
 

Aharonov-Bohm Phase is Locally Generated Like All Other Quantum Phases

Chiara Marletto 1,2 and Vlatko Vedral1,2
1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom;

Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore;
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore

2ISI Foundation, Via Chisola, 5, 10126 Torino TO, Italy

(Received 19 August 2019; accepted 30 June 2020; published 22 July 2020)

In the Aharonov-Bohm (AB) effect, a superposed charge acquires a detectable phase by enclosing an
infinite solenoid, in a region where the solenoid’s electric and magnetic fields are zero. Its generation seems
therefore explainable only by the local action of gauge-dependent potentials, not of gauge-independent
fields. This was recently challenged by Vaidman, who explained the phase by the solenoid’s current
interacting with the electron’s field (at the solenoid). Still, his model has a residual nonlocality: it does not
explain how the phase, generated at the solenoid, is detectable on the charge. In this Letter, we solve this
nonlocality explicitly by quantizing the field. We show that the AB phase is mediated locally by the
entanglement between the charge and the photons, like all electromagnetic phases. We also predict a gauge-
invariant value for the phase difference at each point along the charge’s path. We propose a realistic
experiment to measure this phase difference locally, by partial quantum state tomography on the charge,
without closing the interference loop.

DOI: 10.1103/PhysRevLett.125.040401

In the Aharonov-Bohm (AB) effect, a charge q is
superposed across two paths enclosing a magnetic field
B0, usually produced by an infinite solenoid [1] (Fig. 1).
The AB phase is the phase difference between the paths,
ΔϕAB ¼ ðq=ℏÞ HS B0 · ds, S being the surface enclosed by
the paths.
The AB phase has been considered anomalous for

various reasons [2–7]. In the semiclassical model, where
a classical background field interacts with a quantum
charge, the phase appears to be nonlocally generated.
The classical electromagnetic (EM) field is zero where
the wave function of the charge is nonzero, so the phase
cannot occur by the EM field acting locally on the charge.
One can still explain it via local action on the charge, but
only via the vector potential, A (B0 ¼ ∇ ∧ A), whereby
ΔϕAB ¼ ðq=ℏÞ H A · dl. This is also problematic, as the
vector potential is not a physical observable. Hence the AB
phase has been considered different from all other quantum
EM phases.
Here we expose an additional, crucial consideration,

proving that the AB phase is no more problematic than any
EM quantum phase. We notice two separate problems (so
far confused): (i) whether the AB phase is generated via
local interaction of gauge-independent fields with charges,
and (ii) whether the AB phase is locally acquired by the
charge along its path. By “locally acquired” we mean that,
for any two points, rL on one branch of the superposition,
rR on the other, there is a gauge-independent phase
difference, detectable by measuring observables of the
charge locally at each point, via tomography. Our Letter

addresses problem (ii), proposing an experimental scheme
to test our predictions. A solution to problem (i) was
proposed by Vaidman [3]. In his model, the AB phase is
generated by the EM field of the charge acting on the
solenoid’s charges. Vaidman’s key idea is that the phase is
generated by the solenoid being reversibly entangled with
the charge. Kang proposed a Lagrangian bearing out
Vaidman’s model [7,8] (see also [9]). We call these models
field based (the fields couple directly with charges) as
opposed to the potential-based model, where the charge is
coupled to the potential A. Pearle and Rizzi [10] provided a
unified quantum treatment, explaining for each model
which of the three elements (solenoid, charge, and EM
potential) is treated classically or quantum mechanically.

(a) (b)

FIG. 1. (a) A Mach-Zehnder-like setup for the AB effect. C is
the charge, S the solenoid. (b) Quantum network for the AB phase
generation along the charge’s path, via a local gate U ¼
expðiHABÞ defined at each point rcðtÞ, involving the photon field.
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Now, the proposed field-based models are still nonlocal
because they do not explain how the phase, generated by
interactions at the solenoid, is detectable by measuring
observables of charge only. Therefore they solve problem
(i) but not problem (ii). Here we address problem (ii) with a
fully quantum model (where the EM field, the charge and
the solenoid are quantized). Expanding on Vaidman’s
entanglement-based insight, we explain how the AB phase
is mediated by the entanglement between the photons and
the charge, achieved by local quantum coupling between
the sources and the quantized EM field (which Vaidman’s
model does not describe, given that it treats the field as
classical). We predict how the charge observables depend
on the phase difference point by point along the paths,
bearing out Vaidman’s [3] and Kang’s analyses [7,8] but via
a fully local account, where the EM field is quantized. Our
model also vindicates (in quantum field theory) the con-
jecture that the locality issues in the AB effect are resolved
by considering joint gauge-transformations of both the
charge field and the vector potential [2]. Our quantised
model also expands on [11], by proving that the AB phase
is locally acquired, gradually along the charge’s path.
The key to addressing problem (ii) is to quantize the EM

field. The interaction between the superposed charge and
the quantized field fully accounts for how the AB phase is
acquired locally, i.e., point by point along the charge’s path,
just like for any other quantum phase. This local account
is equivalent (not dramatically different [5]) to that of
all EM phases. Remarkably, our model produces a gauge-
independent prediction for the phase difference at each
point along the charge paths. Our prediction is testable:
we propose an experiment to measure the phase difference,
without closing the interference loop coherently. We also
address major problems of previously proposed schemes
[7,8] related to charge conservation or fermionic super-
selection rules [7,8]. We obviate this problem by a state
tomography in the subspace of a two-charge system,which is
compatible with the superselection rules.
The quantum model.—The AB phase is generated by the

quantized version of the classical problemwhere two sources
interact electromagnetically, one of which (the charge in
our case) is slowly varying [12]. Here we approximate the
charge-solenoid interaction with two processes (adiabatic
approximation): one is the charge’s motion, with velocity
v ≪ c, along a (possibly superposed) path; the other, defined
for each point rc along the charge path, is the process by
which photons mediate the interaction between the charge
and the solenoid, on the scale of the light speed c. We will
focus on the latter, as it is the only relevant one. We model it
by a phase gate U that establishes the phase between two
static sources (the charge at rc and the solenoid at rs). Overall
the effect is not static, because the charge distribution is
nonstationary (albeit slowly varying).
Consider the charge located at rc, the solenoid at rs and

the EM field F, whose observables act on the space

H ¼ HC ⊗ FR ⊗ HC, where eachHC is the Hilbert space
of a single qubit and F denotes the Fock space of the
photon field.
We model the charge as a qubit, whose observables are

generated by ðqðCÞx ; qðCÞy ; qðCÞz Þ; qðCÞz represents the observ-
able “whether the charge is on the left or on the right of the
solenoid”: its eigenstate j0i represents a sharp position at
rL (with eigenvalue−1) and j1i at rR (with eigenvalueþ1).
The charge’s dynamical evolution allows it to assume sharp

values of qðCÞz , but also sharp values of the complementary

observable qðCÞx (when the charge is superposed across two
points rL on the left and rR on the right of the solenoid):
thus the charge is quantum. The solenoid is also modeled as

a qubit, whose z component qðSÞz represents its presence or
absence from the relevant point in the interferometer, but it
is in the classical regime. Each component of the charge
qubit is a generator of the Pauli algebra on H, represented

as qðCÞα ¼ σα ⊗ I ⊗ I where σα, α ∈ fx; y; zg is the
element of the Pauli matrices operating on HQ; like-

wise, qðSÞα ¼ I ⊗ I ⊗ σα.
The field consists of N harmonic oscillators in momen-

tum space, each mode k represented by bosonic creation
and annihilation operators ak; a

†
k, with ak ¼ I ⊗ âk ⊗ I

and âk is the annihilation operator acting on the mode k in
F only.
The Hamiltonian (in the Coulomb gauge) [12] reads:

HAB ¼ ECq
ðCÞ
z þ ESq

ðSÞ
z ð1Þ

þ
Z

d3kℏωka
†
kak ð2Þ

þ
Z

d3kgk
q
m
p ·ukðakeikrc þa†ke

−ikrcÞqðCÞz

þ
Z

d3k
Z

d3xgkj ·ukðakeikxþa†ke
−ikxÞqðSÞz ; ð3Þ

where EC and ES are the charge’s and solenoid’s free
energies, gk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2ϵ0Vωk

p
(V is the standard quantization

volume), ωk and k represent the photon frequency and
wave number of the kth mode, uk is the unit polarization
vector for mode k, p is the electron’s momentum, and
jðx − rsÞ is the solenoid’s current distribution. One can
recognize in the above formula the quantized vector
potential: AðxÞ ¼ R

d3kgkukðakeikx þ a†ke
−ikxÞ. (We sup-

pressed the polarization index as it is irrelevant.)
Note that in the Coulomb gauge, the relation between the

vector potential and the magnetic field is, at all times,
nonlocal: the vector potential at point x is expressed as a
function of the magnetic field at other points in space, see,
e.g., [13]. Hence the reader might be concerned about
our model being expressed in this nonlocal gauge. This
is not a problem, because our aim is to show how a
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gauge-independent phase difference between any two
points rL and rR is gradually acquired by the charge, in
such a way that it is detectable by local action at each of
these points. This is sufficient to prove that the AB phase is
generated locally, like any other EM phase. We have chosen
the Coulomb gauge for convenience; however, as we shall
explain, the phase difference along the path has a gauge-
independent expression: the same prediction could be made
via any other gauge. Whether or not in each of these gauges
the vector potential (appearing in the Hamiltonian) has a
local relation with the EM fields is not relevant for our
discussion. The fact that it does not have a local relation to
the magnetic field in the Coulomb gauge does not invali-
date our claim: that the AB phase difference is locally and
gradually acquired along the path and detectable by acting
locally on the charge.
The phase generation.—The Hamiltonian acts on a fixed

time interval τ (representing the time for light to travel
from the charge to the solenoid and back again):
U ¼ exp ½−ði=ℏÞHABτ�. Define Ck ¼ ðq=mÞgkp · uk and
Gk ¼ gkjðx − rsÞuk. Assuming that the charge is in a
sharp position state j1i at rc and the solenoid is in a sharp
position state j1i at rs, the vacuum-to-vacuum transition
amplitude is

h1jch0jFh1js exp
�
−i

HAB

ℏ
τ

�����1icj0iFj1is
¼ expf−i½ξþ ϕðrc; rsÞ�τg; ð4Þ

where

ξ ¼ 1

ℏ

Z
d3k

Z
d3x

�
EC þ ES þ 4

C2
k þ G2

k

ℏωk

�

is a phase that does not depend on the mutual position of
solenoid and charge; while the position-dependent phase is

ϕðrc; rsÞ ≐
1

ℏ

Z
d3x

Z
d3k

�
8
CkGk

ℏωk
cos ½k · ðrc − xÞ�

�
:

As customary in quantum gates, we will set τ ¼ 1 from
now on. By noticing the identity:

Z
d3k

�
8
CkGk

ℏωk
cos ½kðrc − xÞ�

�
¼ q

mϵ0c2
p · jðx − rsÞ
jrc − xj ;

we obtain the useful expression for the point-by-point
phase of the charge:

ϕðrc; rsÞ ¼
1

ℏ
Eðrc; rsÞ; ð5Þ

where we have introduced the interaction energy between
a charged particle and an infinite solenoid (a gauge-
independent quantity):

Eðrc; rsÞ ¼
1

2

Z
V

�
B0Bc

μ0
þ ϵ0EsEc

�
d3r:

Here, Bc and Ec are the classical magnetic and electric
fields generated by the charge located in rc; B0 and Es are
the electric and magnetic fields generated by an infinite
solenoid positioned in rs.
In the approximation where the charge velocity v is

much lower than the light speed [14]:

Eðrc; rsÞ ¼
qvB0Sx

2πðx2 þ y2Þ ;

where S is the solenoid cross section; x and y are the
Cartesian coordinates of a coordinate system whose z axis
coincides with the normal to the solenoid cross section and
the y axis is parallel to the direction of motion of the
electron before and after the interferometer, as represented
in Fig. 1(a).
Suppose the Hamiltonian acts on an initially superposed

state between locations rL and rR, where the location of
the charge rc is not sharp: jþicj0iFj0is, where jþic ≐
ð1= ffiffiffi

2
p Þðj0ic þ j1icÞ. By linearity, h1jch0jFh1js½Uð1= ffiffiffi

2
p Þ×

jþicj0iFj0is� depends on the phase difference

ΔϕðrL; rRÞ ≐ ϕðrR; rsÞ − ϕðrL; rsÞ ¼
2

ℏ
jEj: ð6Þ

This is the phase difference available on the charge when
it is superposed across any two points rR and rL, as
promised. It is a gauge-independent quantity [7], corre-
sponding to the field energy variation due to the charge,
point by point along the charge’s path. The full AB phase
ΔΦ, concurring with the standard approach, is obtained by
integrating ΔϕðrL; rRÞ along a circular path, assuming
v ¼ πρ=tloop, where ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2Þ

p
is the radius of the

circle and tloop is the total time taken by the charge to travel
on the semicircle.
The Heisenberg picture.—In our model, one can track

how the x component of the charge qubit directly depends
on the phase using the Heisenberg picture. Suppose that the

initial values of the charge observables are qðCÞα , represented

in terms of Pauli matrices. The Hamiltonian leaves qðCÞz

unchanged, while the component qðCÞx changes as follows:

qðCÞx → U†qðCÞx U;

where U ¼ exp ½−iðHAB=ℏÞτ�. Setting τ ¼ 1,

U†qðCÞx U ¼ ðα cos θ − β sin θÞqðCÞx

þ ðβ cos θ þ α sin θÞqðCÞy ; ð7Þ

where
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θ ≐ EC þ ϕðrc; rsÞqðSÞz ;

α ≐ cos

�Z
d3k

Ck

ℏωk
½expð−ikrcÞa†k þ expðikrcÞak�

�

and

β ≐ sin

�Z
d3k

Ck

ℏωk
½expð−ikrcÞa†k þ expðikrcÞak�

�
:

By assuming the Heisenberg state to be jþicj0iFj1is, the
expected value of the observable U†qðCÞx U is nonvanishing
and depends on the phase difference ΔϕðrL; rRÞ: thus
measuring a function of this observable provides access
to the phase along the path without closing the loop
coherently.
An experimental proposal.—We now explain how to

access the phase along the path by performing quantum
tomography with another reference charge. One has to
define a procedure to extract the phase difference
ΔϕðrL; rRÞ without closing the interferometer coherently,
because the latter would be tantamount to measuring the
full AB phase. We adopt the picture of mode entanglement
[15], where the charge qubit consists of two spatial modes
(left or right), each of which can contain 0 or 1 particles.
The Hadamard gate (Fig. 1) is an entangling operation
between the path degree of freedom and the number of
particles (0 or 1) on the path [15].
Assume that the charge is an electron. Let b†L, bL be

fermionic creation or annihilation operators for it to be in a
spatial mode xL on the left of S; and b†R, bR be fermionic
creation or annihilation operators for the electron to be in
a spatial mode xR on the right. The state where the charge
is superposed across two locations is 1=

ffiffiffi
2

p ðj01i þ j10iÞ
where j01i ¼ b†Lj0i, j10i ¼ b†Rj0i and j0i is the fermionic
vacuum. Our Hamiltonian will produce the state
1=

ffiffiffi
2

p ½j01i þ expðiΔϕÞj10i� where the phase Δϕ is a
function of the points rL, rR across which the electron
is superposed and it is locally generated, as computed in
our model.
Measuring the phase directly by local tomography on the

charge only is impossible, because of fermionic and charge
superselection rules, which impede measurements of
observables such as bL þ b†L [16]. Crucially, the phase
difference can still be reconstructed by utilizing another
reference electron [17] and local tomography (on the left
and right sides) involving the same number of electrons,
without violating any superselection rule. This is an effective
way of measuring the aforementioned x component of
the electron qubit, without closing the interferometer loop
coherently—i.e., with only decoherent communication
between the two sides—thus guaranteeing that the measured
phase is not a closed-loop type phase.

Consider a reference electron (labeled as B) superposed
across the two paths, which does not pick up the AB phase
(unlike electron A, which does), as follows - see Fig. 2.
Suppose electron B and the electron A are both in the

lower semiplane defined by a line passing through the
solenoid. The solenoid is initially switched off and electron
B is superposed across two locations. Then the solenoid is
switched on and brought to the desired stationary current
to cause the AB effect on A. This transient will cause a
relative phase to appear on B. But (i) this phase is not
AB-like (because it is induced locally on B by the nonzero
electric field produced by the transient current), and (ii) it is
a fixed controllable offset, so we can in principle set it to
zero. Electrons A and B will be therefore in the state:

1

2
½j0L1RiA þ expðiΔϕÞj1L0RiA�ðj0L1RiB þ j1R0LiBÞ;

where expðiΔϕÞ is the AB phase difference across the two
points ðrL; rRÞ along the path of the electron. One can
group the terms relative to the left and to the right modes,
as follows:

1

2
× j0A0BiLj1A1BiR þ expðiΔϕÞj1A1BiLj0A0BiR
þj0A1BiLj1A0BiR þ expðiΔϕÞj1A0BiLj0A1BiR: ð8Þ

In the branches where only one charge is present on the
left and right arms (second line of the above equation), the
phase can be detected by measuring, locally on the left and
on the right, observables whose eigenstates are super-
positions of j0A1BiL and j1A0BiL: likewise for the right
side. Measuring these observables does not violate charge
conservation or fermionic superselection rules. By local
tomographic reconstruction of the one-particle sector of the
above state, one can retrieve the phase difference at any
point along the path without closing the interferometer
coherently as promised. This protocol differs from that in
[18], because the latter measures the full phase AB
coherently by requiring that the electron and a positron
imprint it onto a photon by annihilating halfway through
the interference experiment. Here, instead, the electrons

FIG. 2. Left: the referenceelectronA is superposedacross the left
(L) and right (R) modes; the solenoid is off. Center: the solenoid
gradually reaches the desired current value; electron A acquires a
fixedrelativephase.Right:ElectronBissuperposedacrossLandR,
acquiring theABphase. JointmeasurementsofAandB, local to the
left and right modes, reconstruct the partial AB phase.
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A and B do not enclose the solenoid coherently. A similar
conclusion could be reached with other experiments. For
instance, if light took longer to complete a round trip
between the electron and the solenoid, compared to time
for the electron to perform full interference, our model
predicts that no AB phase would be observed, while the
semiclassical models would predict that the phase should
be observed. This could be tested in principle by inserting a
material that slows photons appropriately between the
electron and the solenoid.
Discussion.—Observing the locally built up phase

refutes the idea that the AB phase is anomalous because
of its nonlocality [5]. An experiment implementing the
suggested tomographic reconstruction of the partial phase
would rule out all models maintaining that the phase is
created nonlocally and that it is observable only once the
path is closed. It could not be explained by the semi-
classical field-based models [2,3,7] either, because they do
not explain how the phase, generated at the solenoid, travels
to the electron where it is detected.
The local phase build up does not contradict the fact that

the EM observables must be functions of (gauge invariant)
quantities, i.e., integrals of the vector potential along closed

loops, such as eiq
H

Adx. For any fraction of this phase is
also observable, e.g., its nth root,

ffiffiffi
n

p
expfiq H Adlg. This

fractional phase is acquired during the journey of the charge
on the path that is n times smaller than the one that is
required to close the interferometer (assuming that the
charge travels at a constant speed).
Our model shows that the AB effect is important not

because it is based on a nonlocalmechanism, but because it is
the unique case where models treating the EM field as a
classical background are inadequate—they all require some
nonlocality. Given the role of entanglement in the AB phase
[3] modeling the field as a classical background is bound to
lead to apparent nonlocality. As recently proved, a classical
mediator cannot locally induce entanglement between
two systems [19]. Also, if the EM field is modeled as a
collection of quantum harmonic oscillators, one can no
longer say that the field “is zero” at a particular point.
Even when the EM field is in its vacuum state (the expected
values of the field components are zero), its observables
consist of (nonzero) q numbers, locally coupled with the
charge’s and the solenoid’s q numbered observables. We
conjecture that our quantum treatment can explain some of
the variants of theAB effect experiment [4]. This is because it
explicitly includes the interaction of the chargewith photons.
As argued, there are two different problems: (i) whether

there is a model for the AB phase expressed in terms of
fields only, and (ii) whether the AB phase is generated
locally as all other EM phases, i.e., whether it is built up
gradually along the charge’s path. Vaidman’s model

addresses (i), but it still has nonlocality. Our model
addresses (ii), using a model with the (quantum) vector
potential, in the adiabatic approximation. An outstanding
problem is finding a local quantum-field theory
Hamiltonian expressed with fields only. However, this is
not a special issue arising in the AB effect: it affects all EM
Hamiltonians with interactions.
Our experimentally testable quantum model has thus

lifted the doubt on whether the AB phase is generated by a
special, nonlocal type of EM interaction. As we explained,
it is not.
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