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Abstract
Background: Emerging and re-emerging infectious diseases such as Zika, SARS,
ncovid19 and Pertussis, pose a compelling challenge for epidemiologists due to their
significant impact on global public health. In this context, computational models and
computer simulations are one of the available research tools that epidemiologists can
exploit to better understand the spreading characteristics of these diseases and to
decide on vaccination policies, human interaction controls, and other social measures
to counter, mitigate or simply delay the spread of the infectious diseases. Nevertheless,
the construction of mathematical models for these diseases and their solutions remain
a challenging tasks due to the fact that little effort has been devoted to the definition
of a general framework easily accessible even by researchers without advanced
modelling and mathematical skills.

Results: In this paper we describe a new general modeling framework to study
epidemiological systems, whose novelties and strengths are: (1) the use of a graphical
formalism to simplify the model creation phase; (2) the implementation of an R
package providing a friendly interface to access the analysis techniques implemented
in the framework; (3) a high level of portability and reproducibility granted by the
containerization of all analysis techniques implemented in the framework; (4) a well-
defined schema and related infrastructure to allow users to easily integrate their own
analysis workflow in the framework. Then, the effectiveness of this framework is showed
through a case of study in which we investigate the pertussis epidemiology in Italy.

Conclusions: We propose a new general modeling framework for the analysis of
epidemiological systems, which exploits Petri Net graphical formalism, R environment,
and Docker containerization to derive a tool easily accessible by any researcher
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even without advanced mathematical and computational skills. Moreover, the
framework was implemented following the guidelines defined by Reproducible
Bioinformatics Project so it guarantees reproducible analysis and makes simple the
developed of new user-defined workflows.

Keywords: Computational models, Colored Petri Nets, Epidemiological model,
Pertussis

Background
Although in the last twenty years the human ability to efficiently treat infectious dis-
eases has greatly improved, the latest pandemics of SARS and the Swine Flu outbreak
have clearly highlighted how these diseases can spread faster in today’s interconnected
world. In this context the computational epidemiology, a new multidisciplinary research
field combining techniques from epidemiology, computer science, molecular biology and
applied mathematics, makes extensive use of computational models for understanding
and controlling spatio-temporal disease spread.

Roughly speaking, the computational models used in the study of infectious diseases
at the population scale can be classified as deterministic and stochastic. In the first case,
the system population is divided into small groups namely compartments (or classes) typ-
ically representing specific epidemic statuses [1–3]. These models are often formulated
in terms of systems of differential equations (in continuous time) or difference equations
(in discrete time), and produce an average description of the disease evolution at the
population scale. Differently, stochastic models are formulated in terms of stochastic pro-
cesses defined on families of random variables. These models capture in a straightforward
manner demographic and environment variabilities and are useful in cases where ran-
domness plays an important role. Typically they are formulated as Discrete Time Markov
Chain (DTMC), Continuous Time Markov Chain (CTMC), and Systems of Systems of
Stochastic Differential Equation (SDE) [4]. The choice between a deterministic model and
a stochastic one depends on the application under study. For instance, deterministic mod-
els can be exploited to answer questions such as: what fraction of individuals would be
infected in an epidemic outbreak?, what conditions should be satisfied to prevent and con-
trol an epidemic?, what happens if individuals are mixed non-homogeneously? [1], while
the stochastic ones address questions such as: how long is the disease likely to persist?,
what is the probability of a major outbreak? [4].

The construction of these types of models remains a challenging task. Indeed, despite of
the large number of results published on this topic, little attention has been devoted to the
definition of a general framework for modelling and studying infection diseases, which
may be easily used by researchers without advanced computational skills. To the best of
our knowledge, we believe that the only successful attempt to create a general frame-
work for for modelling and studying infection diseases was proposed by Van den Broeck
et al in [5]. Indeed all the other the works found in the literature, the analysis of sys-
tems combining population and disease characteristics, require the installation of many
inter-dependent components to set up complex evaluation environments that are difficult
to control and that make questionable the possibility of reproducing published results.
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Moreover, these workflows are often so specific that they can not be directly applied to
analyze other models different from those for which they were originally developed.

To overcome these limitations and difficulties, we started the development of a general
modelling and analysis framework with the objective of allowing researchers to better
concentrate on the essence of these problems, and relieving them from the burden of set-
ting up the complex environment needed for the solution of the complex mathematical
models used for the investigation. Our modelling framework for studying epidemiologi-
cal systems, shows novelties and strengths which can be summarized in: (1) the use of a
graphical formalism based on Petri Nets [6–8] to simplify model construction and to pro-
vide an intuitive description of system behaviour; (2) the implementation of a R package
to provide a user-friendly interface; (3) the containerization (into Docker images) of all
the implemented analysis techniques to improve the framework portability and to ensure
the reproducibility of the derived results; (4) the specification of a well-defined schema
and related infrastructure to allow users to integrate their own analysis workflows in the
framework.

The architecture of the framework reflects these features with the implementation
of three modules that have been done taking into account the guidelines provided by
the Reproducible Bioinformatics Project (RBP, http://reproducible-bioinformatics.org)
a non-profit and open-source project, whose aim is to provide biologists and medical
scientists with an easy-to-use and flexible environment for reproducible analysis.

The effectiveness of our proposal is shown with the investigation of Pertussis epidemi-
ology in Italy. Specifically, we first point out that this framework can be easily used to
develop an efficient workflow to analyse this very complex system.

Furthermore, we show that the model generated and calibrated according to such a
workflow is able to reproduce real data coming from the observation of the spread of
Pertussis in Italy during the period from 1974 to 2016. Moreover, we demonstrate that our
framework can be easily exploited to support a what-if analysis on the model representing
this complex system.

Results
In this section, we first introduce the proposed framework in details, and then we show
how it can be successfully used to study and analyze pertussis infection and the relative
vaccination cycle in Italy.

Modeling framework: a detailed overview

The architecture of this framework is composed of three main modules which cover
different aspects of our proposal(see Fig. 1).

The first module consists of a Java Graphic User Interface (GUI) based on Java Swing
Class which allows to draw models using the PN formalism. This graphical editor is part of
GreatSPN [9], a software suite for modelling and analyzing complex systems using the PN
formalism and its extensions. In particular, for the purposes of the framework presented
in this paper, the GreatSPN GUI has been upgraded to support the Extended Stochastic
Symmetric Net (ESSN), a high level Petri Net formalism, which enables users to define a
system in a compact and parametric manner and to specify in a natural manner the rate
functions which may be associated with the model reactions (The reader can find more
details about the ESSN formalism in subsection Petri Net and its generalization).

 http://reproducible-bioinformatics.org


Castagno et al. BMC Bioinformatics 2020, 21(Suppl 8):3648 Page 4 of 32

Fig. 1 Framework schema depicting its modules and its functionalities from a user point of view

The other two modules, consisting of an R library and a set of docker images, implement
all the framework functionalities needed for the model analysis. Docker containerization,
a lightweight Operation System (OS)-level virtualization, is exploited to simplify the dis-
tribution, the utilization and the maintenance of the analysis tools; the R library provides
an easier user interface for which no knowledge on the docker commands is needed.
Notice that all these docker images and R functions were created following the guidelines
specified by RBP project to achieve a framework for developing reproducible workflow of
analysis [10].

We now briefly describe all the functions implemented in the R library and their
associated docker images.

The generation of the stochastic and deterministic processes underlying an ESSN model
is implemented by the R function model_generation(). This function automatically
derives from the ESSN model the corresponding deterministic and stochastic processes
using the C/C++ program PN2ODE embedded in the docker image greatspn. The derived
processes and the library used to simulate them are packaged into a binary file with .solver
extension. Currently the following solvers are available:

• ODE solvers: (1) Runge-Kutta 5th order integration, (2) Kutta-Merson integration; (3)
Dormand and Princ method; (4) Backward Differentiation Formula (BDF) method;

• Stochastic Simulation solvers: (1) Gillespie algorithm; (2) Stochastic Hybrid
simulation; (3) τ -leaping method.

More details on these solvers are reported in subsection Implemented model solvers.
The R function sensitivity_analysis() implements the sensitivity analysis starting from

the .solver file generated by the model_generation function. This R function calls the R
script sensitivity.mngr.R encapsulated into the docker image epimod_sensitivity to com-
pute with the Partial Rank Correlation Coefficient (PRCC) analysis [11, 12] the monotonic
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relationships between model inputs and outputs revealed (see “Monte Carlo sampling
with PRCC” subsection for more details).

The model calibration is performed by the R function model_calibration(). This
function executes the R script calibration.mngr.R embedded in the docker image epi-
mod_calibration that calls the right solvers according to the passed input parameter
and produces as output a textual file in which all the generated parameter values
are ranked according to their ability to fit the real data (i.e., from the best data fit-
ting to the worst one). This is obtained solving an optimization problem in which the
input objective function is minimized. More information on this aspect are reported in
subsection Implemented optimization solver to model calibration.

Once the model is correctly calibrated, the R function model_analysis() solves the
model and generates an output representing the time evolution of the model. The R
script model.mngr.R embedded in the docker image epimod_model is then executed by
model_analysis() function. Thus, this script simulates the underlying deterministic or
stochastic process and returns a textual file in which the system solution is provided.

To ease the user in both experimentation and analysis of the model, our workflow
encompasses a data visualization function. Specifically, the function display_data()
offers a web application developed in Shiny providing a basic-level interface and an
expert-level interface for data visualization. The basic-level interface consists of a sim-
ple but well-defined visualization environment, so that the user can directly focus on
analyzing the results rather than spend its efforts setting up the necessary environment.
Therefore, the web application enables the user to visualize the analysis results as line
charts effectively while simplifying the process of generating plots to the extent that it is
possible to visualize results with just few clicks. On the other hand, a simple visualiza-
tion may not be enough to highlight complex behaviours of the system under study, and
for this reason the function display_data() provides an additional expert-level interface
which allows the user to implement its own visualization plots. In this case, the user is
required to provide a function describing how the output data derived by analysis phase
must be manipulated to be plotted. Hence, this functionality makes the data visualization
very flexible and with loose restrictions –i.e., being compatible with ggplot2 [13] R library
and does not require any additional library.

The R function download_images() prepares the docker environment downloading the
docker images needed by the framework.

Framework installation

The installation of the workflow requires the downloading of the extended version of
the GreatSPN editor at http://www.di.unito.it/~amparore/mc4cslta/editor.html, and the
R library at https://github.com/qBioTurin/epimod.

How to integrate a new function in the framework.

The customization of the framework is one of the strengths of this proposal since it
provides the generalizations needed to use this same framework for other epidemiolog-
ical studies different form that discussed in this paper. To this aim we describe in this
subsection how new solution functionalities can be easily added in the framework. Prac-
tically, a user must firstly embed the new tool into a docker images following the tutorial
reported at www.reproducible-bioinformatics.org/ in the section “How to be part of the

http://www.di.unito.it/~amparore/mc4cslta/editor.html
https://github.com/qBioTurin/epimod
www.reproducible-bioinformatics.org/
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Reproducible Bioinformatics project”. Secondly, he/she must provide an R function imple-
menting an interface for the created docker images. To simplify the creation of such
controlling function the R function skeleton.R, reported in the library, can be exploited
as prototype. Then, any new R function and associated docker image must always be
supported by an explanatory vignette, accessible online as html document, and by a set
of test data accessible online as well. Finally, this new R function and associated docker
image must be submitted to the info@reproducible-bioinformatics.org so that the RBP
core team verifies the compliance of the new functionalities with the RBP guidelines. In
our case, this protocol means that, once the framework has been certified by the RBP core
team, every new addition or improvement must first be verified by the RBP organization
before integrating it into the framework. More details on this task can be found in [10].

The case study: an example of application of the framework

In this subsection we describe how the proposed framework can be exploited to study the
Pertussis infection and its vaccination cycle in Italy. We first introduce the problem and
then we show how a model of this complex system can be constructed.

The disease

Pertussis, also known as whooping cough, is a highly contagious infectious disease caused
by the bacterium Bordetella Pertussis which colonizes the ciliated cells of the respiratory
mucosa. It provokes an uncontrollable coughing which often makes breathing hard and
which can possibly lead to serious complications including death. The first vaccine against
Pertussis was developed already in the 1930s by pediatrician Leila Denmark. Despite
this, Pertussis remains a challenging public health problem because many aspects of its
infection, disease, and immunity are not completely understood yet.

Although the implementation of Pertussis vaccination programs in many countries has
decreased substantially its diffusion and mortality, Pertussis has not been totally elimi-
nated and Pertussis-related hospital admissions and fatalities are still evident, particularly
in young infants [14].

Moreover, the European Centre for Disease Prevention and Control (ECDC) in
its annual 2017 report [15] highlighted an increasing trend of Pertussis cases in
EU, probably due to the decrease in vaccine effectiveness over time and pathogen
adaptation [14, 16, 17].

State of the Art

In this context computational modelling can play an important role in providing insights
on the drivers of Pertussis epidemiology, in investigating alternative explanations of the
observed resurgence and in predicting potential effects of different vaccination strategies.

To these aims, several models were proposed in the literature since 1980s; for instance
in [18, 19], an age-structured model is exploited to analyse the possible effects of adopting
different vaccination strategies in Australia. Other models expressed in terms of systems
of differential equations are used to explain the duration of the Pertussis natural immu-
nity [20], or the importance of age-structured contacts [21]. Differently in [22], a set of
Partial Differential Equation (PDE)s, characterized by age and time dependent variables,
is proposed to study the vaccination related changes that may have occurred for the per-
tussis epidemic in the Netherlands from 1996 to 1997. In [23] it is shown that a stochastic

https://info@reproducible-bioinformatics.org
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process can be used to better capture Pertussis vaccination behaviour, as well as the nature
and degree of protection provided by the the acellular Pertussis vaccine (aP). Similarly, in
[24, 25] a stochastic process modelling Pertussis vaccination is presented for the analy-
sis of the disease effect in different countries, respectively Massachusetts (United States)
and Thailand. However, all of these works address only a subset of the specific peculiari-
ties of the pertussis disease. In [26] the authors report the necessity of incorporating into
a single model more details of the disease (e.g., the population age, the individual immu-
nization level, . . . ) to better match the real observed dynamics and to predict the outcome
of vaccination measures [26].

A Model of Pertussis disease in Italy

The many aspects of the Pertussis disease and of the vaccination strategies can be con-
veniently represented by extending the classical Susceptible - Infectious - Recovered
- Susceptible (Susceptible-Infected-Recovered-Susceptible (SIRS)) model. In particular,
this new model considers a population in which each individual is described by her/his
age (i.e., newborn, young, or adult), her/his level of immunization (i.e., resistance level),
her/his vaccination status (i.e., how many doses were administered) and her/his health
state (i.e., susceptible, infected, and recovered). The main system events are: the infection
of a susceptible individual due to a contact with an infected one, the vaccination of an
individual involving the administration of vaccine doses at different time points, and the
recovering of an infected individual.

To keep under control the complexity of this phenomenon, the Extended Stochastic
Symmetric Net (ESSN) formalism [6, 7] is used. In Fig. 2 the ESSN model is showed. It
consists of eight places and 30 transitions, and it is organized in four modules highlighted
through colored boxes.

In details, places BirthCount,VacCount, and InfectedCount are introduced to count the
total number of births, vaccinations, and infections happened during the system simula-
tion. Hence, these places have a neutral domain and are introduced to make easier the
computation of the measures of interest (e.g. the number of infected individuals in each
year).

Places S, V, Ip, Is, and R encode the possible health states in which a population member
may be (i.e., Susceptible, Under vaccination, Infected due to primary infection, Infected due
to repeated infection, and Recovered respectively).

It is worth noting that the Infected state is modeled with two places to distinguish
between individuals that are experiencing a primary infection (Ip) and those experienc-
ing a repeated infection (Is). This distinction is important because primary and repeated
infections have different characteristics [20].

The number of tokens in these places denotes the number of population members that
are Susceptible, Infected, Under vaccination, and Recovered at any point in time, during the
evolution of the system represented by the model. Moreover, each token in these places
is labelled with the age, the level of immunization, and the vaccination status to better
characterise each individual in the system. This is carried out defining the following three
color classes:

• The class A = {a1, a2, a3} records the age of a population member. It is divided in
three static subclasses: N = {a1} representing Newborn individuals (from 0 ∼ 11
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Fig. 2 ESSN Model developed for studying Pertussis epidemiology and vaccination in Italy. It is divided in
four sub-models representing the possible health states in which a person might be: Susceptible, Under
vaccination, Infected, and Recovered

months), Y = {a2} representing Young individuals (11 months ∼ 18 years:), and
O = {a3} representing all the others (18 ∼ 99+ years).

• The class V = {v0, v1, . . . , v5} represents how many vaccination doses were currently
received. Since the Italian vaccination policy establishes three doses within the first
11 months of life followed by two additional boosters between 12 and 18 years of age,
then we accordingly split this class in six static subclasses (i.e., NV = {v0} no
vaccination, V 1 = {v1} first vaccination, . . . V 5 = {v5} fifth vaccination).

• The class L = {l0, . . . , l3} represents the ability of a individual to limit pathogen
burden. It is divided into four static subclasses (i.e., L0 = {l0}, . . . , L3 = {l3})
encoding an increasing level of resistance.

The color domain associated with these places is defined by the Cartesian product A×V×
L. Moreover the transitions GrowthS, GrowthIp, GrowthIs, GrowthR, GrowthV, RecRecall,
RecoveryIp, LevDecreasingR and LevDecreasingV are standard transitions (i.e following
Mass Action (MA) law) while all the others are general transitions (i.e. whose rates are
defined as general functions).

Observe that all the constants, the numerical values and the generic functions associ-
ated with these transitions are deeply described in the Additional file 1
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The four modules corresponding to the four health states of an individual are now
described.

1) Supsceptible module. It describes the behaviour of susceptible individuals. Transi-
tion Birth models the birth of a new person adding a new token in places BirthCount and
S. Since a newborn enters into the system with the lowest level of resistance and with-
out vaccination then the token added in place S is 〈a1, v0, l0〉. Differently, the age growth
and the death of a susceptible individual are modeled by transitions GrowthS and DeathS
respectively. Observe that the successor operator (i.e., s++) in the arc function labeling the
output arc connecting GrowthS to S is used to represent the increasing of the age, while
the guard [ a �∈ O] associated with GrowthS guarantees that this transition is disabled
when the maximum level of age (i.e., O) is reached.

2) Infected module. It models the behaviour of infected individuals. In particular, two
types of infections, primary and repeated infections are considered and represented by
places Ip and Is, respectively. Similarly to what done in the Supsceptible module, the age
growth of an individual with primary (resp. repeated) infection is modeled by the transi-
tion GrowthIp (resp. GrowthIs), while the individual death is represented by the transition
DeathIp (resp. DeathIs).
Transition ContactS_IpToIp (resp. ContactS_IsToIp) models the infection of a suscepti-
ble member due to a contact with one individual with primary (resp. repeated) infection.
Thus its firing removes one token from S and adds it into Ip.

Finally, the recovery from a primary (resp. repeated) infection is modeled by transi-
tion RecoveryIp (resp. RecoveryIs), which removes one token from the place Ip (resp. Is)
and adds it to the place R. In particular, the guards associated with these transitions (i.e.,
RecoveryIp and RecoveryIs) guarantee that the recovered patient has the highest level of
immunity (i.e., [ l ∈ L3]).

3) Recovered module. It describes the behaviour of recovered individuals. Transition
ContactRi_IpToRii (resp. ContactRi_IsToRii) models the natural booster that increases to
l3 the resistance level of a recovered with resistance level l1 or l2 after a contact with a
individual with a primary (resp. repeated) infection.

These transitions (i.e. ContactRi_IpToRii and ContactRi_IsToRii) can fire only if l
belongs to L1 or L2, guaranteed by the guard [ l ∈ L1 || l ∈ L2]. Transition ContactR_IpToIs
(resp. ContactR_IsToIs) describes the relapse of a recovered individual with the lowest
resistance level (see guard [ l ∈ L0]) due to the contact with a population member affected
by a primary (resp. secondary) infection.

Transition RecRecall models the two vaccine recalls between 12 and 18 years old, which
are possible only if all the previous three doses were successfully administrated during the
first year of life. This is ensured by the guard [ (v ∈ V3 || v ∈ V4) & m ∈ L3 & a ∈ Y ],
which enables the transition only if a individual is in the second age class (i.e a ∈ Y )
with three (i.e v ∈ V3) or four (i.e v ∈ V4) vaccine doses already administrated. Thus, each
administration increases the patient resistance level to its maximum (i.e. the transition
guard m ∈ L3). Moreover, each time transition RecRecall fires, one token is added to the
place VacCount for counting the number of vaccine doses whic have been administrated.
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Transition LevDecreasingR represents the reduction of the resistance level. Observe that
the immunization is totally lost after about 14 years [27] from the last infection. In partic-
ular, when the resistance level of an individual reaches the minimum value, i.e. [ l ∈ L0], a
recovered patient becomes again susceptible for infection. Her/his relapse is modeled by
transitions ContactR_IpToIs and ContactR_IsToIs respectively. Finally, the age growth and
the death of a recovered patient are encoded by transitions GrowthR and DeathR.

4) Under vaccination module. It implements the vaccination policy. Similarly to the
recovered module, transitions ContactV_IpToIs and ContactV_IsToIs model the infection
process, while transitions ContactVi_IpToRii and ContactVi_IsToRii the natural booster,
GrowthV the aging and DeathV the death. Differently from the recovered module, the
reduction of the resistance level obtained by the vaccine is lost after about 7 years [27].
This process is modeled by the LevDecreasingV transition. The starting of the vaccination
process is represented by transition FirstVaccination, whose guard guarantees that vacci-
nation is administrated only to a susceptible child. To complete the vaccination coverage,
the administrations of two further doses are modeled by the Vaccination transition. Its
guard, defined as [ (v ∈ V1 || v ∈ V2) & ((l ∈ L3 & m ∈ L3)||(l �∈ L3 & m = l++)) &
a ∈ N] , guarantees that, under the condition to be in the first age class, (i.e. a ∈ N , only if
the first or second vaccination is administrated) it is possible to move into the successive
vaccination class, i.e. if v ∈ V1||v ∈ V2 then the output arc instance is characterized by
v++. Indeed, the resistance level increases, due to the new dose administration, only if the
level is not already at the maximum value, i.e. (l ∈ L3 & m ∈ L3) || (l �∈ L3 & m = l++).
Finally, every time that transitions FirstVaccination, Vaccination, and VaccRecall fire, a
new token is added to the place VaccCount.

A workflow for studying the Pertussis in Italy

We now describe how the framework functions can be combined to obtain an analysis
workflow for such model. This schema is summarized in Fig. 3 in which the light grey rect-
angles correspond to the four phases (i.e., Model generation, Sensitivity Analysis, Model
Calibration and Model Analysis) implementing the analysis of our Pertussis model, while
the dark grey boxes inside rectangles point out the main R framework functions exploited
in each step of the analysis. The output of each task is instead highlighted by a blue circle.

Model Generation. The starting point of this workflow is the Model Generation
phase, which derives from the Pertussis model the corresponding underlying stochas-
tic and deterministic processes. This task can be achieved applying the R function
model_generation() on the Pertussis ESSN model (see the Additional file 1 for more details
on the used command line). Then the derived deterministic process is represented by a
system of 179 Ordinary Differential Equation (ODE)s, while the derived stochastic pro-
cess is characterized by 1965 possible events. The total execution time needed to derive
the two processes and to create the .solver file requires less than one minute on Intel Core
I7 2.60Ghz.

After this initial step, Sensitivity Analysis and Model Calibration are two pivotal steps
to make our model consistent with real observed data.

Sensitivity Analysis. It allows to identify among the input parameters which are the sen-
sitive ones (i.e., those that have a great effect on the model behaviour). This may simplify
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Fig. 3 The schema of the workflow implemented for studying the ESSN model in Fig. 2

the calibration step reducing (1) the number of variables to be estimated and (2) the search
space associated with each estimated parameter. In our case study, we identified 15 input
parameters characterized by a high uncertainty due to their difficulty of being empirically
measured. Specifically, three of them represent the probabilities of having (i) the suscep-
tible infection success, i.e., the infection of a susceptible individual due to a contact with
an infected individual, namely prob_infectionS, (ii) the resistant infection success, i.e., the
infection of a vaccinated or recovered individual with the minimum resistance level due to
a contact with an infected individual, namely prob_infectionR_l1, and finally (iii) the nat-
ural boosts, i.e., the restoring of the resistance level to the maximum when a person with
resistance level different from the minimum level comes into contact with an infected
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individual, namely prob_boost. The others 12 parameters define the proportion of suscep-
tible and recovered individuals for each pair of age class and resistance level in the initial
marking. Given the partial information that we have on the spreading of the infection over
the Italian population at the beginning of our study (estimated from ISTAT website [28]
at the beginning of 1974 decreased by the average number of infected individuals during
the same year) such proportion is used to define an initial detailed situation adequate for
our modelling study and compatible with the available data1

Furthermore, to provide a measure of the sensitivity of these parameters the function
sensitivity_analysis() was applied on the deterministic process previously generated and
considering the period from 1974 to 1994, when the type of vaccine was the whole-cell
Per-tussis (wP) vaccine. The choice of this time interval for this analysis allows us to
simplify our model disabling the vaccination process, since the wP vaccine era is widely
considered as a good surrogate for pre-vaccine era [20].

Moreover, this model was run 64’000 times on this time interval: in every run a new
input variable sample combination is generated according to the uniform distributions
reported in Table 1, column two. Finally Partial Rank Correlation Coefficient (PRCC)
between the generated input variables and the obtained model outputs (using Backward
Differentiation Formula method for the numerical solution of ODE system) are evaluated.
A complete description of the used command line is reported in the Additional file 1. The
execution time for this analysis is ∼ 4h. on Intel Xeon processor @ 2GHz, exploiting a
parallel execution on 40 cores. The computed results are reported in Fig. 4 in which the
PRCCs values calculated for each parameter with respect to the number of infection cases
over the entire time period are showed. From this plot it is straightforward to derive that
the prob_infectionS is the most important parameter affecting the infects behaviour, fol-
lowed by prob_infectionR_l1. Differently the prob_boost probability and the initial number
of susceptible and recovered individuals in each age class are less relevant on the infection
behaviour.

In Fig. 5, the squared error between the real and simulated infection cases from
1974 to 1994 are plotted varying the prob_infectionS parameter (on the x-axis) and
prob_infectionR_l1 parameter (on the y-axis). Each point is then colored according to
a linear gradient function starting from color dark blue (i.e., lower value) and mov-
ing to color light blue (i.e., higher values). From this plot we can observe that higher
squared errors are obtained when prob_infectionS assumes values greater than 0.0025
and prob_infection_l1 values greater than 0.005, see the light blue points within the
region identified by values of prob_infectionS ∈[ 0.0025, 0.005] and prob_infection_l1 ∈
[ 0.005, 0.01]. Therefore, according to this we shrunk the search space associated with the
two parameters in order to focus on the identified area.

Model Calibration. The aim of this phase is to adjust the model input parameters
(e.g., prob_infectionS, prob_infectionR_l1, . . . ) to have the best fit of simulated behaviours
to the real data. As described in subsection Modeling framework: a detailed overview.
our framework implements the calibration procedure through an optimization problem
which minimises a user-defined object function. Since this optimization task is computa-
tionally expensive when a stochastic process is considered, we describe now a two-steps

1 Observe that a detailed description of the data sources is reported in subsection Data information
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Table 1 Parameters variability range used during sensitivity and calibration analysis. In details, in the
first column are listed the parameter names, then in the second and fourth columns the variability
ranges used for the sensitivity and calibration analyses, respectively. The third column reports the
initial parameters configuration. Finally, the fifth column is the optimal configuration discovered in
the calibration analysis such that the quadratic error w.r.t. the real data is minimized

Parameter name PRCC ranges GENSA Init. GENSA ranges GENSA Output

prob_boost [ 0, 0.010] 0.0025 [ 0.0, 0.0025] 0.002474758

prob_infectionS [ 0, 0.005] 0.0031 [ 0.0025, 0.0100] 0.002537443

prob_infectionR_l1 [ 0, 0.010] 0.0023 [ 0.0, 0.0025] 0.002458887

init_S_a1 [ 0, 866703] 866703 [ 0, 866703] 866696

init_S_a2 [ 0, 15685693 15685693 [ 0, 15685693 15685680

init_S_a3 [ 0, 37837299] 37837299 [ 0, 37837299] 37628100

init_R_a1_nv_l4 [ 0, 866703] 0 [ 0, 866703] 7

init_R_a2_nv_l1 [ 0, 15685693] 0 [ 0, 15685693] 4

init_R_a2_nv_l2 [ 0, 15685693] 0 [ 0, 15685693] 2

init_R_a2_nv_l3 [ 0, 15685693] 0 [ 0, 15685693] 2

init_R_a2_nv_l4 [ 0, 15685693] 0 [ 0, 15685693] 2

init_R_a3_nv_l1 [ 0, 37837299] 0 [ 0, 37837299] 209184

init_R_a3_nv_l2 [ 0, 37837299] 0 [ 0, 37837299] 4

init_R_a3_nv_l3 [ 0, 37837299] 0 [ 0, 37837299] 4

init_R_a3_nv_l4 [ 0, 37837299] 0 [ 0, 37837299] 4

approach to speed-up this task that can be implemented easily using our R function.
The idea behind this approach is to exploit the calibration of the deterministic process,
typically faster, to reduce the parameter search space in the calibration of the stochastic
process.

Then, in the first step the function model_calibration() is applied on the generated
deterministic process to fit its behaviour to the real Italian infection data (from 1974 to

Fig. 4 PRCCs values for the selected input parameters with respect the number of infections over the entire
simulated period
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Fig. 5 Scatter Plot showing the squared error between the real and simulated infection cases varying
prob_infectionS and prob_infectionR_l1. The dark blue points represent the parameters configuration with
minimum error w.r.t. the real data

1994) using squared error estimator via trajectory matching, and then GenSA tool is exe-
cuted to identify the best parameter set and Backward Differentiation Formula (BDF)
method to solve the ODE system. Note that the information derived by the sensitivity
analysis is exploited to reduce the number of parameters to be estimated and/or their
search space.

Figure 6 shows a subset of all the trajectories generated by GenSA character-
ized by 15’000 trajectories extracted from a set of ∼ 90’000 trajectories obtained
in ∼ 48h on an Intel Xeon processor @ 2GHz on a single core. The trajectories
are colored depending on their distance (in terms of squared error) with respect to
the Pertussis surveillance data (the red line). In details, the yellow color is associ-
ated with a low squared error, the purple color with a high squared error, while
the optimal trajectory is showed in black. Moreover, the beam of trajectories (col-
ored in yellow), closed to the optimal one, provides an indication on the ranges of
parameter values that should be considered in the second steps of our calibration
approach.

In the second step, the function model_calibration() is applied on the generated
stochastic process to fit its behaviour to the real infection data using Akaike Information
Criterion (Akaike Information Criterion (AIC)) via trajectory matching. The parameter
search space of this second optimization step is then computed from the result obtained
from the previous step, reported in the last column of the Table 1.

Figure 7 shows trajectories (grey lines) for the fifteen best parameter configurations
discovered, whose range values are reported in the Table 2. The blue area contains the
average trajectories derived for the first ten best parameters configuration, while the
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Fig. 6 Model Calibration considering the deterministic model. Here a subset of the trajectories obtained
from GenSA considering the parameter ranges stored in the fourth column of Table 1. The color of each
trajectory depends on the squared error w.r.t. the Pertussis surveillance trend (red line). The black line is the
optimal trend obtained by minimizing the squared error

two green lines provides the associated confidence interval. We can observe that a good
approximation of the surveillance data (red line) from the 1974 to 1994 is obtained. This
second step required about 48 hours on Intel Xeon processor @ 2GHz, exploiting a par-
allel execution on 40 cores. The trajectories are generated using the τ -leaping algorithm
(see “Implemented model solvers” section for more details on this algorithm).

Finally, more details on the command lines used in these two phases are reported in the
Additional file 1.

Model Analysis In this last phase of our workflow the user can analyse the calibrated
model to answer specific questions and to derive new insights. In our case study we show
a simple what-if analysis that can be implemented tacking advantage of the R function
model_analysis(). In particular we investigate the impact of different vaccination failure
probabilities with respect to the number of infection cases. The simulated time period is
from 1974 to 2016, and the pertussis vaccination program is started in 1995, with an aver-
age vaccination coverage starts from 50% and transitions linearly to 95% in 8 years, [29,
30]. The results are derived using the τ -leaping algorithm for generating 1024 trajectories
for each case. The simulation of each case has required 4 hours on Intel Xeon processor
@ 2GHz, exploiting a parallel execution on 40 cores.

In Figs. 8, 9, 10 we show how the number of infection cases is affected by increasing the
vaccination failure probabilities from 0 to 0.5. We observed that only probabilities greater
than 0.3 have an effect on the number of infection cases. For a matter of space, we only
report results for failure probability of 0 (the reference), 0.1 and 0.4.
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Fig. 7 Stochastic simulations. a 4096 trajectories (grey) over the whole time interval are reported. b Boxplots
over the time period considering the best configuration

Moreover, considering the same time period we further investigated the effects of vary-
ing the vaccination coverage of newborns in the period from 2006 to 2016. Figs. 11, 12
show results for vaccination coverage of 90% and 80% respectively. The simulation of each
case comprises of 1024 stochastic traces and has required 4 hours on Intel Xeon processor
@ 2GHz, exploiting a parallel execution on 40 cores.
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Table 2 Final parameters variability range used during the calibration of the model by solving the
stochastic process τ -leaping algorithm

Parameter name Final range

prob_boost 0.002523008 ∼ 0.002531240

prob_infectionS 0.002528196 ∼ 0.002529264

prob_infectionR_l1 0.002458931 ∼ 0.002474028

init_S_a1 866696

init_S_a2 15685680

init_S_a3 37628100

init_R_a1_nv_l4 7

init_R_a2_nv_l1 4

init_R_a2_nv_l2 2

init_R_a2_nv_l3 2

init_R_a2_nv_l4 2

init_R_a3_nv_l1 209184

init_R_a3_nv_l2 4

init_R_a3_nv_l3 4

init_R_a3_nv_l4 4

In details Figs. 11a and 12a shows how the infects distribution shifts upward when the
fraction of vaccinated newborns decreases.

Looking at the initial vaccination years (i.e. from 2001 to 2006) of these figures it is
possible to notice that the distribution of infects look quite alike, as indeed they are the
realizations of the same stochastic process. On the other end, starting from 2006 the two
distributions begin to differ reflecting the changes in the vaccinated population.

Moreover, to better understand the effects on the distribution of infects in the popu-
lation, Figs. 11b, 12b show the Empirical Cumulative Distribution Function (ECDF) of
infects in 2016 for both the reference data series and the one with the percentage of vac-
cinated newborns reduced to 90% and to 80%. Comparing the two ECDFs it is clear that
reducing the vaccination coverage the probability mass is shifted toward higher num-
ber of infects in the population. Indeed, the slope of the ECDF in Fig. 11b is much more
steeper in the initial stage (i.e. in the range between 1000 and 1250) than that in Fig. 12b,
meaning that a lower vaccination coverage remarkably increases the probability of having
infection outbreak.

Discussion
The health burden of well known infectious diseases was recently believed to become
progressively negligible due to the fact that, among other factors, hygiene, improved
nutrition, new drugs, and vaccination policies favoured a steady decline in overall
mortality [31].

Quite the opposite, it is nowadays apparent that emerging and re-emerging infectious
diseases such as Zika, Ebola, or Corona virus, pose a compelling challenge for epidemi-
ologists; indeed human mortality attributed to infection is projected to remain at current
levels of 13 to 15 million deaths annually until at least 2030, [31]. In this context, com-
putational models and computer simulations are one of the available research tools that
epidemiologists use to better understand the spreading characteristics of these diseases
and to decide on vaccination policies, human interaction controls, and other social mea-
sures (including drastic) to counter, mitigate or simply delay the spread of the infectious
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Fig. 8 Stochastic simulations. Probability of vaccine failure settled to zero. a 1024 trajectories (grey)
considering the stochastic model over the whole time interval. The blue dashed line represents the mean
trend. Finally, the red line represents the Pertussis surveillance trend. b Boxplots over the time period. c Zoom
considering the last 21 years

disease. The construction of mathematical models of these diseases and their solutions
remain however challenging tasks due to the fact that little effort has been devoted to the
definition of a general framework easily accessible even by researchers without advanced
modelling and mathematical skills. Despites of these needs and of the many studies
reported in the literature to address these problems, to the best of our knowledge, we
believe that the only successful attempt in this direction was GLEaM [5], a computational
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Fig. 9 Stochastic simulations. Probability of vaccine failure settled to 10%. a 1024 trajectories (grey)
considering the stochastic model over the whole time interval. The blue dashed line represents the mean
trend. Finally, the red line represents the Pertussis surveillance trend. b Boxplots over the time period. c Zoom
considering the last 21 years

framework that exploits a stochastic model on a global population scale to simulate the
large-scale spreading of influenza-like illnesses. Motivated by these considerations, we
propose in this paper a new general modelling framework for the analysis of infectious
diseases that does not require advanced mathematical computational skills for its uti-
lization, and not even long and complex training phase for being used. The key issue
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Fig. 10 Stochastic simulations. Probability of vaccine failure settled to 40%. a 1024 trajectories (grey)
considering the stochastic model over the whole time interval. The blue dashed line represents the mean
trend. Finally, the red line represents the Pertussis surveillance trend. b Boxplots over the time period. c Zoom
considering the last 21 years

underlying the development of our framework was to allow a domain expert (epidemi-
ologist with limited knowledge of mathematical details) to use a simple, intuitive, but
at the same time powerful tool to perform analysis and forecast on the spread of the
disease, on the effect of vaccination campaigns, and/or on measures to contain the spread
of the infection. Indeed, the use of a graphical formalism allows epidemiologists to con-
ceive a model using a tool that is easier to handle than writing large sets of inter-related
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Fig. 11 Stochastic simulations. Comparison between 1024 stochastic traces following the reference data and
a scenario where the population vaccinated is reduced to the 90% starting from 2006. a Shows the violin plot
comparing the distribution of infected patients in the two scenarios. b Comparing Infects ECDF after 10 years
of reduced vaccination rate

equations: Petri Net models are quite similar to the transmission flow diagrams widely
used in epidemiology to describe the disease progressions. Then, the corresponding
underlying deterministic and stochastic processes can be automatically generated and
solved by our framework starting from the PN model. Indeed the framework provides a
set of efficient and specific analysis techniques already integrated and ready-to-use. Dif-
ferently a user should spend time to integrate existing solution methods or developed new
ones. The novelties and strengths of the proposed framework with respect to GLEaM can
be summarized as follows: (1) the use of a graphical formalism for the model creation; (2)
a user-friendly interface based on R language; (3) framework portability and reproducibil-
ity of the results; (4) the possibility to integrate user-defined workflows. The effectiveness
of this new framework was tested with a study of the pertussis epidemiology in Italy. The
choice of this case study is due to the intrinsic complexity of the epidemiology and vac-
cination of this disease and to the need of comprehensive studies capable of addressing
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Fig. 12 Stochastic simulations. Comparison between 1024 stochastic traces following the reference data and
a scenario where the population vaccinated is reduced to the 80% starting from 2006. a Shows the violin plot
comparing the distribution of infected patients in the two scenarios. b Comparing Infects ECDF after 10 years
of reduced vaccination rate

the many facets of this problem. Indeed, despite the fact that many models have been
proposed since 1980s [18–23] with the aim of providing insights on vaccination strate-
gies, duration of immunity, and epidemic episodes, all of them share the characteristics
of addressing only a subset of the specific peculiarities of the pertussis disease, and none
of them faces the necessity of incorporating into a single model more details of the dis-
ease (e.g., the population age, the individual immunization level, . . . ) to better match the
real observed dynamics and to predict the outcome of vaccination measures [26]. In sub-
section A workflow for studying the Pertussis in Italy we show that our framework can
be easily exploited to construct and to analyse such a complex and comprehensive model
(i.e., its underlying deterministic process is described by 179 ODEs and its underlying
stochastic one is characterized by more than 1900 events). The development of such a
model would be clearly unfeasible without the use of the graphical formalism; similarly,
the analysis of such a representation would be difficult and error prone without the use
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of the suite of powerful solution tools integrated in the framework. As described in sub-
section A workflow for studying the Pertussis in Italy, the above model was calibrated in
order to reproduce the observed Italian pertussis spread from 1974 to 2016. Figures 7a-b
show that the model provides a good approximation of the real data giving confidence on
the possibility of using it to answer specific biological questions such as the impact of dif-
ferent vaccine failure probability and/or different vaccination coverage on the probability
to have a pertussis outbreak. This shows that focusing on the analysis of specific biolog-
ical questions, a model of this type can be used to perform a what-if analysis to assess
the sensitivity of the model to variations of certain input parameters. The high level of
parametrization and the flexibility provided by the graphical formalism gives the possi-
bility of re-using the model and its analysis workflows for many other cases beyond the
one studied in this paper and represents one of the strengths of the proposed approach.
With new contact matrices and new set of observed data, it would become possible to
study other diseases or to model one disease with increasing levels of complexity/realistic
ingredients. For instance we are adapting this model to investigate the effect of unde-
tected infected individuals on the COVID-19 outbreak in Piedmont region. Although
there are different patterns in the transmission and progression between the two diseases,
there exist several building blocks in common between the two models and that helped
us to develop, calibrate and analyze the new model in a matter of few weeks. For all these
reasons we believe that this work can this proposed framework represents a substantial
advance in the field of computational epidemiology and will be beneficial for the entire
epidemiological community.

Conclusion
In this paper we present a new general modeling framework for the analysis of
epidemiological systems which exploits Petri Net graphical formalism, R environ-
ment, and Docker containerization to make easy its utilization even by researchers
without advanced mathematical and computational skills. Moreover, the framework
was implemented following the guidelines defined by Reproducible Bioinformatics
Project, so that it provides reproducible analysis and makes simple the integra-
tion of new user-defined workflows. The effectiveness of this framework was then
shown through a case of study in which we investigated the pertussis epidemiology
in Italy.

Methods
This section provides first a brief description of the sources of data utilized in our model,
and of the Extended Stochastic Symmetric Net (ESSN) [6] formalism. Subsequently,
we recall all the techniques implemented in our framework to perform the sensitivity
analysis, the model calibration, and to evaluate the system behaviours.

Data information

Pertussis notification data were collected from the Italian Ministry of Health [28, 32]
and Surveillance Atlas of Infectious Disease [33]. Such data report the number of Italian
Pertussis cases per year from the beginning of 1974 until the end of 2016.

From the Italian Ministry of Health [34] we obtained the Italian population size, annual
numbers of live births and deaths from 1974 to 2016. According to this we defined the



Castagno et al. BMC Bioinformatics 2020, 21(Suppl 8):3648 Page 24 of 32

birth and death rates as the average number of births and deaths, respectively, per day in
each age class during the reference period.

The vaccine coverage data were extracted from [29] and [30]. Since the vaccine policy
in Italy prescribes that three doses must be administrated within 11 months of age, the
coverage at each year is defined as the proportion of children born that year who received
three doses of the combined diphtheria, tetanus and aP vaccine (DTP) within 24 months
of age.

The contact matrix depending on the three age ranges (N , Y and O) was estimated
from that provided by [35], in which the Italian contact rates are reported assuming the
population divided into 15 age ranges.

Petri Net and its generalization

Petri Net (PN) [36] and their extensions are widely recognized to be a powerful tool
for modeling and studying biological systems thanks to their ability of representing sys-
tems in a natural graphical manner and of allowing the computation of qualitative and
quantitative information about the behavior of these systems.

In details, PNs are bipartite directed graphs with two types of nodes, namely places
and transitions. The former ones correspond to state variables of the system and are
graphically represented as circles. The latter ones correspond to the events that can
generate a state change and are graphically represented as boxes. Nodes of different
types are connected by arcs, which express the relation between states and event occur-
rences. A specific cardinality (multiplicity) is associated with each arc, and it describes
the number of tokens removed from (or added to) the corresponding place upon the
firing of the transition the arc is connected to. Graphically, it is written beside the
arc, but the default value of one is omitted. Finally, places can contains tokens drawn
as black dots. Then, the number of tokens in each place defines the state of a PN,
called marking.

An example of a simple PN is given in Fig. 13a representing the classical Susceptible-
Infected-Recovered (SIR) model. The places S, I, and R represent the three types of
individuals that characterize the system, i.e. respectively susceptible, infected, and recov-
ered. Then, the events that might occur are (i) the infection of a susceptible after the
contact with an infected one, modeled by the transition Infection, and (ii) the recovery
from the disease, represented by the transition Recovery. In Fig. 13a all the arcs have
cardinality one, except the arc connecting the transition Infection to place I which has car-
dinality 2. The initial marking in Fig. 13a is defined as S〈5〉 + I〈3〉 + R〈1〉, meaning that
the system is characterized by five susceptible individuals, three infected individuals and
one recovered individual.

A transition is defined as enabled if and only if each input place contains a number
of tokens greater or equal than a given threshold defined by the cardinality of the cor-
responding input arcs. Thus, the firing of an enabled transition removes a fixed number
of tokens from its input places and adds a fixed number of tokens into its output places,
according to the cardinality of its input/output arcs. In the Fig. 13a all the transitions are
enabled in the initial marking. The system evolution is obtained from the firing of enabled
transitions.

Among the PN generalisations proposed in literature, Stochastic Petri Net (SPN) rep-
resents a simple formalism that is relevant for the extensions used to specify the models
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Fig. 13 PN Examples of the simple SIR model. a PN formalism; b ESSN formalism

considered in this paper. In SPNs delays are associated with transitions that, once enabled,
take time to fire. Delays are specified as Negative Exponential random variables character-
ized by a rate parameter. The dynamic behavior of a SPN can be interpretded as a simple
Stochastic Process which can be recognized as a CTMC.

ESSN [6, 7] extends the SPN formalism allowing the users to easily define complex
rate functions and providing a more compact, parametric, and readable representation of
the system, due to the possibility of associating specific information (i.e. colors as in the
Stochastic Symmetric Net (SSN) [8]) with each token. In the ESSNs, the set of transitions
T is split in two sub-sets Tma and Tg , so that the former contains all transitions which
fire with a rate following a MA law; the latter includes instead all the transitions whose
random firing times have rates that are defined as general real functions. Transitions in
Tg are graphically represented with black bar.

In details, each place p in the ESSN formalism has an associated color domain (i.e. a data
type) denoted cd(p) and each token in a given place has a value defined by cd(p). Color
domains are defined by the Cartesian product of elementary types called color classes,
C = {C1, . . . , Cn}, which are finite and disjoint sets. They can be ordered (in this case
a successor function ++ is defined on the class, inducing a circular order among the
elements in the class), and can be partitioned into (static) subclasses.
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For instance, the ESSN model in Fig. 13b extends the previous SIR model introducing
the age of each population member through the color class Age divided into three sub-
classes Newborn, Young, and Old. Then, the color domain of all the places is cd(S) =
cd(I) = cd(R) = Age

Each ESSN arc is labeled with an expression defined by the function I[ p, t] : cd(t) →
Bag[ cd(p)], if the arc connects a place p to a transition t, while the opposite direction is
defined by the function O[ p, t] : cd(t) → Bag[ cd(p)]. Where Bag[ A] is the set of multisets
built on set A, and if b ∈ Bag[ A] ∧a ∈ A, tyen b[ a] denotes the multiplicity of a in the
multiset b. In particular, the evaluation of I[ p, t] (resp. O[ p, t]), given a legal binding of t,
provides the multiset of colored tokens that will be withdrawn from - input arc (resp. will
be added to - output arc) the place connected to that arc by the firing of such transition
instance.

Color domain are associated with transitions too. Considering a specific transition, its
color domain is defined as a set of typed variables, where the variables are those appearing
in the functions labeling the transition arcs and the variable types are the color classes.
For instance, the color domain of transition Infection is cd(Infection) = Age × Age and the
variables characterizing its input arc are x, y ∈ Age

An instance of a given transition t is an assignment of the transition variables to a spe-
cific color of a proper type. Hence, we use the notation 〈t, c〉 to denote an instance, where
c is an assignment, also called binding. Moreover, a guard can be used to define restric-
tions on the allowed instances of a transition. A guard is a logical expression defined on
the color domain of the transition, and its terms, called basic predicates, allow users (i) to
compare colors assigned to variables of the same type (x = y, x �= y); (ii) to test whether
a color element belongs to a given static subclass

(
x ∈ Ci,j

)
; (iii) to compare the static

sub-classes of the colors assigned to two variables (d(x) = d(y), d(x) �= d(y)).
The marking of an ESSN is defined by the number of colored tokens in each place. For

instance, a possible marking of the system of Fig. 13b can be: S(5〈Newborn〉) + I(4〈Old〉)
representing a state with five supsceptible newborns and four infected old individuals.

Moreover, we denote with •t the set of input places of the transition t and with t• the
set of output places of t, i.e. •t := {

p ∈ P| ∃ c ∈ cd(p) s.t. I[ p, t] (c′)[ c] > 0
}

and t• :=
{

p ∈ P| ∃ c ∈ cd(p) s.t. O[ p, t] (c′)[ c] > 0
}

.
We use the notation E(t, m) to denote the set of all instances of t enabled in marking m.

Where, in the case of the ESSN formalism, a transition instance 〈t, c〉 is enabled and can
fire in an marking m, if: (1) its guard evaluated on c is true; (2) for each place p we have
that I[ p, t] (c) ≤ m(p), where ≤ is the comparison operator among multisets. The firing
of the enabled transition instance 〈t, c〉 in m produces a new marking m′ such that, for
each place p, we have m′(p) = m(p) + O[ p, t] (c) − I[ p, t] (c).

In ESSNs each transition is associated with a specific rate, representing the parameter
of the exponential distribution that characterises its firing time. Defining with m̂(ν) =
m(ν)|•t the subset of the marking m(ν) concerning only the input places to transition t,
the parameter associated with an enabled transition instance 〈t, c〉 is given by the function

F(m̂(ν), t, c, ν) :=
{

ϕ(m̂(ν), t, c), t ∈ Tma,
f〈t,c〉(m̂(ν), ν), t ∈ Tg ,

(1)

f〈t,c〉 ∈ �(t, c)
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where � = {
f〈t,c〉

}
t∈T∧c∈cd(t) is the set grouping all the real functions characterizing the

transition speeds ∀t ∈ T , with f〈t,c〉 = ϕ(cdot, t, c) when t ∈ Tma. Moreover ϕ(m(ν), t, c)
is defined according to MA law as follows:

ϕ(m(ν), t, c) = ω(t, c)
I[ p, t] (c′)[ c] !

∏

〈p,c′〉| p∈•t ∧ c′∈cd(p)

mpj ,c′(ν)I[p,t](c′)[c]

with ω(t, c) representing the rate of the enabled transition instance 〈t, c〉. Observe that
ϕ(m̂(ν), t, c) and f〈t,c〉(m̂(ν), ν) can depend only on the time ν and the marking of the input
places of transition t at time ν.

As for the SPNs, also in the ESSNs the stochastic firing delays, sampled from negative
exponential distributions, allow to automatically derive the underlying CTMC that can be
studied to quantitatively evaluate the system behaviour [36]. In details, the CTMC state
space, S, corresponds to the reachability set of the corresponding ESSN, i.e. all the possible
markings that can be reached from the initial marking. Thus, the Chapman-Kolmogorov
equations (also called Master Equation) for the CTMC are defined as follow:

dπ(mi, ν)

dν
=

∑

mk

π(mk , ν)qmk ,mi mi, mk ∈ S (2)

where π(mi, ν) represents the probability to be in marking mi at time ν, and qmk ,mi the
velocity to reach the marking mi from mk , defined as

qmk ,mi =
∑

t∈T∧
T〈t,c′〉∈E(t,mk)|mi

F(mk , t, c′, ν)
(
L[ p, t] (c′)[ c]

)
.

where E (t, mk)|mi is the set of all instances of t enabled in marking mk whose firing brings
to the marking mk , and L[ p, t] (c′)[ c] = O[ p, t] (c′)[ c] −I[ p, t] (c′)[ c].

In complex systems, the System of differential equations represented by the Master
Equation (2) is often mathematically intractable (i.e it requires an equation for each sys-
tem state), thus Monte Carlo simulation can be exploited to study the system behaviour.
Let us underline that each trajectory obtained by Monte Carlo simulation represents one
sample of the probability mass function that solves the Master Equation.

In case of very complex models, when the system stochasticity is negligible, then it
is possible to exploit the so-called deterministic approach [37] which approximates the
system behaviours through a deterministic process. This deterministic process is then
described through a system of ODEs having one equation for each possible colored tuple
c in each place domain (i.e. ∀p ∈ P, ∀c ∈ cd(p)). Let us highlight that the deterministic
process derived in this manner is able to well approximate the stochastic behavior of an
ESSN model, if the CTMC underlying the model is a density dependent process, i.e., if all
the transition rates belonging to � are represented by density dependent functions (see
[38] for more details)

Let xp,c(ν) ∈ R
+ be the continuous approximation of the number of tokens in place p

and colors c so that the vector x(ν) ∈ R
n , is the continuous approximation of an ESSN

marking at time ν.
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Let also define x̂(ν) = x(ν)|•t as the subset of the marking x(ν) concerning only the
input places to the transition t, then the Eq. (1) becomes

F(x̂(ν), t, c, ν) :=
{

ϕ(x̂(ν), t, c), t ∈ Tma,
f〈t,c〉(x̂(ν), ν), t ∈ Tg ,

(3)

f〈t,c〉 ∈ �(t, c).

Finally the ODE characterizing the p and color tuple c ∈ cd(p) is defined as:

dxp,c(ν)

dν
=

∑

t∈T∧
T〈t,c′〉∈E(t,mk)|mi

F
(
x̂(ν), t, c′, ν

) (
L[ p, t] (c′)[ c]

)

=
∑

t∈Tma ∧
〈t,c′〉∈E(t,x(ν))

ϕ
(
x̂(ν), t, c′) (

L[ p, t] (c′)[ c]
)

+
∑

t∈Tg∧
〈t,c′〉∈E(t,x(ν))

f〈t,c′〉
(
x̂(ν), ν

) (
L[ p, t] (c′)[ c]

)
(4)

where x̂(ν) = x(ν)|•t.

Monte Carlo sampling with PRCC

Sensitivity analysis is a well-known approach exploited in computational modeling to
investigate which parameters affect mostly the variability of the outcomes generated by
the model. In the literature several approaches are proposed to achieve this task, such as
Pearson correlation coefficient (CC) method (for linear relationships), Partial Rank Cor-
relation Coefficient (PRCC) method (for non-linear and monotonic relationships), and
Fourier Amplitude Sensitivity Test (FAST) method (for any non-linear relationships) [11,
12]. In this framework we implemented a sampling-based method which combines Monte
CarloSampling MCS with PRCC index.

In details MCS is exploited to generate the samples of the model input variables. Then
the model is run N times on a fixed temporal interval: one for each generated input vari-
able sample combination. Finally, PRCC between the generated input variables and the
obtained model outputs are evaluated on the same chosen interval. In this way the PRCC
analysis and corresponding significance tests (i.e significant p-value) are utilized to iden-
tify key model parameters and to select time points which need an additional in-depth
investigation. Specifically, PRCC values close to 1 (resp. -1) identify positive (resp. neg-
ative) monotone relationships between inputs and outputs; while the significance tests
allow to discover those correlations that are important, despite having relatively small
PRCC values.

Implemented model solvers

In the literature many algorithms are proposed for the numerical solution of ODEs sys-
tems and for numerically generating time trajectories of a stochastic process. Obviously,
each method has its strengths and weaknesses, and for these reasons we decided to inte-
grate more than one algorithm in our framework. In detail, for the numerical solution of
ODEs systems we implemented three explicit methods (i.e., Runge-Kutta 5th order inte-
gration, Dormand-Prince method, and Kutta-Merson method) which can be efficiently
used for systems without stiffness (i.e., the system solution is numerically stable) [39].
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Instead for systems with stiffness we provided a Backward Differentiation Formula (Back-
ward Differentiation Formula BDF) method [39] that we implemented using the C++
LSODA library (https://en.smath.com/view/lsoda)

For the simulation of the stochastic process, we implemented the Gillespie algorithm,
called Stochastic Simulation Algorithm Stochastic Simulation AlgorithmSSA [40], the τ -
leaping method [41] and Stochastic Hybrid simulation Stochastic Hybrid simulation SHS.
The SSA is an exact stochastic method widely used to simulate chemical systems whose
behaviour can be described by the Master Equations, Eq. 2. In case of very large systems
(i.e., systems with a large numbers of interacting elements) SSA could be computationally
too slow, and then approximation methods must be used. Among these approaches the τ -
leaping algorithm provides a good compromise between the solution execution time and
its quality. Indeed, this method speeds up the stochastic simulation of system by approxi-
mating the number of system events during a chosen time increment (i.e., τ ) as a Poisson
random variable. Another approximation method implemented in our framework is the
Stochastic Hybrid Simulation (SHS), based on the co-simulation of discrete and contin-
uous events [42]. This approach provides a speed-up under the assumption that all the
faster events are modeled as continuous. Currently the user has to statically provide the
splitting between discrete and continuous events associating with them a specific label
that can be represented in the model using the GreatSPN GUI.

Implemented optimization solver to model calibration

In Computer Science, Mathematics, and Operations Research, optimization or mathe-
matical programming consists of minimizing (or maximizing) a function by consistently
selecting the values of its variables from a set of feasible possibilities utilizing analytical or
numerical methods. Formally an Optimization Problem (OP) with inequality constrains
can be defined as follows:

minimize
x

Fopt(x)

subject to Gi(x) ≥ bi, 1 ≤ i ≤ l

Li(x) ≤ cj, 1 ≤ j ≤ m

where the vector x = (y1, . . . , yn) is the variable vector, the function Fopt : R
n → R

is the objective function, the functions Gi(x) : R
n → R and Li(x) : R

n → R are
inequality constraint functions, and the constants b1, . . . , bl, c1, . . . , cm are the bounds for
the constraints. A vector x•, called optimal, is the solution of the OP if, among all vec-
tors that satisfy the constraints, it is that which yields the smallest (largest) value of
the optimization function: ∀z s.t. G1(z) ≥ b1, . . . ,L1(z) ≤ cm we have that Fopt(z) ≥
Fopt(x•).

OP is termed a linear program if the objective and constraint functions are linear and
non-linear otherwise. In our framework, the focus is on non-linear programs in which
constraints can be non-linear as well. To solve this type of OPs, several algorithms have
been proposed in the literature, an overview on these methods is reported in [43]. Among
the available algorithms, the one integrated in our framework is the Generalized Simu-
lated Annealing for Global Optimization implemented in the R package GenSA [44], since
it was designed to solve complicated nonlinear objective functions with a large number of

https://en.smath.com/view/lsoda
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local minima. Moreover, we are currently evaluating the integration of new optimization
algorithm based on deep learning and Neural network.

Docker containerisation in a nutshell

Container technology, a lightweight Operation System (OS)-level virtualization, was
recently proposed in the area of Bioinformatics as an efficient solution to simplify the
distribution, the usage and the maintenance of bioinformatics software [45]. Indeed, the
users exploiting containerization have not to deal with dependency or compilation prob-
lems; since an applications and their dependencies are already packaged and installed
together into the container image. Obviously, this simplifies considerably the installa-
tion and the usage of the applications encapsulated into a container image. Among the
container platforms proposed in literature, Docker (http://www.docker.com) is getting
actually the standard environment to quickly build, deploy, scale and manage con-
tainerized applications under Linux. In summary docker strengths are its high level of
portability, which allows users to easily register and share containers over different hosts,
and to achieve a more effective resource use and a faster deployment compared with other
similar software.
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