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In this paper we introduce a novel stochastic local search algorithm to re-
construct phylogenetic trees. We focus in particular on the reconstruction of 
language trees based on the comparison of the Swadesh lists of the recently 
compiled ASJP database. Starting from a generic tree configuration, our scheme 
stochastically explores the space of possible trees driven by the minimization 
of a pseudo-functional quantifying the violations of additivity of the distance 
matrix. As a consequence the resulting tree can be annotated with the values of 
the violations on each internal branch. The values of the deviations are strongly 
correlated with the stability of the internal edges; they are measured with a novel 
bootstrap procedure and displayed on the tree as an additional annotation. As 
a case study we considered the reconstruction of the Indo-European language 
tree. The results are quite encouraging, highlighting a potential new avenue to 
investigate the role of the deviations from additivity and check the reliability and 
consistency of the reconstructed trees.
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1.	 Introduction

The reconstruction of phylogenetic trees belongs to a general class of inverse prob-
lems whose relevance is now well established in many different disciplines ranging 
from biology to linguistics and social sciences (Felsenstein 2004). In a generic inverse 
problem one is given a set of data and has to infer the most likely dynamical evolution 
processes that presumably produced the given data set. Historical linguistics (Renfrew 
et al. 2000) represents a clear example of an inverse problem. In this case the available 
data sets are list of homologous (lexical, phonological, syntactic) features or characters 
for many different languages: a parallel corpus whose compilation represents a para-
mount achievement in linguistics. In the 1950s Swadesh (1952, 1955) first proposed 
an approach to comparative linguistics that involves the quantitative comparison of 
lexical cognates, an approach named lexicostatistics. Since then many different ap-
proaches have been proposed to infer phylogenies (Felsenstein 2004) to overcome the 
difficulties related to this task. The main issue in inferring phylogenies concerns how 
to cope with the deviations of the underlying evolutionary process from a purely phy-
logenetic process, i.e., a process correctly represented by a tree. Mathematically one 
speaks of deviations from additivity of the phylogenetic tree. Additivity is a specific 
property of the distance matrix between taxa. Below we explain in detail the notion of 
additivity. Here recall that the sources of deviations from a purely phylogenetic process 
of the evolution of languages (i.e., the deviations from additivity of the associated dis-
tance matrix) are manifold: borrowings from other languages (a phenomenon dubbed 
horizontal transfer in evolutionary biology), inhomogeneous mutation rates of dif-
ferent characters, and the high probability, especially on extremely long phylogenies, 
that a given character may undergo multiple mutations. All these phenomena affect in 
different ways the natural evolution of languages concurring at a departure from the 
property of additivity.

Identifying the possible sources of non-additivity and their effects in a given data 
set is an open and challenging problem (Nakhleh et al. 2005). Additional difficulties 
are related to the accuracy of the data sets available as well as to the lack of suitable 
realistic benchmarks to be used to test the performances of the different algorithms. 
Also, when considering artificial benchmarks, the estimation of the performances can 
depend on the specific underlying artificial evolutionary scheme chosen.

In this paper we focus on distance-based methods whose basis is the computa-
tion of a suitable matrix of distances among all the taxa. This matrix is then typically 
analyzed by hierarchical clustering methods such as Neighbor-Joining (Saitou & Nei 
1987), Fitch (Fitch & Margoliash 1967) or the more recent short-quartet method (Snir 
et al. 2008) and FastME (Desper & Gascuel 2002).

At the heart of our new algorithmic scheme are the notions of quartet and of 
quartet frustration. Both will be explained in detail later. Here it is enough to say that 
a quartet is a set of four taxa whose distances allow to define a mathematical relation 
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(i.e., the quartet frustration) that quantifies the deviations from a pure phylogenetic 
process. Quartets are thus a powerful mathematical tool to be exploited in novel al-
gorithms able to cope with deviations from additivity. Following a concept already 
introduced in Snir et al. (2008), we propose to weight the different quartets accord-
ing to their length in order to reduce the effect of those configurations that are more 
likely to have accumulated larger departures from additivity. It is important to stress 
here that we are not assuming any molecular clock hypothesis nor the independence 
of the rate of mutation of the different characters. We will show indeed that the per-
formances of our algorithm on artificially generated dataset where neither molecular 
clock nor independent mutation rates are present, clearly outperform other state-of-
the-art strategies.

In particulare we introduce a new algorithm belonging to the more general class 
of Stochastic Local Search (SLS) strategies (Hoos & Stützle 2005) that allow solving 
complex problems where the target is to find the best solution in a huge space of pos-
sible solutions to a given problem. Far from being random, the exploration of the solu-
tions space is performed in a stochastic way driven by some insights on the structure 
of the space itself. We shall be more detailed in the following. Our new algorithm has 
been tested first on artificially generated phylogenies and finally on the reconstruction 
of the Indo-European language tree. In addition to the usual reconstruction we anno-
tate the tree with two measures of violation of additivity and stability of the different 
tree partitions. The results are quite encouraging, highlighting a potential new avenue 
to investigate the role of the deviations from additivity and check the reliability and 
consistency of the reconstructed trees.

The outline of the paper is as follows. §2 discusses the violations from additivity 
and introduces the notion of four-points (or quartets) condition and the distance ma-
trix based approach to calculate the tree length, which will be crucially used in our 
approach. §3 introduces our novel stochastic local search algorithm briefly reporting 
about its performances with respect to known state-of-the-art algorithms. §4 intro-
duces the dataset used as well as the technique to compute the distance matrix. §5 
reports our results for the reconstruction of our annotated language tree of Indo-Eu-
ropean languages. Finally in §6 we discuss the relevance of our results and we draw 
some conclusions.

2.	 Violations of additivity

Additive trees can be characterized by a number of different, but equivalent, defini-
tions that rely on the properties of the distances between taxa. Although different types 
of distance can be used in the context of languages, the following definitions do not 
depend on their specific choice. Let us consider a set of N taxa and the set of all their 
possible pairwise distances: these can be encoded in a N × N symmetric matrix D, 
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where the symmetry of the matrix reflects the symmetry of the distance between two 
taxa: the matrix element D(a,b) represents the distance between the taxa a and b and it 
is equal to the matrix element D(b,a) that represents the distance between b and a. The 
matrix D is said to be additive if any given pairwise distance D(a,b) can be recovered as 
the sum of the branch lengths in the path connecting the two taxa on the N-taxa tree. 
This definition is very intuitive, though it does not indicate any concrete strategy for 
deciding whether a given distance matrix D is additive or not: an interesting equivalent 
and more operative definition is the following.

2.1	 Four-points condition

Let us consider a subset of four taxa, say a, b, c, d and let D be the corresponding N × N 
distance matrix. We can consider the following sums:

		  D1 = D(a,b) + D(c,d), D2 = D(a,c) + D(b,d), D3 = D(a,d) + D(b,c).� (1)

The four taxa are said to satisfy the four-points condition if two of the above sums have 
the same and the greatest value. This is expressed in the following relations:

		  D1 < D2 = D3 or D2 < D1 = D3 or D3 < D1 = D2.� (2)

A N × N distance matrix D is said to satisfy the four-points condition if the condi-
tion is satisfied by each possible group of four within N taxa. It is easy to realize that 
an additive distance (according to the definition in the previous subsection) satisfies 
the four-points condition. In order to show this statement, see Figure 1: here D1 cor-
responds to the shortest of the three distances and it is indicated by the dashed blue 
path. The other two equal distances are those covering the path drown in red and are 
clearly larger than D1, since they include the length of the link x.

Such a situation is general since it holds for any four taxa on a tree. The four-points 
condition provides a useful characterization of the additive property since, given a dis-
tance matrix, it is easy to scan all quartets (groups of four taxa) and to check whether 
the condition holds. When considering real data the additivity is typically always vio-
lated and so is the four-points condition. Therefore, in order to set up a robust method 
to reconstruct phylogenies based on the four-points condition, it is necessary to relax 
the requirements and to quantify violations from additivity in a suitable alternative 
way. This leads to the definition of the soft four-points condition.

2.2	 Soft four-points condition

Let us again consider the example illustrated in Figure 1: focusing on the four taxa a, b, 
c, d, the branch marked with an x splits the tree in such a way that the taxa a, b are on 
one side while the taxa c and d are on the other. In the previous subsection we stated 
that, if D is additive, D(a, c) + D(b, d) = D(a, d) + D(b, c), and both D(a, c) + D(b, d) and 
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D(a, d) + D(b, c) are greater than D(a, b) + D(c, d). In the soft four-points condition, 
we only require that the second relation holds. In practice we relax the requirement on 
the equality of two sums but we do require that the smallest sum correctly reflects the 
split of the tree: in our example we thus require that D(a, b) + D(c, d) is the smallest 
sum. We will say that a quartet is frustrated if it does not satisfy the soft four-points 
condition. Moreover, we can quantify the degree of dissatisfaction by introducing the 
quartet frustration. It is clear that, in order to check whether the soft four-points con-
dition is satisfied, the distance matrix is not enough but one also needs a tree topology, 
which provides the split. Henceforth, we indicate with the shorthand notation (ab : cd) 
the situation in Figure 1, where a, b sit on one side of the tree and c, d on the other. 
Recalling the definitions of D1, D2, D3 in Eq. 1, we thus define the quartet frustration, 
which quantifies the deviation from the situation in which D1 is the lowest distance:

		  F(ab:cd) = max(0, D1 − min(D2, D3))� (3)

The function max returns the maximum between 0 and the second argument, so that 
the frustration is always non-negative, and it equals zero when D1 is the minimal dis-
tance, that is the soft four-points condition is satisfied. The function min returns the 
minimum of the two input arguments.

Figure 1.  Definition of a generic quartet a,b,c,d. We refer to equation (1) and we consider 
an additive distance D. We represent directly the correct topology, i.e. a topology that 
does not violate the soft four-points condition (here also the four-points condition is not 
violated). We indicate with a blue dotted line the shorter distance D1, and with a red line 
the two equal distances D2 = D3 (note that the two paths relative to D2 and D3 overlap 
completely). In this case, D2 = D3 = D1 + 2 x, where x is the length of the common edge 
transversed twice by both D2 and D3. If we considered a topology where the taxa b and 
c are swapped, the shorter distance D1 is the sum of distances of couples of taxa, a and b, 
and c and d, where the elements of each couple do not lie in the same side of the tree; this 
configuration would thus violate the four-points condition and also the soft one.
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Figure 2.  Definition of the Pauplin distance

2.3	 Calculation of the tree length from the distance matrix

We introduce a formula due to Pauplin (2000) whose computed value is equal to the 
tree length (defined as the sum of the lengths of all the tree branches) when the dis-
tance matrix considered is additive. In this formula the distances between any pair of 
taxa appear opportunely weighted. The rationale in using the distances between taxa 
to calculate the tree length is the following: when the distance matrix D is additive, 
the distance D(a,b) is the sum of the length of the branches of the tree in the path 
connecting a and b. Thus, if we consider all such paths, we cover the tree length more 
than once, and different branches are counted more than once. Pauplin’s formula takes 
into account this effect by introducing weights in order to correctly estimate the tree 
length. The easiest way to introduce weights is the following: let us first define the 
topological distance τ(a,b) between any two taxa a and b as the number of nodes (or 
vertices) in the path connecting them. This number is equal to the number of branches 
in that path, minus one. Each distance D(a,b) is weighted by 2−τ(a,b).

A very simple example is described in Figure 2. In this case D(a,b) = 4, D(a,c) = 3, 
D(b,c) = 3, while the topological distance between every pair of taxa is 1, because one 
has to cross only one node to go from one taxa to any other.

Therefore Pauplin’s distance is easily computed as:

		  LP = D(a,b) · 2−τ(a,b) + D(a,c) · 2−τ(a,c) + D(b,c) · 2−τ(b,c) = 4 12  + 3 12  + 3 12  = 5,

and we can immediately verify that it is equal to the length of the tree. In the general 
case, we can write:

		  LP = ∑
a≠b

 D(a,b) · 2−τ(a,b)� (4)

where the sum runs over all the taxa. As stated above, Pauplin’s formula equals the tree 
length only when the distance D is additive. The way of reweighting distances used 
in Pauplin’s formula often makes it a particularly good approximation for tree length 
(Desper & Gascuel 2002) even for real data, where the condition of additivity is al-
most always violated. Furthermore, it is recognized that the minimization of Pauplin’s 
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formula, known as the Balanced Minimum Evolution (BME) criterion, is often a good 
criterion for reconstructing the correct phylogeny. This principle is used in an implicit 
way in the widely used Neighbor-Joining (Saitou & Nei 1987, Mihaescu et al. 2009) 
and more explicitly in a new generation distance-based algorithm, FastME (Desper 
& Gascuel 2002). When the departure from additivity is too strong, however, LP no 
longer represents a good functional to be minimized in order to recover the correct 
tree. We introduce a novel distance-based algorithm for phylogeny reconstruction that 
crucially exploits the soft four-points condition as well as the notion of Pauplin’s dis-
tance. We show that by combining these two ideas we end up with a method that is 
more robust against deviations from additivity and leads to a better inference of the 
correct phylogeny in a wide number of cases.

3.	 A stochastic local search strategy

3.1	 Background

In this section we describe our algorithm. We use a Stochastic Local Search (SLS) 
strategy (Hoos & Stützle 2005) that allows us to find a tree topology that is particularly 
good with respect to our criterion (defined below). SLS algorithms have been widely 
used in solving complex combinatorial optimization problems such as Satisfiability, 
Colouring, MAX-SAT, and the Traveling Salesman Problem (Hoos & Stützle 2005), 
because of their ability to search in complex configurations spaces. The configuration 
space is typically parametrized in terms of a quantity called energy. In the context of 
our problem, energy is calculated as a function of the previously introduced quar-
tet frustration measure. The Stochastic Local Search procedure works as follows: one 
starts from a randomly chosen initial configuration, that is, in our case, a random 
initial N-taxa tree topology. The initial configuration does not affect the performance 
of our algorithmic scheme. Starting form the initial configuration, one moves from 
the actual configuration to a neighboring one, where the notion of nearness has to be 
defined. Each move, i.e. each update of the tree topology, is determined by a decision 
based on local knowledge only and the decision is taken in a probabilistic way.

3.2	 Updating the tree topology

Let us first define the notion of nearness, referring for simplicity to Figure 3. We fo-
cus on an internal edge (i.e., an edge not ending in a leaf) and refer to the four nodes 
neighboring the chosen edge as α, β, γ, δ. Let A, B, C, D be the four sub-trees rooted 
in α, β, γ, δ respectively. Our reference configuration is the one sketched in the left 
side of Figure 3, which we denote with the shorthand notation ((A,B),(C,D)), where 
the subtrees A and B lie on the left of the chosen edge and C and D on its right. This 
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configuration has two neighbors, represented in the right side of Figure 3: (i) ((A, D), 
(B, C)), where the subtrees A and D lie on one side of the chosen edge and B and C on 
the other, and (ii) ((A, C), (B, D)), where the subtrees A and C lie on the same side of 
the chosen edge and B and D on the other.

Updating the tree topology is the central step in the SLS algorithm we intro-
duce. We can go from the present configuration to one of its neighbors according to 
the energy gain corresponding to this change. In particular, we first select randomly 
one of the two neighbors, then we calculate the energies of the present configuration 
and of the chosen neighbor. The energy is a function of the frustration of the quar-
tets involved in the considered configuration and it will be defined in details below. 
Let us assume for a moment that we know these energies, which we call E((A,B),(C,D)) 
and, say, E((A,C),(B,D)). We change configuration with a probability proportional to the 
exponential of the energy difference: the probability of change is thus e−βΔE, where 
∆E = E((A,C),(B,D)) − E((A,B),(C,D)). The parameter β regulates how important the value of 
the energy difference is in the decision making process, and it is the equivalent to the 
inverse temperature parameter commonly used in statistical mechanics. For high val-
ues of β only neighboring configurations corresponding to lower energy with respect 
to the present configuration can be chosen. On the other hand for very low values of β 
one typically explores in a random way the configuration space. In our procedure, we 
start with a very low value of β (very high temperature) and progressively increase it 
until it reaches very high values (a procedure known as simulated annealing in statisti-
cal physics).

At each time step, one edge is considered and one decides whether the associated 
present configuration has to be changed or not. When no convenient moves are avail-
able the algorithm stops and returns the resulting tree topology.

3.3	 Definition of energy

We now only need to define the energy of a configuration. Let us focus on the con-
figuration ((A, B), (C, D)) again referring to Figure 3. We write a∈A if a is a taxa of 
the subtree A and similarly for the taxa in the other subtrees. To obtain the energy of a 
configuration ((A,B),(C,D)) we sum up the frustration of all the quartets ((a,b),(c,d)), 
such that a∈A, b∈B, c∈C and d∈D, each one with a weight borrowed from Pauplin’s 
formula and with a suitable normalization factor:

		  E((A,B),(C,D)) =   ∑
((a,b),(c,d))

 
F((a,b),(c,d))

(D1 + min(D2,D3))k  2−[τ(a,α) + τ(b,β) + τ(c,γ) + τ(d,δ)],� (5)

where τ(a,α) is the topological distance between the taxa a and the internal node α as 
defined in Eq. 4, and analogously for the other taxa. F((a,b),(c,d)) is defined in Eq. 3 and 
the expression at the denominator, (D1 + min(D2, D3))k, corrects the tendency for 
long-quartets (i.e., quartets corresponding to high values of D1, D2 or D3) to violate 
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the soft four-points condition by dampening their importance in the computation of 
the energy. The exponent k is a non-negative number, which regulates how strongly 
we dampen the effect of long quartets. In our results we use the value k = 5, but we 
checked that the results are stable in a large range of values, going from k = 3 to k = 10. 
It is important to note that our algorithm does not automatically associate distances to 
the branches of the reconstructed topology. Once the topology is reconstructed, there 
exist different procedures to associate distances to the different branches. We adopted 
the least-square method implemented in the Fitch-Margoliash algorithm of the Phylip 
package (Fitch & Margoliash 1967). It is important to remark that the tree topology 
resulting from our algorithm is not independent of the distance matrix since our al-
gorithmic procedure crucially depends on the evaluation of a energy-like functional 
computed in terms of the distances between taxa.

3.4	 Results on artificially generated datasets

Note that our algorithmic scheme does not make any hypothesis about the evolution-
ary processes underlying the dataset used, e.g. an independent evolution of different 
characters. It is thus important to test its reliability and its performances in controlled 
situations. This is the aim of this section. We report the results concerning the perfor-
mance of our algorithm as compared to other distance-based competing algorithms. 
To this end we use the following procedure: (i) We generate an artificial phylogeny by 
tuning the probability of back-mutation and horizontal transfer as a source of non-ad-
ditivity, (ii) the correct-distance matrix calculated on the leaves of the generated tree is 
used as the input matrix given to the distance-based algorithms, and (iii) we compute 
the deviation of the inferred trees with respect to the true one using the standard Rob-
inson Foulds measure (defined below). This is a crucial test since in this way we can 
compare the inferred phylogeny with the true one, which is in this case known. The 
evolutionary model we use to create the benchmark phylogenies is the simplest one 
taking into account both mutational and horizontal transfer events. We represent each 
taxon by a binary sequence of length L, but we check that more realistic representation, 

Figure 3.  Illustration of the elementary move of the stochastic local search scheme.
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i.e., q-state sequences, with q > 2, do not qualitatively change our results. A phylogeny 
is created as follows: we start with one sequence, for instance the sequence with all the 
bits equal to 0, from which N taxa are derived trough a branching process. At each step 
one of the leaves (nodes attached with only one branch to the tree) is selected. It then 
branches giving rise to two descendants. The iteration stops when an N-leaves tree is 
obtained. Superimposed on the branching processes are the mutational events. At each 
branching event, the two newborn descendants undergo two possible processes: (i) 
Mutation: with probability μ/L, and independently, each site of the sequence changes 
its value, where μ is the average number of mutations per sequence at each time step 
and (ii) horizontal transfer: with probability τ a part of the sequence of length L/4 is 
replaced with the corresponding part of another, randomly chosen, sequence of the 
tree (the value L/4 is arbitrary but again does not qualitatively affect the results).

We now introduce two matrices of distances. First we consider the Hamming dis-
tance between pairs of taxa, which is equal to the number of sites in which they dif-
fer. Under the assumption of independent and identically distributed (i.i.d) mutation 
probabilities on each site, in the limit of infinite length L of the sequence and without 
horizontal transfer, the average Hamming distance between two sequences after an 
evolution time t reads (Felsenstein 2004):

		  h = 1
2  (1 − e−2μt).� (6)

Inverting this formula we can estimate the product μt, that defines the number of 
mutations that occurred between the two sequences. Based on this, we can define the 
corrected distance Dcorr as:

		  Dcorr = 1
2  log(1 − 2h).� (7)

It is worth stressing that Eq. 6 expresses a relation between average values. The fluctua-
tions around the mean value are much more important for the distance Dcorr than for 
the Hamming distance h, so it is convenient to use the distance Dcorr to infer phylog-
enies only when dealing with long enough sequences (L > 1000 in our evolutionary 
model for μ = O(1)). When this condition is fulfilled, the use of this corrected distance 
Dcorr turns out to give more accurate results. In order to assess the performances of 
the different algorithms to reconstruct the true phylogeny, we consider the standard 
Robinson-Foulds measure (RF) (Robinson & Foulds 1981) that counts the number of 
partitions (or splits) on which the inferred tree differs from the true one. Figure 4 il-
lustrates the notion of the Robinson-Foulds measure. The two trees depicted allow for 
two partitions, represented by the transversal orange bars. One of the two partitions, 
e.g., the one separating the taxa (ed) from the taxa (abc) is present in both trees. On the 
other hand the partition on the left tree separating (bc) from (aed) is not present in the 
right tree. As a consequence the Robinson-Foulds measure of the two trees equals 1 in 
this case. In general one denotes as a positive partition a partition of the tree present 
in both the compared tree, while the opposite is true for a false positive partition. Note 
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that for binary trees the number of the true positive partitions equals the number of 
the false positive partitions and both are equal to the Robinson-Foulds measure.

In Figure 5 we show the average RF distance of phylogenies reconstructed by NJ, 
FastME and our algorithm, where the average is performed over 100 samples gener-
ated as described above. The RF measure is shown as a function of μ/L when τ = 0 and 
as a function of τ at fixed μ/L. We report here the results obtained by using the distance 
Dcorr defined in Eq. 7. In both cases FastME outperforms Neighbor-Joining and our 
stochastic local search strategy outperforms FastME. We also checked that using the 
Hamming distance we still perform better than the other two algorithms but the per-
formances are in this case collectively worse (data not shown).

Figure 4.  Illustration of the definition of the Robinson-Foulds measure. For the two trees 
considered RF = 1 since they differ of only one partition.

Figure 5.  Comparison of the performances of our stochastic local search scheme with 
respect to the FastME and Neighbor-Joining algorithms. We show the Robinson-Foulds 
distance between the reconstructed and the true topology. Each point is an average over 
100 samples from the generative model described in the text. Left: the horizontal transfer 
is absent (τ = 0) and we study the performances of the three algorithms as a function 
of the mutation rate per site μ/L, where L = 1000 is kept fixed. Right: we fix μ = 30 and 
L = 10000, and we study the performances of the three algorithms as a function of the 
rate τ of horizontal transfer. In both cases FastME outperforms Neighbor-Joining and our 
stochastic local search strategy outperforms FastME.
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4.	 The dataset used

The dataset we used for the present analysis is taken from the Automated Similarity 
Judgment Program (ASJP) (Brown et al. 2008, Holman et al. 2008, see: http://email.
eva.mpg.de/wichmann/ASJPHomePage.htm). ASJP data orthography consists of 41 
symbols, representing 7 vowels and 34 consonants, designed to cover all the com-
monly occurring sounds of the world’s languages. The encoding is thus a phonetic one. 
We considered in particular the languages of the Indo-European group including 85 
languages focusing on 40-items lists (see Table 1).

Table 1.  List of the 40 meanings used.

I Leaf Knee Star You Skin Hand Water We Blood

Breast Stone One Bone Liver Fire Two Horn Drink Path

Person Ear See Mountain Fish Eye Hear Night Dog Nose

Die Full Louse Tooth Come New Tree Tongue Sun Name

Once we had fixed the 40-items lists for our set of languages, we defined the distance 
between two generic languages. For each list of meanings and for each pair of ho-
mologous words in the two lists, we computed the so-called edit distance (Levenshtein 
1966) defined as follows. The edit distance between two strings, s1 and s2 is defined as 
the minimum number of point mutations required to change s1 into s2, where a point 
mutation is one of: (i) Change a letter, (ii) insert a letter, or (iii) delete a letter. In our 
case we normalized (Serva & Petroni 2008) the edit distance by the length of the lon-
ger of the two words compared. In this way the distance between two words is always 
in the range [0 : 1]. The total distance between two languages is thus computed as the 
average edit distance of all the homologous (and non empty) pairs.

5.	 Results

Figure 7 shows the annotated tree of Indo-European languages produced by our algo-
rithm. Each internal branch has two numbers associated: the bootstrap measure and a 
measure of frustration. We give details of these measures in the following.

Bootstrap values An important question concerns the stability of the reconstruct-
ed tree with respect to small perturbations of the dataset. More exactly, we face the 
question whether minor changes in the word list produce a significant change in the 
reconstructed tree. To this end we introduce a bootstrap procedure by constructing 
100 different lists of 35 meanings randomly selected out of the complete 40-items list. 
From each of these lists we construct a distance matrix in the way explained in §4 in 
such a way to obtain 100 different inferred trees of the Indo-European languages. The 
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trees are all inferred by making use of our stochastic local search algorithm. Now we 
can compare these trees with the one constructed using the complete dataset of 40 
meanings. We count in particular in how many of the 100 reconstructed trees using 35 
meanings each partition of our reference tree appears. This gives a bootstrap number 
associated to each partition of the reported tree.

A frustration measure A natural measure of frustration arising from our algorithm is 
the energy associated to each internal link in the local search strategy. This is in fact 
a measure of how much the soft four-points condition is violated due to the consid-
ered partition, each quartet being weighted by its Pauplin distance-like weight. The 
frustration measure is thus associated with the internal branches of the tree and it cor-
responds to E defined in §3.3. Figure 6 reports the values of the frustration measure 
vs. the bootstrap values. Interestingly, we note that the obtained bootstrap values are 
strongly correlated with the frustration values: branches which are stable with respect 
to the bootstrap measure show also little or no frustration. The Pearson coefficient 
(Wilcox 2005) between the two quantities turns out to be −0.786 (a value of 1 implying 
that all data points lie on a line for which one variable decreases as the other increases). 
This result implies that the p-value relative to the hypothesis that the two variables are 
uncorrelated is smaller than 10−16. We show this correlation in Figure 6.

We finally note that the tree reported in Figure 7 features also non-binary divi-
sions. This is due to the existence of branches of zero length in the reconstructed to-
pology. In these cases we decided to show non-binary branching. These zero-length 
branches were also associated with very small bootstrap values as well as high viola-
tions of the four-points condition.

Figure 6.  Correlation between the deviations from additivity and the bootstrap values. 
We normalized both the bootstrap values and the quartets deviations in order to reduce 
them on the same [0 : 1] interval. Left: normalized bootstrap values vs. normalized quar-
tets deviations. Right: For each partition we plot both the normalized bootstrap value and 
the normalized quartets deviation. The overlap between the two curves is very good.
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Figure 7.  Annotated Indo-European language tree. Each internal branch has two num-
bers associated: the bootstrap measure (left) and a measure of frustration (right). The 
frustration measure shown on each branch is the E defined in §3.3 (multiplied by a factor 
of 10000 for graphical reasons). The higher the bootstrap measure and the lower the 
frustration measure the stronger the reliability of the specific internal branch. See the text 
for more comments.
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6.	 Discussion and Conclusions

A few remarks about the tree reported in Figure 7 are in order. Our tree correctly re-
produces the clustering of the major subgroups normally recognized: Romance, Ger-
manic, Celtic, Balto-Slavic, Indo-Iranian. In order to make our tree more comparable 
with the Indo-European tree reported in Gray & Atkinson (2003) we also included 
extinct and old languages which lack modern descendants. Ancient languages with 
modern descendants should be correctly represented by internal nodes and not as 
leaves. An interesting area of research is represented by the reconstruction of trees 
when some additional information is available. Suppose for instance one knows that 
Latin is the extinct predecessor of all Romance languages. In the phylogenetic tree 
Latin should be more conveniently represented as an internal node instead of as a 
leaf. This is a general problem arising whenever the identity of some internal nodes 
(typically referred as Hypothetical Taxonomic Units) is known. Even more generally 
the information available could concern different aspects such as correlations among 
languages or the knowledge of the structure of specific subtrees. In all these cases it 
would be desirable to have suitable algorithms to fully exploit the information avail-
able. Again for the sake of comparison with the tree presented in Gray & Atkinson 
(2003) we outgrouped the tree on the Hittite language. The two trees are very similar 
although they exhibit some important differences, in particular the different localiza-
tion of the Albanian Tosk on whose actual position there is not yet a shared consen-
sus. The two trees differ also on the early divergence of Tocharian. We also obtained 
preliminary results for the estimate of the time divergence of the different branching 
but a more detailed account of these results will be presented in a forthcoming paper.

The results presented in this paper bring strong support to a new generation of 
algorithms (Tria et al. 2009) aiming at the reconstruction of language trees (and more 
generally of phylogenetic trees) while assessing their stability and reliability. In partic-
ular the measures of deviations from pure additivity are particularly promising since 
they allow for a quantification of the accuracy of the reconstruction possibly giving in-
teresting hints about the underlying linguistic processes that have occurred. Obviously 
more systematic work is in order to assess the performances of our algorithm as well as 
the quality and the stability of the reconstructed trees on very different datasets. Cru-
cial from this point of view is the nature and quality of the dataset used. For instance, 
it is still an open question how the words to be compared are best represented in terms 
of phonological transcription procedures. Also the choice of the list of meanings plays 
a very delicate role since the results could be strongly affected by the length of the list 
itself. A longer list presents obvious benefits from the statistical point of view. In ad-
dition, since the accuracy of correction to the Hamming distance (as defined in Eq. 7) 
turns out to increase for longer sequences, a longer list of meanings may in principle 
allows for a better estimate of the correction and a better reduction of the fluctuations 
associated with it. On the other hand a longer list increases the chances of inclusion 
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of borrowings, i.e., meanings with non-phylogenetic evolutionary histories, which can 
bias the reconstruction in an unpredictable way.

Another important research line we intend to pursue is that of looking for better 
functionals that could be sensitive to specific deviations from additivity, possibly dis-
ambiguating between horizontal transfer processes, heterogeneities of the evolution-
ary rates, back-mutation processes, etc. This research may lead to the development of 
new algorithms and strategies to correctly reconstruct and represent imperfect phylo-
genetic evolutionary processes.
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Résumé

Dans cette contribution, nous introduisons un nouvel algorithme de recherche stochastique lo-
cale pour reconstruire des arbres phylogénétiques. Nous nous concentrons en particulier sur la 
reconstruction des arbres des langues basés sur la comparaison des listes de Swadesh de la base 
de données ASJP récemment compilée. En partant d’une configuration d’arbre générique notre 
algorithme explore stochastiquement l’espace des arbres possibles par la minimisation d’une 
pseudo-fonctionnelle qui quantifie les violations de l’additivité de la matrice des distances. Par 
conséquent l’arbre résultant peut être annoté avec les valeurs des violations sur chaque branche 
interne. Les valeurs des écarts sont fortement corrélées à la stabilité des branches internes, que 
l’on mesure avec une nouvelle procédure (bootstrap) et qui se voit affichée sur l’arbre comme 
une annotation supplémentaire. Comme exemple nous avons considéré la reconstruction de 
l’arbre des langues indo-européennes. Les résultats sont fort encourageants, mettant en lumière 
la possibilité d’une nouvelle voie pour examiner le rôle des déviations de l’additivité et vérifier la 
fiabilité et la cohérence des arbres reconstruits.

Zusammenfassung

In diesem Artikel wird ein neuartiger stochastischer lokaler Suchalgorithmus zur Rekonstruk-
tion phylogenetischer Bäume vorgestellt. Wir konzentrieren uns dabei vor allem auf die Rekon-
struktion von Sprachbäumen auf der Basis eines Vergleiches der Swadesh-Listen der kürzlich 
zusammengestellten ASJP-Datenbank. Ausgehend von einer generischen Baumkonfiguration 
untersucht unser Schema stochastisch den Raum möglicher Bäume, mit Orientierung auf die 
Minimierung einer Pseudo-Funktionalen, welche die Verletzungen der Additivität der Distanz-
Matrix quantifiziert. Folglich kann der resultierende Baum mit den Werten der Verletzungen 
auf jedem internen Zweig annotiert werden. Die Werte der Deviationen korrelieren stark mit 
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der Stabilität der internen Kanten, sie werden mit einem neuartigen Boostrap-Verfahren ge-
messen und als zusätzliche Annotationen am Baum vermerkt. Als Fallstudie bieten wir die Re-
konstruktion des indoeuropäischen Sprachbaumes. Die Resultate sind relativ ermutigend und 
weisen auf ein potentiell neues Verfahren zur Untersuchung der Rolle der Deviationen von Ad-
ditivität und zur Überprüfung der Zuverlässigkeit der rekonstruierten Bäume.
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