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a b s t r a c t 

Two months after it was firstly reported, the novel coronavirus disease COVID-19 spread worldwide. How- 

ever, the vast majority of reported infections until February occurred in China. To assess the effect of 

early travel restrictions adopted by the health authorities in China, we have implemented an epidemic 

metapopulation model that is fed with mobility data corresponding to 2019 and 2020. This allows to 

compare two radically different scenarios, one with no travel restrictions and another in which mobility 

is reduced by a travel ban. Our findings indicate that i) travel restrictions might be an effective measure 

in the short term, however, ii) they are ineffective when it comes to completely eliminate the disease. 

The latter is due to the impossibility of removing the risk of seeding the disease to other regions. Fur- 

thermore, our study highlights the importance of developing more realistic models of behavioral changes 

when a disease outbreak is unfolding. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In Dec. 31st, 2019, Chinese authorities reported an outbreak of

 novel coronavirus disease, called COVID-19 by the World Health

rganization. Due to the proximity of the Spring Festival, the Chi-

ese Government implemented quarantine in Wuhan, where the

utbreak started, as well as in several nearby cities since Jan. 23rd,

020. As of Feb. 16th the outbreak had already infected 68,584 in-

ividuals in China of which 16 6 6 died [1] . Much is still unknown

bout the characteristics of this pathogen. For instance, it remains

nclear the animal source of this zoonotic disease, being bats and

angolins currently the two most likely sources [2–4] . It has also

een proposed that more than half of the cases might have gone

ndetected by routinely screening passengers, due to the special

haracteristics of this disease [5] , which makes it possible that in-

ected individuals are asymptomatic while infectious. 

Several studies predict a much larger number of infections than

he actual number reported by the authorities, claiming that only

etween 10% and 20% of the cases have been detected and re-
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orted [6–9] . The reasons for such deviations between models and

ctual count of cases are diverse, for instance, the fact that the

ymptoms could be mild and similar to other flue-like diseases for

ome people, may induce infected individuals not to seek medi-

al care [10] . On the other hand, on Feb. 13th, 14,840 new cases

ere reported [11] , in contrast to 2022 cases counted during the

revious day [12] . The reason was that previously to that day, only

hose cases that had been laboratory-confirmed were being recog-

ized as so, whereas from that date onwards, also the clinically

iagnosed cases were accounted for. Therefore, the model-based

rediction of the number of infected individuals can plausibly be

arger than the official reports. 

From a theoretical and computational point of view, there are

roups that have proposed new epidemic models to properly ac-

ount for the special characteristics of this disease [10,13,14] . How-

ver, our knowledge of the dynamics of the disease is too limited

o be constrained to use such sophisticated models. In fact, in some

f these works, the models are fitted to reproduce exactly the re-

orted number of infected individuals, which, as noted before, can

e counterproductive given that the actual number of infected in-

ividuals in the population is surely higher than those detected ei-

her by clinical diagnosis or in the laboratory. Lastly, there has also

een intense research aimed at computing the probability that the

utbreak extends beyond Wuhan to other cities in China, as well as

https://doi.org/10.1016/j.chaos.2020.110068
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to the rest of the world [6,7,15–18] . These works use historical data

in order to produce a risk assessment and obtain probabilities that

the disease is imported in other populations. Likewise, modeling

effort s have been directed towards gauging the effect of Wuhan’s

quarantine on the spreading of the epidemic all over the country

(which so far has determined to be a delay of 3 days in the arrival

of the peak [7] ) and worldwide. 

Given the unprecedented characteristics of this outbreak, we

adopt a slightly different approach and study a data-driven

metapopulation model that makes use of the actual flows of the

population to properly measure the early effects of the travel re-

ductions in China. Specifically, we built a basic metapopulation

model [19,20] of 31 regions in China (except HongKong, Macau and

Taiwan). Inside each population, we considered that the individ-

uals in the population interact following a homogeneous mixing

scheme. This approach is similar to the ones proposed in [7] and

[15] . However, in our case, we perform a data-driven simulation

with the actual flows of individuals that have taken place during

the period of study. That is to say, we do not rely on transporta-

tion data (which is most of the time given as the maximum flow

capacity between subpopulations), but on a real dataset gathered

for this occasion (see Materials and Methods). The results align

with previous findings and indicate that travel restrictions do not

have a significant impact in containing the expansion of the dis-

ease, though reducing the flow of individuals could lead to a delay

in the importation of new cases in other subpopulations. Impor-

tantly, we show that using the real mobility patterns of the pop-

ulation is a key factor to understand the spreading of the disease.

In this sense, our conclusions point out that despite the many ad-

vances in disease modeling during the last two decades, there still

remain many open challenges, most of them related to how to sen-

sibly incorporate human behavioral changes during the unfolding

of an outbreak. 

2. Model 

We implement a stochastic SEIR-metapopulation model to sim-

ulate the spread of the epidemic across mainland China. The model

can be divided in two discrete processes: the disease dynamics

governed by a SEIR compartmental model; and the mobility of in-

dividuals. In a SEIR compartmental model individuals are assigned

into each group according to their health status: susceptible (S) if

they are susceptible to the disease; exposed (E) if they have been

infected but cannot infect; infectious (I) once the incubation pe-

riod is over and the individuals can infect others; and removed (R)

when they are either recovered or deceased. Within each subpop-

ulation (henceforth, region), the transition between compartments

results from the following rules, iterated at each time step, corre-

sponding to 1 day: 

S → E: Susceptible individuals in region i might get infected

with probability P (S → I) = 1 − (1 − R 0 / (T I N i )) 
I 
i 
, where R 0 is

the reproduction number, T I the mean infectious time, N i the

number of individuals in region i and I i the number of in-

fected individuals in the region. 

E → I: Exposed individuals enter the infected compartment

with a rate inversely proportional to the mean latent period,

T E . 

I → R: Infected individuals enter the removed compartment

with a rate inversely proportional to the mean infectious pe-

riod, T I . 

We define the generation time as T g = T E + T I . On the other

hand, the mobility of individuals is implemented through a data-

driven approach. We have obtained the number of individuals leav-

ing each region each day, N 

o 
i 
, as well as the probability, p ij , of

going from each region i to region j (see Materials and Methods
or a thorough description of the data). Hence, at each time step,

e select N 

o 
i 

individuals at random from within each region - ex-

luding infectious individuals in i , which are supposed to be under

uarantine or hospitalized - , and distribute them across the coun-

ry according to such probabilities. Note that this implies that the

isease will be propagated to other regions by exposed individu-

ls. We also implemented a randomized version of the model for

he mobility, in which the fraction of the population traveling from

ach region at each time step is 0.008 (estimated from the average

raction of individuals traveling during the first week of January

020) and their destinations are chosen randomly with probability

roportional to the population of the destination region. 

Furthermore, since we have data of N 

o 
i 

from 2019 and 2020, we

imulated the spreading of the disease in both years. In this way,

e are able to asses the impact of travel reductions due to mobil-

ty restrictions across regions without making any - however sen-

ible - assumptions about possible changes in individuals’ mobility.

onetheless, this period of the year has some peculiarities due to

he Spring Festival, an event that completely modifies the travel

atterns of the population. In 2020, the Spring Festival was cele-

rated on Jan. 25th, while in 2019 it took place on Feb. 5th. For

his reason, we align both simulations so that “day 0” will corre-

pond in both years to the day of the Spring Festival (Jan. 25th and

eb. 5th respectively). Lastly, the simulation will run in both cases

o 13 days after the Festival, which corresponds to Feb. 5th in 2020

nd Feb. 16th in 2019, so that exogenous effects such as the strong

ocial distancing measures enforced by the government or the new

ay of defining a positive case do not enter into play. 

. Results and discussions 

Fig. 1 clearly shows that the changes induced by the epidemic

n the overall flow and movement of the population throughout

hina are not restricted just to the region in which the city of

uhan is located (Hubei). In 2019, a large number of individuals

oved right before the Spring Festival. Then, it reached a mini-

um at the Spring Festival and, later on, a large number of indi-

iduals moved again, see Fig. 1 A. On the other hand, in 2020, the

ituation was similar only until Jan. 23rd, when the travel restric-

ions in Wuhan were implemented. Two features are worth high-

ighting. First, when the travel restrictions were implemented, the

ow of population had peaked already just before the Spring festi-

al. This is key to understand why, despite the reduction in mobil-

ty, the daily number of new cases continued to increase for weeks.

econdly, most of the second wave observed in 2019 - which cor-

esponds to travel back to the original region - had not taken place

et (see Fig. 1 B), and thus, there was still a high risk that a subse-

uent large outbreak could occur. The existence of recurrent local

utbreaks is a feature that some models have anticipated [20] . Fur-

her indications that the population has not yet reached the orig-

nal distribution by region are provided in Fig. 1 C and D, where

e show the evolution of the number of individuals living in each

egion (initial data obtained from the Chinese Yearbook, see Mate-

ials and Methods). Clearly, while in 2019 most of the population

eturned to their regions, in 2020 this had not taken place yet. 

To parameterize the metapopulation epidemiological model we

ollow Chinazzi et al. [7] and set a generation time of 7.5 days and

 reproduction number R 0 equal to 2.4. The latent period is set to

 days [21] , which is compatible with pre-symptomatic transmis-

ion of the disease, since the incubation period is between 5 and

 days [7] . The outbreak is seeded by introducing 40 exposed in-

ividuals on Dec. 1st 2019 (Dec. 12th 2018 for 2019) [7] . Then, the

imulations run for 66 days in both cases and we extract the cu-

ulative number of infected cases in each region as a function of

ime. Note that as there were no travel restrictions in 2019, one

an see the results obtained with the 2019 data as the more plau-
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Fig. 1. Movement patterns of individuals across Mainland China in 2019 and 2020. Panels A and B represent the percentage of individuals traveling from each region 

compared to such fraction on Jan. 1st in 2020 (Jan. 12th in 2019). Additionally, panels C and D show the population of each region assuming that the number of individuals 

traveling from each region is given by the flow data and that their destinations are randomly selected according to the mixing patterns p ij . 

Fig. 2. Predicted cumulative number of cases: in Hubei (panel A) and the rest of mainland China (panel B) using mobility data of 2019 (solid lines, scenario equivalent to 

no travel restrictions), of 2020 (dashed lines, with travel restrictions considered) and under the assumption of random movement of the population (dashed-dotted lines). 

Dots represent the actual total value in Hubei reported by the authorities. 
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ible outcome for the 2020 outbreak without travel restrictions. In

ther words, by comparing 2019 with 2020, we can factor out the

mpact of the early travel reduction in the city of Wuhan and the

ubsequent changes in the mobility patterns of the population. 

Fig. 2 shows the cumulative number of infected individuals

or Hubei and for the rest of mainland China. The large majority

f cases, in all situations considered, are contained within Hubei

rovince. The results in Fig. 2 B show that travel restrictions have a

mall impact in the temporal evolution of the disease in the rest of

he country(compare 2019 with 2020). As it can also be deduced

rom the trend of the curves in Fig. 2 B, there is no indication that

he growth in the number of cases will evolve following a differ-

nt functional form. This contrasts with the results that would be

btained if individuals moved at random (with a probability pro-

ortional to the size of the subpopulations). 
Fig. 2 A also shows that there is a large difference between

he cumulative number of cases predicted in 2020 and the re-

orted one. Although, as previously discussed, this has been re-

orted by several other studies, to ensure that the methodology

s correct, and to further analyze the effect of the mobility pat-

erns, in Fig. 3 we show the correlation between the real values

f infected individuals and the simulated ones for 2020. We ob-

ain a Pearson correlation of 0.80 implying that the assumptions

ehind the model, albeit simplistic, can correctly describe the ba-

ic dynamics of the epidemic. Furthermore, we also see that the

ata-driven model is able to predict better the dynamics than its

andom counterpart. In Fig. S1 , we perform a sensitivity analysis

n the different parameter choices. For sets of parameters that in-

uce a slower spreading (such as smaller R 0 or larger T g ) the dis-

ase spreads outside Hubei only after the restrictions have been
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Fig. 3. Correlation between model and reality. Predicted cumulative number of cases in each region, except Hubei, compared to the real number reported by the authorities 

by Feb. 5th. Left: estimations obtained using 2020 data. Right: estimations obtained using random mobility data. In both cases the dashed line represents the identity line. 

Fig. 4. Expansion of the disease. A: relative difference of the incidence in 2020 and 2019 in each region by Feb. 5th (Feb. 16th in 2019). B: relative difference in the total 

number of travelers that went from Hubei to any other region for the period under consideration. 
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implemented. This, in turn, enlarges the differences between 2019

and 2020. Conversely, for sets of parameters that produce a faster

spreading, the disease spreads outside Hubei before the restrictions

are implemented, producing a larger incidence in those regions. In

either case, the correlation between the model predictions and the

observed values is high, signaling that the real mobility patterns of

the population are a key element to understand the spreading of

the disease. 

Lastly, we have also studied the difference in the predicted

number of cases in each region between 2019 and 2020 at the end

of the simulation period. Results are reported in Table 1 , where we

show the mean number of infected individuals per region. As it can

be seen in the table, the estimated total number of cases is quite

similar in both cases. However, the distribution across the country

is fairly different. Indeed, while there are many areas where the

number of infected individuals would be larger in 2019, there are

others where it would be smaller. 

To elucidate the reasons behind this behavior, in Fig. 4 A we

show the relative difference in the incidence per region, compar-

ing 2019 and 2020. We observe that regions near Hubei tend to

have smaller incidences in the simulation with data from 2020.
onversely, regions further away from Hubei tend to have larger

ncidences in 2020. We can compare this distribution with Fig. 4 B,

here we show the total number of individuals who travel from

ubei to any other region from Jan. 1st to Feb. 5th in 2020 with

he ones that did the same from Jan. 12th to Feb. 16th in 2019. We

an see that regions closer to Hubei had a smaller number of vis-

tors in 2020, while the ones further away from Hubei had more

isitors. This explains the observed differences in the simulations

nd highlights the importance of using real and updated data to

roperly account for the behavior of individuals. 

Summarizing, we have studied a data-driven metapopulation

odel that allows assessing the effect of early travel restrictions

n Wuhan and Hubei province. Even if our modeling framework is

impler than other more sophisticated implementations of the dis-

ase dynamics, our results are in line with several available stud-

es in that: i) travel restrictions have limited efficacy unless they

re applied very early, and ii) reducing the travel does not appear

o have a long term impact on the spreading of the disease if not

ccompanied by other measures. We also note the effect of travel

estrictions might be underestimated because the large majority of

eople had already moved before these mobility restrictions were
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Table 1 

Reported value of the total number of infected individuals by Feb. 5th per region compared to the 

values predicted by the model using data from 2019 (Feb. 16th) and 2020 (Feb. 5th). The mean value 

of the prediction, obtained from 10 4 independent runs of the model, alongside the 95% confidence 

interval is shown. 

Region Reported value 2019 simulated 2020 simulated 

no travel restriction travel restriction 

Henan 815 6887 [4095-10,203] 4938 [2796-7633] 

Hubei 19,665 348,540 [214,850-504,160] 361,876 [221,094-526,075] 

Hunan 711 9647 [5839-14,095] 4580 [2589-7013] 

Guangdong 944 5765 [3464-8528] 2681 [1482-4183] 

Jiangxi 600 2531 [1403-3927] 2342 [1217-3746] 

Chongqing 389 4909 [2933-7228] 2263 [1211-3606] 

Anhui 591 2148 [1164-3396] 2021 [1030-3294] 

Jiangsu 373 1443 [732-2346] 1566 [775-2608] 

Zhejiang 954 1003 [523-1643] 1093 [542-1835] 

Shaanxi 173 1809 [1008-2811] 1143 [520-2206] 

Sichuan 321 2061 [1127-3230] 1460 [706-2472] 

Beijing 274 482 [257-778] 320 [143-564] 

Shanghai 254 805 [453-1259] 296 [131-529] 

Shandong 343 731 [305-1429] 996 [415-1871] 

Fujian 215 716 [308-1134] 828 [354-1526] 

Guizhou 69 494 [184-1007] 789 [305-1495] 

Hebei 157 711 [301-1337] 950 [417-1713] 

Guangxi 168 647 [282-1224] 815 [341-1525] 

Yunnan 128 373 [128-811] 510 [164-1091] 

Shanxi 90 734 [383-1244] 476 [154-1005] 

Hainan 100 155 [30-426] 260 [69-606] 

Liaoning 89 217 [63-571] 272 [67-668] 

Gansu 62 238 [67-605] 359 [92-832] 

Tianjin 70 183 [68-408] 167 [35-441] 

Heilongjiang 227 144 [30-445] 205 [40-549] 

Xinjiang 36 103 [18-352] 148 [15-443] 

Inner Mongolia 46 134 [39-373] 155 [23-451] 

Jilin 59 150 [44-406] 144 [21-435] 

Qinghai 18 43 [6-177] 62 [1-286] 

Ningxia 40 53 [7-221] 75 [2-317] 

Tibet 1 11 [0-56] 21 [0-165] 

Total 27,982 393,869 [242,817-569,435] 393,812 [241,466-572,552] 

Fig. S1. (Top Panels) Predicted cumulative number of cases in Hubei and the rest of mainland China using mobility data of 2019 (solid lines, scenario equivalent to no 

travel restrictions), and 2020 (dashed lines, with travel restrictions considered) for several parameter values of the epidemic model as indicated. Dots represent the actual 

total value reported by the authorities. (Bottom Panels) Predicted cumulative number of cases in each region, except Hubei, compared to the real number reported by the 

authorities by Feb. 5th, 2020 for several disease parameters as indicated. 
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implemented (as it can be seen in Fig. 1 ). Our study is limited in

several aspects that can constitute future research goals. First, the

geographic resolution allowed by the mobility data used here is

low. Considering large regions have the undesired effect that one

can not add structure to the population and therefore the dynam-

ics within each subpopulation is constrained by the homogeneous

mixing hypothesis. This limitation could be overcome if less granu-

lar spatial and temporal data becomes available. Secondly, and per-

haps more important as it currently represents a scientific chal-

lenge, we have assumed that the transmissibility does not change

during the whole simulation period. This implies that changes in

behavioral patterns of the population are not fully accounted for

nor they can be completely disentangled from those associated

with travel restrictions. Understanding how to deal with such be-

havioral changes is key for the development of more realistic de-

scriptions of the large-scale spreading of diseases. Finally, another

critical feature of current models that needs to be improved in fu-

ture research is the use of disease parameters - notably R 0 - that

are constant both in time and across populations. 
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Appendix. Materials and Methods 

Data description 

Resident population. The statistics about the distribution of the

population across 31 regions in China were obtained from the

“China Statistical Yearbook 2019” [22] . This annual publication re-

flects comprehensively the economic and social development of

China. 

Population flow. We obtained migration data from Baidu Qianxi,

an open platform based on Baidu Location Based Services (LBS)

that provides information about the population flow within China

[23] . The dataset comprises two types of data: the Baidu migra-

tion index and the Baidu migration ratio. The former is a number

proportional to the number of individuals leaving each region. To

obtain the proportionality constant, we averaged the amount of in-

dividuals leaving Wuhan between Jan. 1st and 10th and compared

it to the value of 502,013 estimated by Wu et al. [15] . The second

part of the dataset contains the fraction of individuals going from

region i to region j, p ij . As such, it is possible to estimate the num-

ber of individuals going from region i to j by multiplying the total

outflow of the region by the corresponding p ij . The outflow of the

individuals is available for the years 2019 and 2020, while the p ij 
values only for 2020. Nevertheless, as it can be seen in Fig. 1 in
he main text, it represents a good proxy of the situation in 2019.

ndeed, even though some populations were closed after Jan. 23rd,

020, using these values for 2019 correctly describes the return of

he population that had left for the Spring Festival. 

Infected individuals. The number of infected individuals as a

unction of time, as well as their distribution across regions on Feb.

th was obtained from the WHO reports [1] . 

ensitivity analysis. 

To gauge the effect of the chosen parameterization of the

odel, we have repeated the analysis with several values reported

n the literature [7,24] , Fig. S1 . As expected, if the incubation period

s larger or the basic reproduction number is smaller, the overall

umber of cases decreases and the disease extends outside Hubei

nly after the restrictions were in place. Conversely, when using

arge values of R 0 or longer generation times, the amount of in-

ected individuals increases and the spreading outside Hubei takes

lace before the restrictions are implemented. In any case, the mo-

ility model is quite independent from the dynamics of the dis-

ase, since the correlation is almost always the same in all cases

onsidered. 
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