitively, we want to
remove nodes that have a large negative score, and keep nodes with a high
positive score. The pseudocode is shown in Algorithm 2. Assuming a method
MotifCount with time complexity f(M) for motif M, our algorithm runs in
O(n log n+m+ f(M)) time in the standard RAM model.

Algorithm 2: MotifScope (G,M1,M2)

1 mi(v) =# motifs of type Mi node v is contained in (i = 1, 2, v ∈ V (G));
2 n← |V |;
3 Hn ← G;
4 for i← n to 2 do
5 Let v be the vertex of Gi of minimum score, i.e.,

score(v) = m2(v)−m1(v) (break ties arbitrarily);
6 Hi−1 ← Hi\v;
7 Update counts m1(v),m2(v) for all v ∈ V ;

8 return Hj that achieves maximum average density m2(S)−m1(S)
|S| among His,

i = 1, . . . , n.;

Implications and applications. As a specific and important example of
the MotifScope algorithm, we explain how it can be used to find dense (near)-
bipartite subgraphs. In general, the problem of detecting a dense bipartite sub-
graph in a graph is NP-hard [25]. Finding such subgraphs is important in practice
since large bipartite subgraphs in social and trust networks are known to be rare,
and frequently correspond to anomalies, such as a collection of manufactured ac-
counts for illicit uses such as money laundering [43, 33]. To attack this problem
using MotifScope we leverage the fact that a bipartite subgraph does not con-
tain any triangles (K3s), which are otherwise common in social networks, but
will probably contain several induced cycles of length 4 (C4s), which are oth-
erwise rare in social networks [47]. Therefore we set M1 = K3 and M2 = C4.
While our approach is not guaranteed to output a bipartite graph (or even a
near-bipartite graph), we show that on real data optimizing for minimizing K3s
while maximizing C4s often yields a bipartite subgraph in practice. As a rule-of-
thumb for using MotifScope for anomaly detection applications, we propose
either using prior knowledge of important subgraphs (such as with the K3 and
C4 example above), or by choosing M1 to be one of the motifs with high z-score
and M2 to be one of the motifs with low z-score.
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5 Experiments

Datasets and Code. Table 1 summarizes the datasets that we use. We use
publicly available datasets from a variety of domains, including biological, so-
cial, power, and trust networks. The code was written in Python3. We pro-
vide both the code and the datasets anonymously at https://github.com/
tsourakakis-lab/motifscope.

Dataset |V | |E| Description Directed
S. cerevisiae [54] 759 1 593 PPI ×

C. elegans-PPI [54] 2 018 2 930 PPI ×
C. elegans-brain [51] 219 2 416 Connectome ✓

hamsterster [36] 2 426 1 593 Social ×
Eris1176 [36] 1 176 18 552 Power ×

Bitcoin-OTC [22] 5 881 35 592 Trust ✓
Bitcoin-Alpha [21] 3 783 24 186 Trust ✓

LastFM [38] 7 624 27 806 Social ×
Twitch-EN [37] 7 126 35 324 Social ×

Table 1: Summary of datasets.

Experimental Setup. The experiments are performed on a single machine,
with an Intel i7-10850H CPU @ 2.70GHz and 32GB of main memory. The motif
listing algorithm we use is due to Wernicke [50]. We focus on small-sized sub-
graphs. Figure 2 presents the 13 possible directed motifs of order 3; we shall
refer to each motif with their id, for example motif13 is the triangle with all six
possible directed edges.

1 2 3 4 5 6
7

8 9 10
11 12 13

Fig. 2: There exist 13 possible directed motifs of order 3.

5.1 Combinatorial artifacts

Table 2 summarizes the performance of CombArt algorithm on five different
networks. The second column of the table visualizes a motif of interest M. We
use a similar notation as [17], where a large node annotated as S − c (K − c)
represents an independent set (clique) with c nodes. We observe that real-world
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Dataset Motif Artifact
source Count (f, q)

S. cerevisiae
(
37
19

)
×

(
71
35

)
(1, 0.06)

C. Elegans-PPI
(
23
11

)
×

(
6
3

)
(1, 0.063)

hamsterster
(
21
10

)
×

(
20
10

)
(1, 0.027)

Eris1176
(
55
27

)
×

(
79
40

)
(1, 0.117)

C. Elegans-Brain - 1554 (0.8, 0.61)

Table 2: Motifs that are statistically significant from different networks due
to combinatorial artifacts. Subgraphs the motifs are clustered in are also listed
together with other statistics.

networks typically contain large cliques and independent sets, and thus there
exist various motifs whose significance will be a combinatorial artifact. The third
column summarizes the subgraph which causes the combinatorial artifact, while
the fourth and fifth columns show the motif count which happens to be also the
global count (f = 1), and the (f, q) values. As we observe, our novel definition
sheds light into assessing the significance of those motifs, by noting that f = 1
and q is a small fraction of the node set. In contrast, the FFL motif, which
is known to play a biological role, is (0.8, 0.61)-spanning, indicating statistical
significance is not due to a combinatorial artifact. We believe these examples
show our proposed method can be a significant enhancement to the current
approach of assessing the statistical significance of motifs.

5.2 MotifScope case studies

We show two case studies of MotifScope. The first is an algorithmic application
that attacks an NP-hard problem using prior knowledge about the appearance
of motifs M1,M2, while the second application first analyzes the network to
choose M1,M2.
Bipartite Subgraphs in Social Networks As we mentioned in Section 4, we
run MotifScope using M1 = K3,M2 = C4, aiming to find a subgraph that
induces many cycles of length 4, and few triangles. Our results are summarized
in Table 3 for four datasets. We report the total number of induced edges, and
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Dataset # edges # nodes in L # nodes in R

LastFM 124 21 37
Bitcoin-Alpha 24 5 9
Bitcoin-OTC 31 6 10
Twitch-EN 61 7 23

Table 3: Bipartite subgraph found by contrasting C4 and K3.

(a) (b) (c)

Fig. 3: Results on the Bitcoin-OTC network. (a) When no prior knowledge is
available, we use the z-scores. Here, we show the z-scores of the 13 motifs of order
3. (b) Precision and recall for various anomaly detection methods and Motif-
Scope (MS) using as (M1,M2) motifs (motif11,motif3), and (motif13,motif3),
see Figure 2 for the actual motifs. (c) Subgraph found by MotifScope for
(motif11,motif3). Distrust relations are colored red, and trust relations are col-
ored green.

the number of nodes in the bi-partition (L,R) of the output node set. Even
though our method is not guaranteed to output bipartite subgraphs, the output
subgraphs here were in fact all bipartite, i.e., all reported edges having one
endpoint in L and one in R.

Anomaly Detection in Trust Networks We use the Bitcoin-OTC network to
illustrate the use of MotifScope for anomaly detection on real-world networks.
In the Appendix we provide additional results for the Bitcoin-alpha network
and camouflage behaviors discovered by MotifScope. Since we have no prior
knowledge about the motifs in Bitcoin-OTC, we consider all motifs of order 3,
and we compute their z-scores. Figure 3a shows the z-scores of all 13 motifs. We
observe that motif 3 has the most negative z-score indicating that it appears
significantly less often than what we would expect in the directed configuration
model. On the contrary, motifs 11, and 13 appear significantly more often. Thus,
we use each of motifs 11 and 13 for M1, and motif 3 for M2.

The whole Bitcoin-OTC network contains 11% negative edges, which de-
note distrust. Figure 3b shows the precision and recall for MotifScope, and
popular graph anomaly detection methods that use dense subgraph discovery
methods, including Core-A and Truss-A from Corescope [41], EigenSpokes [34],
Holoscope [26], and Fraudar [18]. Here, we measure the quality of a subgraph S,
using: (i) the precision, namely the fraction of negative edges induced by S over
the total number of edges in S, and (ii) the recall, namely the fraction of negative
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edges in S over the number of negative edges in the whole graph. We observe
that our method outperforms competitors, finding subgraphs that induce a lot
of distrust. Figure 3c visualizes one such subgraph. It is worth noting that motifs
11 and 13 are strongly connected, indicating that in this dataset reciprocal edges
correlate with trust, whereas motif 3 is a directed chain that lacks reciprocity
and correlates with distrust.

Running times. Since our graphs are small to medium size, the main com-
putational bottleneck comes from computing motifs on a large ensemble of sam-
pled graphs from the null models. For instance, for Bitcoin-OTC, listing all motifs
of order 3 takes around 20 seconds per sampled graph, and the dense subgraph
discovery process (greedy peeling [8]) takes around 17 seconds.

6 Motif Significance and Null Models

As we have seen, the calculation of statistical significance depends on an un-
derlying null model. In this section we study the following questions, to better
understand similarities and differences among frequently used null models.

Q1 How robust is the significance (or lack thereof) of a given motif M across
different null models? Is there a consensus between different null models on
whether a motif is significant or not?

Q2 What are the sets of motifs that are statistically significant for different null
models, and how do these sets compare to each other? How similar are they
with respect to ranking motifs according to their z-scores?

Q3 How many samples do we need to generate from a null model, in order to
obtain a concentrated estimate of the expected motif count? Is this sample
size motif-dependent?

In looking at these questions, We consider seven null models summarized
in Table 4 and all 13 motifs of order three in Figure 2. The answer for Q3
is provided in the Appendix due to space constraints. We compare the null
models to the well studied C. elegans connectome. The network consists of 219
neurons and 2 416 synapses that are represented as nodes and edges respectively,
see also Table 1. The network we use corresponds to the adulthood of the C.
elegans, and was obtained via high-resolution electron microscopy by [51]. All
seven generative models we use are well-established in the literature, and they
span a period of time from the origins of random graph theory to the most recent
advances that involve deep-learning inspired models. Furthermore, we use graph
models with independent edge probabilities and dependent edge probabilities.
Considering both types of models is important as it was recently shown that
random graph models where each edge is added to the graph independently
with some probability are inherently limited in their ability to generate graphs
with high triangle and other subgraph densities [7]. Furthermore, for any sparse
graph, the configuration model is unlikely to generate a large clique. In contrast,
it is known that biological networks tend to contain cliques and independent



12 T. Chen et al.

sets [32]. For this reason, we also use state-of-the-art non-independent models
including the prescribed k-core model (KC) [48], and GraphRNN [53]. For a
detailed description of the models, see the Appendix (supplementary material).

Null Models
Directed Erdős-Rényi model (ER) [13]

Edge swap configuration model (ES) [19]
Chung-Lu model (CL) [11]

Partially directed configuration model (PD) [42]
Stochastic Kronecker graphs (KG) [24]

Prescribed k-core model (KC) [48]
GraphRNN (GRNN) [53]

Table 4: Null models used in our experiments, along with their abbreviation. The
first five models are edge independent, i.e., each edge {i, j} exists independently
from the rest with some probability pij , while KC and GRNN are not.

Is there consensus among null models? Mostly no. We use the de
facto approach as described in Section 2 to test whether a motif M appears
more often than expected (i.e., M is a statistically significant motif), or less
often than expected (i.e., M is a statistically significant anti-motif) with respect
to each of the seven null models. For each null model, we ensure that we have
obtained enough samples for a concentrated estimate of the expectation of each
motif M in Figure 2, by requiring that the coefficient of variation CV 2 =

σ2
M

f̄M
is

at most 10−2; the weak law of large numbers guarantees concentration, and is a
direct application of Chebyshev’s inequality.

For each motif motifi, i = 1, . . . , 13 we compute the percentage of the null
models that assess it as a statistically significant motif (type A), and anti-motif
(type B) respectively. Figure 4(a) summarizes our results. For example, motif
11 is assessed as a type A motif by one model, and similarly as type B by one
model. According to the five other models, it is not statistically significant in
either sense. Figures 4(b)-(g) provide a detailed overview of the assessment of
each model. Perhaps surprisingly, motif 8 is the single motif that is assessed
as statistically significant by all seven models. Previous research on other C.
elegans datasets have identified motif 8 as statistically significant in both the
male and hermaphrodite sexes [12]. One can construct motif 8 from motif 4,
the feedforward loop (FFL), by introducing one reciprocal connection. Analysis
of several species has shown that reciprocal connections are over-represented
in connectomes [39]. Interestingly, we do not find feedforward loops [28] being
statistically significant by several null models, and this can serve as a criterion for
the quality of null models but with caution. The absence of several motor neurons
in the analyzed connectomes could in part explain the reduced significance of
FFLs. There is a general hierarchy of neurons in C. elegans with sensory neurons
often connecting to interneurons and interneurons often connecting to motor
neurons. Although prior research finds the significance of FFLs within each layer,
many of the FFLs did contain one neuron of each type [35].
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(a) (b) ER (c) ES

(d) CL (e) PD (f) KG

(g) KC (h) GRNN (i) Spearman’s correlation

Fig. 4: (a) Histogram of models report each subgraph of size 3 as motif or
anti-motif. (b)-(h) Motif significance with respect to z-score by different random
graph models. Plots are clipped at a max value of 40. (i) Pairwise Spearman’s
correlation coefficient of motif z-scores of seven models.

Do null models’ rankings agree? Figure 4(i) shows Spearman’s corre-
lation coefficient of the z-scores respectively for all pairs of null models. The
results are illustrated as a heatmap with the similarity scale on the right. We
see that the partially directed configuration model is distinctively different from
the rest of the 6 models. We explain this difference due to the fact that C. ele-
gans has lots of reciprocal directed arcs, i.e., undirected edges, and thus it can
model this aspect better than other models in sparse graphs. We observe that
variants of the configuration model are not necessarily similar, a point raised by
[14]. GraphRNN produces qualitatively similar results to the partially directed
configuration model, but the z-scores are larger due to the fact that the directed
version does not capture the frequency of reciprocal edges, despite the wide
search of hyperparameters we performed (all details are included in the code).

In a nutshell, caution is required when choosing a null model. Non-independent
models, such as the KC and GRNN models, can possibly model complex depen-
dencies that create independent sets and cliques, as described in [7]. GraphRNN
seems to be a promising null model for modeling connectomes, although it may
not scale well to larger graphs.
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7 Conclusion

Understanding the importance of motifs in networks is a key problem in connec-
tomics, with a wide range of applications ranging from social network analysis
to machine learning. In this work we introduce the novel concept of an (f, q)-
spanning motif that addresses the major issue of combinatorial artifacts. We
show that determining the smallest value of q for which there exists a node set
of cardinality (at most) q|V | that induces an f fraction of the motifs is NP-
hard, and we design an efficient heuristic based on dense subgraph discovery
methods. Furthermore, we provide new insights into the importance of the null
model choice by an extensive empirical analysis of classic and state-of-the-art
generative models. Finally, we design the MotifScope framework that uses the
motif structure of a graph to detect anomalies.

Our work opens several interesting directions. What are the best non-independent
edge models as a null model choice? There is an ongoing line of research, with
graph RNNs being a recent example [7, 53]. Can we develop new generative
models that leverage motifs for C. Elegans and model its temporal evolution,
see also [47]?
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