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a dataset to assess mobility 
changes in Chile following local 
quarantines
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Fighting the COVID-19 pandemic, most countries have implemented non-pharmaceutical interventions 
like wearing masks, physical distancing, lockdown, and travel restrictions. Because of their economic 
and logistical effects, tracking mobility changes during quarantines is crucial in assessing their efficacy 
and predicting the virus spread. Unlike many other heavily affected countries, Chile implemented 
quarantines at a more localized level, shutting down small administrative zones, rather than the 
whole country or large regions. Given the non-obvious effects of these localized quarantines, tracking 
mobility becomes even more critical in Chile. to assess the impact on human mobility of the localized 
quarantines, we analyze a mobile phone dataset made available by Telefónica Chile, which comprises 31 
billion eXtended Detail Records and 5.4 million users covering the period February 26th to September 
20th, 2020. From these records, we derive three epidemiologically relevant metrics describing the 
mobility within and between comunas. the datasets made available may be useful to understand the 
effect of localized quarantines in containing the COVID-19 pandemic.

Background & Summary
As of September 2022, the COVID-19 pandemic is a global threat that resulted in around 600 million infected 
people and more than six million deaths globally1. In South America, Chile is among the most severely affected 
countries, with more than 4.6 million infected people and a death toll that surpassed the 60,000 mark as of 
September 2022. Similarly to other severely affected countries2–9, Chile implemented Non-Pharmaceutical 
Interventions (NPIs) such as regional lockdown, stay-at-home orders, and travel restrictions, in an attempt to 
mitigate the COVID-19 epidemics through reducing individual mobility and promoting social distancing. In 
contrast with countries such as China, Italy, and the USA, which implemented NPIs at the national or regional 
level2,6,8,9, Chile’s implemented NPIs at the comuna level. Comunas, also known as municipalities or communes 
in other countries, are the smallest administrative (political) subdivision in Chile10,11. There are 346 comunas 
in Chile. Without counting Antártica, the largest comuna with an area of 1.25 million square kilometres, the 
remaining 345 comunas have a mean area of 2,199 km2 (stdev. 4,824 km2), with the smallest being San Ramón, 
Lo Prado, Lo Espejo, and Independencia, with 7 km2 each, and the largest is Natales in the Magallanes region, 
with an area of 4,8974 km2. Two comunas in the same region may be regulated by different NPIs: whereas one 
is in lockdown, adjacent ones might have no travel restrictions. Only one comuna, Santiago, was split in half in 
terms of NPIs, with one half under quarantine while the other not. Given the peculiarity of NPIs’ spatial scale in 
Chile, tracking mobility changes at the comuna level is crucial to assess local quarantines’ efficacy and measure 
the effect of mobility reductions on predicting the virus spread12. While indices of changes in human mobility 
do exist at the regional level in Chile (e.g., the Google Mobility Reports13), there are no official indices at the 
comuna level.

Mobile phone records provide an unprecedented opportunity in tracking human movements14–18, allowing 
for estimating presences and population density19–21, mobility patterns16,22–26, flows27–30, and socio-economic 
status31–36. When used correctly and adequately aggregated to preserve privacy37–40, mobile phone data represent 
a crucial tool for supporting public health actions across the phases of the COVID-19 pandemic12,41. Motivated 
by the potential of mobile phone data in capturing the geographical spread of epidemics42–45, researchers and 
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governments have started to collaborate with mobile network operators to estimate the effectiveness of control 
measures in several countries2,10,46–50.

To assess the impact of the NPIs imposed by Chilean authorities in response to the epidemics, we analyse a 
mobile phone dataset provided by Telefónica Chile, which comprises 31 billion eXtended Detail Records (XDRs) 
and 5.4 million users distributed all over the country covering the period February 26th, 2020 to September 
20th, 2020. An XDR is created every fifteen minutes if a certain threshold of traffic has been reached, thus 
describing individual movements in great detail21. From the XDRs, we derive three epidemiologically relevant 
metrics: the Index of Internal Mobility (IMint), which quantifies the amount of mobility within each comuna of 
the country; the Index of External Mobility (IMext), quantifying the mobility between comunas; and the Index 
of Mobility (IM), which considers any movement, both within and between comunas. We analyse how these 
metrics change as the COVID-19 epidemics spread out in Chile, highlighting a considerable heterogeneity of 
response to local quarantines across the country.

The datasets we make available will grow as time goes by and, to the best of our knowledge, are the only ones 
describing mobility changes and dates of local quarantines in Chile at the comuna level. They can be used not 
only for fighting against the COVID-19 epidemics but will also benefit other research and applications such as 
emergency response51,52 and crowd flow prediction14,53–55. The datasets described are currently used at all levels 
of the Chilean government.

Methods
Mobile phone operators collect several different streams of mobile phones interaction with the cellular net-
work for billing and operational purposes. Among them are the eXtended Detail Records (XDRs), a mixture 
of human- and device-driven event, triggered either by explicitly requesting an HTTP address or automati-
cally downloading content from the Internet (e.g., emails) every 15 minutes and at certain traffic thresholds. 

Fig. 1 (a) Illustrative example of eXtended Detail Records (XDRs) of a mobile phone user. The hexagons 
represent mobile phone towers and green dots the positions where the user starts a download/upload operation. 
The dotted line indicates the real movement of the user, from the left to the right. (b) Intra-comuna movements 
(black arrows) and inter-comuna movements (orange arrows). Hexagons of the same color indicate towers that 
fall in the same comuna.

region rid comuna cid area IMint IMext IM date

Los Ríos 14 Valdivia 14101 1018.32 6.21 0.91 7.13 2020-02-26

Los Ríos 14 Valdivia 14101 1018.32 6.42 0.93 7.35 2020-02-27

Los Ríos 14 Valdivia 14101 1018.32 6.75 1.08 7.84 2020-02-28

Los Ríos 14 Valdivia 14101 1018.32 6.88 1.17 8.05 2020-02-29

Los Ríos 14 Valdivia 14101 1018.32 5.58 1.05 6.63 2020-03-01

Table 1. Structure of the released dataset.

qid comuna status coverage start end cid area perimeter

4 El Bosque Active whole 2020-04-16 — 13105 2.06e7 1.87e4

26 Quinta Normal Active whole 2020-04-23 — 13126 1.70e7 2.12e4

38 Cerrillos Active whole 2020-05-05 — 13102 2.41e7 2.52e4

42 Conchalí Active whole 2020-05-08 — 13104 1.59e7 1.68e4

Table 2. Structure of the quarantines dataset.
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Formally, an XDR is a tuple (u, t, A, k), in which there is only one tower A involved, u is the caller’s identifier,  
t is a timestamp of when the record is created, and k is the amount of downloaded information (Fig. 1a). Rather 
than capturing trips, we are interested in detecting any “movement”, i.e., any transition between two antennas. 
From an epidemiological point of view, transitions provide a useful indication of people’s displacements and 
hence useful information about the movements of the virus between areas within the same comuna or between 
two comunas. Even if an individual’s movement between two antennas may not be a trip from a semantic point 
of view, it denotes the movement of the virus between those two antennas anyway. To this purpose, from the 
XDRs of the individuals, we define two types of movement. Every time a user moves from one tower to another 

Fig. 2 Choropleth maps of IM, IMint and IMext for the comunas in northern Chile for the pre-quarantine (first row) 
and the quarantine (second row) periods.
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within the same comuna, they generate an intra-comuna movement. Every time the user moves from an tower 
to another in a different comuna, they generate an inter-comuna movement (Fig. 1b). For each day and comuna, 
we construct three indicators of mobility based on the intra- and inter-comuna movements:

 1. IMint (Index of Internal Mobility), the number of intra-comuna movements for that day;
 2. IMext (Index of External Mobility), the number of inter-comuna movements for that day;
 3. IM = IMint + IMext (Index of Mobility).

All the three indices ranges in [0, ∞), where a value of 0 indicates no mobility at all. We normalize the three 
indices with respect to the number of users that reside in the comuna, estimated as the total number of unique 
mobile devices whose home tower falls in that comuna. Each device’s home tower is computed as the tower in 
which it has the highest number of XDRs during nighttime (between 7 pm and 7am, inclusive)021,56. The number 
of estimated resident users in the comunas is strongly correlated (R2 = 0.96, slope = 4.37, intercept = 298.30) 
with the official population of the comunas as per the official 2017 Chilean Census.

Data Records
The raw datasets were provided by Telefónica/Movistar Chile, a mobile phone company which possesses 
between 29–32% of the Chilean mobile phone market. Telefónica gathers data for billing purposes and for net-
work maintenance purposes by persisting network events. Users are not allowed to “opt-out” of billing informa-
tion, as stated in the terms and conditions below. They are, however, able to opt out of the use of personal data by 
calling a number or visiting the Telefónica website (see page 3, section 6) of Telefónica’s Terms and Conditions 
(see57 in Spanish). In this study, no personal data or information whatsoever is used in the creation of the dataset 
proposed here (in fact, it’s only the aggregated number of transitions between rtowe)s, without any individual 
information.

Fig. 3 Choropleth maps of IM, IMint and IMext for the comunas in central Chile for the pre-quarantine (first row) 
and the quarantine (second row) periods.
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From the raw datasets we construct the three mobility indices described above. The datasets are released 
under the CC BY 4.0 License and are publicly available at58. Table 1 shows the structure of the dataset describing 
the mobility indices. Each record refers to a comuna in Chile and describes:

•	 the official name of the region (region, type:string);
•	 the identifier of the region as per the official 2017 Chilean Census (rid, type:string);
•	 the official name of the comuna (comuna, type:string);
•	 the identifier of the comuna as per the official 2017 Chilean Census (cid, type:string). All maps and their 

official identifiers can be downloaded from the National Statistics Office of Chile59;
•	 the area of the comuna in km2 (area, type:float);
•	 the values of IM, IMint and IMext for that day (type:float);
•	 the day the IM, IMint and IMext values refer to (date, type:date).

Table 2 shows the structure of the quarantines dataset. Each record refers to a quarantine regulation and 
describes:

•	 the identifier of the quarantine regulation (qid, type:integer);
•	 the official name of the comuna (comuna, type:string);

Fig. 4 Choropleth maps of IM, IMint, and IMext for the comunas in southern Chile for the pre-quarantine (first row) 
and the quarantine (second row) periods.
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•	 the status of the quarantine, that can be either active or not active (status, type:string);
•	 the coverage of the quarantine, that can be either partial, rural, or complete (coverage, type:string);
•	 the date the quarantine started (start, type:date);
•	 the date the quarantine ended, which is “ - ” if it is still active (end, type:date);
•	 the identifier of the comuna as per the official 2017 Chilean Census (cid, type:string);
•	 the area of the quarantine in m2 (area, type:float);
•	 the perimeter of the quarantine (perimeter, type:float).

A limitation of all phone-records studies concerns the position of towers and the geographical area they “illu-
minate” or serve given their technical specifications. There may be towers that serve two neighboring comunas, 
for example, impacting our movement counts. However, two phenomena mitigate this problem: (i) comunas 
are generally large, and eventual borderline events are scarce given the 15-minute span; and (ii) telco companies 
do not record all antenna interactions by mobile devices, because storing all that information would be costly.  

Fig. 5 Choropleth maps of IM, IMint and IMext for the comunas in the metropolitan area of Santiago de Chile for 
the pre-quarantine (first row) and the quarantine (second row) periods.

Pre-quarantine period

Comuna Region IM IMext IMint

1 Rinconada Valparaíso 30.37 27.96 2.42

2 Providencia Metropolitana de Santiago 25.29 12.58 12.71

3 Camarones Arica y Parinacota 24.62 23.77 0.85

4 Ranquil Ñuble 23.87 18.33 5.54

5 Laguna Blanca Magallanes 21.92 15.75 6.18

6 Panquehue Valparaíso 20.93 19.02 1.90

7 Vitacura Metropolitana de Santiago 20.40 10.54 9.86

8 Las Condes Metropolitana de Santiago 20.22 7.79 12.42

9 Zapallar Valparaíso 19.26 15.98 3.28

10 Santiago Metropolitana de Santiago 17.44 6.97 10.48

Table 3. Values of IM, IMext and IMint of the ten comunas with the highest IM computed between March 9th 
and March 15th, 2020. As an example, Rinconada (Valparaíso region) has IM = 30.37, meaning that the number 
of movements within, to, or from that comuna is around 30 times higher than the estimated number of users 
that reside in Rinconada.
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In our case, an event (a phone record or XDR) is typically generated every y minutes and if and only if the device 
has crossed a threshold of x MegaBytes (MBs) of traffic (not revealed by the company as it is an industrial secret). 
A two-rule heuristic determines the quantities x and y. A “clock” triggers a rule every 15 minutes: if the user has 
reached x MBs at either 15, 30, or 45 minutes, the system appends a new XDR in the database. Some heavy users 
will use up the x MBs threshold at 15 minutes (if they are watching movies on the web, for instance), most at 
30 minutes, and a few light users will reach the threshold at 45 minutes. There is also a fair share of frequency at 
other times. The second rule states that if the control plane of the mobile network notices some particular phone 
events, such as some antenna handovers, turning off the phone, or losing connection, then a record is created 
into the database at any time (irrespective of the megabytes used), making it possible to find events anywhere 
in-between the clock’s 15-minute triggers.

technical Validation
In our analysis, we consider two periods: the pre-quarantine period, from March 9th to March 15th, 2020, and 
the quarantine period, from June 22nd to June 28th, 2020. Although we have two weeks before March 9th, the 
transition from February to March marks the start of the Fall school semester in Chile. In 2020, March 6th was 
the start of the semester, so we assume that the “business as usual” period would be best represented by the week 
of March 9th until March 15th. March 16th marked the start of NPIs in Chile, with the closure of schools, uni-
versities and large public gatherings. After that, on March 26th, there was a partial lockdown of seven comunas 
in the Metropolitan Region. By June 22–28, more than half of the population of the country was under quaran-
tine, and mobility was at 40% reduction.

During the pre-quarantine period, comunas with high mobility indices and comunas with low mobility 
indices coexist. Geographically, high-mobility comunas are concentrated near urban areas such as the capital 
Santiago and, in general, in the center of the country (Figs. 2a, 3a, 4a, and 5a). The northern and southern 
parts of Chile have fewer high-mobility comunas. The comunas with the highest mobility registered during the 
pre-quarantine period are located in the regions of Metropolitana de Santiago, Arica y Parinacota, Valparaíso, 
Ñuble, and Magallanes (Table 3).

The top-ten comunas with the highest mobility indices change during the quarantine period, except for 
Rinconada in the region of Valparaíso (Table 4), mirroring the different degree of reduction in human mobility 

Quarantine period

Comuna Region IM IMext IMint

1 Rinconada Valparaíso 22.44 21.09 1.35

2 Zapallar Valparaíso 15.84 13.16 2.68

3 Panquehue Valparaíso 13.30 11.13 2.17

4 Coinco Libertador Gen. B. O’Higgins 13.20 12.36 0.84

5 Andacollo Coquimbo 11.85 6.25 5.60

6 Vitacura Metropolitana de Santiago 11.33 4.29 7.04

7 Limache Valparaíso 11.25 5.41 5.84

8 La Reina Metropolitana de Santiago 10.78 6.16 4.62

9 Concón Valparaíso 10.75 4.69 6.06

10 Villa Alegre Maule 10.67 8.67 1.99

Table 4. Values of IM, IMext and IMint of the ten comunas with the highest IM computed over the period from 
June 22nd and June 28th, 2020. As an example, Rinconada (Valparaíso region) has IM = 22.44, meaning that the 
number of movements within, to, or from that comuna is around 22 times higher than the estimated number of 
users that reside in Rinconada.

Fig. 6 Values of IM, IMint, and IMext of the comunas in the top 10 ranking computed for the pre-quarantine and 
quarantine period. The coupled bars represent comunas corresponding to the same position in the rank.
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in the Chilean regions (Fig. 6). All regions show a reduction in all three mobility indices during the quarantine 
period, albeit with different intensities (Fig. 7). At the comuna level, high-mobility comunas are rare and clus-
tered near the large urban areas located in central Chile (Figs. 2–5).

These results are supported by the distributions of the mobility indices of the two periods (Fig. 8). There is a 
clear shift towards the left of the distribution of the IM index (Fig. 8a): (i) the average IM during the quarantine 
period (5.16 ± 2.74) is 27.6% lower than the average IM during the pre-quarantine period (7.13 ± 4.15); (ii) the 

Fig. 7 Evolution of IM (a), IMext (b) and IMint (c) from March to September 2020 for the 16 regions in Chile. 
The curves are sorted in descending order respect to the relative index of mobility of the corresponding 
comuna. The vertical lines denote important dates regarding NPIs in Chile; the number in parentheses indicates 
the number of comunas subject to that restriction.
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Fig. 8 Distributions of IM (a), IMext (b) and IMint (c) for the pre-quarantine (blue) and quarantine (orange) 
periods, with the average values of three comunas: Santiago, Camarones and Torres Del Paine. (d) Distribution 
of IMred for all the Chileans comunas.

Fig. 9 (a) Percentage of population under quarantine and the percentage of mobility reduction IMred 
from February 26th to September 20th, 2020. (b) Evolution of IM index in Santiago; the blue area denotes 
the quarantine period. The vertical lines denote important dates regarding NPIs in Chile; the number in 
parentheses indicates the number of comunas subject to that restriction.
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distribution of IM during the quarantine period is more skewed to the left, showing a decrease of the mobility 
in Chile during the selected days. Regarding IMint and IMext, we observe no net shift of the curve, but rather a 
flattening, suggesting that intra- and inter-comuna movements decreased during the quarantine (Fig. 8b,c).

We further analyze the reduction of the mobility defining IMred as the relative reduction of the IM index in 
the quarantine period with respect to the pre-quarantine period. The distribution of IMred shows that a large 
number of comunas have a reduced mobility, following Chilean government interventions, by an average of 
25.37% ± 43.2 (Fig. 8d). However, comunas that were not in quarantine during the quarantine period do not 
reduce their mobility significantly (Fig. 9a).

The percentage of population that live in comunas where the authorities applied NPIs increases with time 
(Fig. 9a) reaches its peak (≈57%) in late July 2020. With the increase of the number of people under quaran-
tine, IMred initially increases, but it slightly decreases over time even if both the number of individuals and the 
number of comunas under quarantine increase. This phenomenon suggests that mobility restrictions are more 
effective in the short-medium term and become less effective as time goes by, and it can be observed both at 
regional (Fig. 7) and comuna level (Fig. 9a,b).

Unfortunately, we do not have ground truth data to compare our data with because there are no official 
indices at the comuna level in Chile. However, other mobility reports do exist for the same area and period at 
the regional level (not comunas), such as Google Mobility Reports13. By aggregating our data at the regional 
level and comparing them with Google’s data, we find a strong Pearson correlation (r = 0.7), suggesting that our 
mobility index is reflecting mobility trends captured by other reliable data sources.

Limitations of our dataset. Mobile phone records are sparse and irregular in time, leading to gaps between 
the user’s actual trajectory and the trajectory that can be inferred from their digital trace15. Chen et al.60 propose 
an algorithm to reconstruct individual trajectories from CDRs by recovering the unspecified positions of each 
user. They revisit the seminal work of Gonzalez et al.23, in which the authors show that heavy-tails characterise 
the distributions of (charateristic) distances traveled by individuals, showing that CDRs preserve the mobility 
patterns observed in the reconstructed (denser) trajectories, though slightly underestimating long trips and over-
estimating short ones60. Considering that in our study we use XDRs, which are way denser than CDRs, we can 
assume that the mobility traces of individuals represented in our dataset do not differ significantly from the actual 
user’s trajectory.

Code availability
The up-to-date data are available from the general repository of the Ministry of Science of Chile at: https://raw.
githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto33/IndiceDeMovilidad.csv (IM 
indeces), and https://github.com/MinCiencia/Datos-COVID19/blob/master/output/producto29/Cuarentenas-
Activas.csv (quarantines). The code to download the up-to-date data automatically and to reproduce the analysis 
in our paper is available at58.
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