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Abstract

Background: Among the three countries most affected by the Ebola virus disease outbreak in 2014–2015, Guinea
presents an unusual spatiotemporal epidemic pattern, with several waves and a long tail in the decay of the
epidemic incidence.

Methods: Here, we develop a stochastic agent-based model at the level of a single household that integrates
detailed data on Guinean demography, hospitals, Ebola treatment units, contact tracing, and safe burial interventions.
The microsimulation-based model is used to assess the effect of each control strategy and the probability of elimination
of the epidemic according to different intervention scenarios, including ring vaccination with the recombinant vesicular
stomatitis virus-vectored vaccine.

Results: The numerical results indicate that the dynamics of the Ebola epidemic in Guinea can be quantitatively
explained by the timeline of the implemented interventions. In particular, the early availability of Ebola treatment
units and the associated isolation of cases and safe burials helped to limit the number of Ebola cases experienced by
Guinea. We provide quantitative evidence of a strong negative correlation between the time series of cases and the
number of traced contacts. This result is confirmed by the computational model that suggests that contact tracing
effort is a key determinant in the control and elimination of the disease. In data-driven microsimulations, we find that
tracing at least 5–10 contacts per case is crucial in preventing epidemic resurgence during the epidemic elimination
phase. The computational model is used to provide an analysis of the ring vaccination trial highlighting its potential
effect on disease elimination.

Conclusions: We identify contact tracing as one of the key determinants of the epidemic’s behavior in Guinea, and
we show that the early availability of Ebola treatment unit beds helped to limit the number of Ebola cases in Guinea.
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Background
Guinea was likely the starting point of the West African
Ebola virus disease (EVD) epidemic in 2014–2015 [1].
The country has experienced a complicated spatio-
temporal disease pattern, with several waves of increas-
ing and decreasing weekly incidence [2]. Compared to
Liberia and Sierra Leone, Guinea has a fairly developed
public health system that was able to prevent the virus
from exploding in major urban areas with the early
availability of Ebola treatment units (ETUs) and by
implementing a treatment pipeline through holding
centers to limit within-hospital transmission at the very
beginning of the epidemic [3]. Although Guinea has
suffered considerably fewer cases than Liberia and Sierra
Leone, it has struggled the most to eliminate the epi-
demic as evidenced by the noticeable increase in the
number of cases observed several times during the
second quarter of 2015 [2, 3] and continued flare-ups
ongoing as of April 2016. Moreover, Guinea was the
setting for the cluster randomized phase 3 trial of the
recombinant vesicular stomatitis virus (rVSV)-vectored
vaccine that captured many of the new cases in Guinea
and whose interim assessment of efficacy was released in
July 2015 [4]. All of the above elements make the tem-
poral pattern of the EVD epidemic in Guinea markedly
different from what was observed in Liberia and Sierra
Leone. Comparing the epidemic behavior across differ-
ent countries in the framework of a common modeling
approach can help to disentangle the role of different
intervention policies and identify the key determinants
of the 2014–2015 EVD outbreak.
Here, we develop a data-driven stochastic agent-based

model for Guinea that integrates detailed demographic in-
formation at high spatial resolution. We aim to provide a
computational modeling approach to quantitatively under-
stand the determinants of the observed disease dynamics
as well as the effect of intervention and vaccination strate-
gies. The model uses microsimulations to study the effect
of control measures implemented in Guinea (such as
ETUs, contact tracing, and safe burials) and to disentangle
the relative contribution of key drivers of the epidemic
temporal pattern. Interestingly, we contrast the results ob-
tained for Guinea with those obtained from an analogous
model for Liberia and highlight the role of the different
intervention policies and healthcare systems in defining
each country’s epidemic dynamics. The model is also used
to generate microsimulations of ring vaccination strategies
with the novel rVSV vaccine to estimate the impact of
vaccination, in combination with the other containment
efforts, on disease elimination.

Methods
We use a spatially structured, stochastic agent-based
model at the level of a single household that integrates

detailed data on Guinean demography, hospitals and
holding centers [5]. Details are in Additional file 1.
Briefly, the model explicitly integrates the reported daily
levels of contact tracing (CT), safe burial practices, and
ETU availability, and it accounts for age-specific risk of
disease and heterogeneity in transmissibility across indi-
viduals. A complete list of the data used in the model is
included in Additional file 1. The parameters characteriz-
ing the transmission rate in hospitals/ETUs, households,
during burial ceremonies, and in the extended family/
community are calibrated by Markov chain Monte Carlo
sampling applied to the likelihood of the weekly number
of cases among healthcare workers (HCW) (as reported to
the Guinean Ministry of Health – GMoH) and in the en-
tire general population of Guinea (as reported in the pa-
tient database of WHO). The calibration period considers
official data records up until February 25, 2015.

Synthetic population and transmission model
Each individual in the agent-based model is explicitly
simulated and has an associated epidemiological status.
There is empirical evidence that Ebola transmission pri-
marily occurs between household members and with ex-
tended family members [6, 7]; therefore, we explicitly
model households and the extended family (as a network
of additional households). In addition, we explicitly model
transmission during funerals and in hospitals/ETUs.
Characterization of EVD natural history follows the struc-
ture of previous works [8]: susceptible individuals can ac-
quire infection after contact with an infectious individual
and become exposed (and asymptomatic). At the end of
the incubation period, exposed individuals become infec-
tious (and symptomatic) and can transmit the infection to
household and extended family members. Infectious
individuals can either be hospitalized, die, or recover.
Individuals admitted to hospitals can expose susceptible
HCWs and non-Ebola patients at the same hospital,
while individuals admitted to ETUs are assumed to
transmit to HCWs only (although with a transmission
rate one order of magnitude smaller than the hospital
setting [5, 9]). Hospitalized Ebola cases may either die
or recover. Individuals deceased in the general community
or those who die in a hospital during the initial phase of
the epidemic may also transmit the infection to household
and extended family members during their funeral. Indi-
vidual mobility is modeled by accounting for movements
of individuals (including non-Ebola patients) seeking
assistance in hospitals and ETUs, the movements of in-
dividuals taking care of Ebola patients not admitted to
hospitals, and the attendance of funerals.
The Guinea synthetic population considers the specific

household composition and size distributions as ob-
tained from the Demographic and Health Survey (DHS)
[10]. The population is grouped into towns and villages.
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Prefecture capitals are put in their exact locations and
with the correct number of inhabitants [11], while all
other villages are distributed within the prefecture and
populated in such a way so as to match the total number
of inhabitants of the prefecture [11]. The number of
hospitals for each prefecture was obtained from the
2007 Guinean health statistics [12]; the number of beds
and HCWs for each hospital match available health sta-
tistics for Guinea from WHO [13]. In addition to hospi-
tals, ETUs with location, opening date, number of beds,
and HCWs matching the available information, are
considered. A full description of the synthetic popula-
tion, transmission model, and data used is available in
Additional file 1.

Non-pharmaceutical interventions
The model accounts for three non-pharmaceutical inter-
ventions: (1) ETUs, (2) community safe burials, and (3)
contact tracing (CT).

(1)The modeling of cases in ETUs/hospitals is as
follows. Symptomatic individuals seeking care are
admitted to an ETU with available beds in the same
prefecture. If no ETU is available they are held for
1 day in the hospital closest to the place of
residence. After 1 day in the hospital, if there are
beds available in ETUs, individuals are assigned to
the closest ETU having available beds; otherwise,
they remain in the hospital. Additionally, each
individual who is hospitalized (either in a hospital or
in an ETU) has a probability to be considered as an
index case for a CT investigation. Finally, individuals
admitted to ETUs who die are always buried safely.

(2)The GMoH reports the daily number of total burials
and of safe burials in the community [3]. For each
day t of the simulation, every individual deceased at
that time in the community (i.e., who was not
hospitalized) has a probability B(t) of being buried
safely, thus preventing transmission events during
the funeral. We compute the daily probability B(t) of
being safely buried in the community as the ratio
between safe and total burials (both in the community).

(3)The GMoH reports the daily number of contacts
followed in CT investigations [3]. We compute a
proxy for the number of new contacts followed per
case at day t, F(t), as the ratio between the total
number of followed contacts over the period
(t, t + 21) and the total number of cases over the
same period. Ajelli et al. [7] estimated that the
probability of identifying a case through CT depends
linearly on the number of contacts followed; for
instance, 11.5 traced contacts per case corresponds
to about 30 % detection probability. We use this
information to derive the daily probability of

following a contact, Φ(t), from F(t). At each time
step, for each individual admitted either to a hospital
or an ETU, we sample from a Bernoulli distribution
with probability Φ(t) to determine whether their
household is followed or not. The same procedure
is applied to each additional household in their
extended family network. Once an individual
belonging to a household followed by CT becomes
symptomatic, he is hospitalized on the same day of
symptom onset (provided that beds are available).
Additional details on modeled interventions and a
discussion of the underlying modeling assumptions
are provided in Additional file 1.

Age-dependent risk of infection and heterogeneity
From data reported to WHO, the age-specific incidence
of Ebola is notably higher among adults versus children
in Guinea, Liberia, and Sierra Leone [7, 14–16]. There-
fore, the model allows children aged 0–14 years to have
a different risk of infection compared to individuals aged
15 years or older [17]. By analyzing the number of cases
by age, as reported by the GMoH, with a simple com-
partmental transmission model (Additional file 1), we
found that the risk of infection of children aged 0–14
years is 0.246 (95 % CI, 0.212–0.284) times that of
adults. A second important feature of EVD, similar to
other diseases [18], is a high level of heterogeneity in indi-
vidual transmissibility, with a few cases leading to a major-
ity of secondary cases [6, 7, 19]. The model accounts for
this feature by assuming each individual has a specific in-
fectivity sampled from a Gamma distribution such that
the overall distribution of secondary cases follows a nega-
tive binomial distribution with dispersion parameter 0.20
(95 % CI, 0.13–0.31), as estimated by analyzing the data
reported in Faye et al. [6] (Additional file 1).

EVD parameters
The majority of parameters regulating EVD natural his-
tory used in the model were taken from the study of the
outbreak by the WHO Ebola response team [14] and are
reported in Additional file 1. The parameters regulating
transmission rates in hospitals/ETUs, in households,
during burial ceremonies, and the scaling factor ac-
counting for weaker contacts in the extended family
compared to those within the household are estimated
by using a Markov chain Monte Carlo approach explor-
ing the likelihood of the recorded number of cases in
the general population and among HCWs (details in
Additional file 1). The dataset used for model calibration
in this study is from a time period of intensive ongoing
interventions. Each of the interventions mainly acts in
reducing transmission in one specific setting: ETUs re-
duce transmission in healthcare settings; community safe
burials reduce transmission at funerals; and CT reduces
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transmission in households and extended family. This,
together with the use of two different case count curves,
leads to better identifiability of transmission rates. Simu-
lations were initialized with 52 infected individuals geo-
graphically distributed in four prefectures (namely
Guéckédou, Conakry, Macenta and Dabola) based on in-
formation on the first confirmed cases reported to the
WHO. The national-level simulations were run until
there were 495 cases, at which point the simulated date
is set to August 4, 2014, according to GMoH reports [3].

Ring vaccination
To quantify the effect of the novel rVSV vaccine, we have
simulated a ring vaccination protocol similar to that used
in the Ebola ça suffit randomized trial [20]. Beginning
March 23, 2015, individuals admitted to ETUs are con-
sidered as index cases for ring vaccination. Once an index
case for a new ring is identified, a socio-geographical ring
is defined, including contacts and contacts of contacts of
the index case and individuals living in a radius of 30
meters around the index case’s house (note that the Ebola
ça suffit trial included contacts and contacts of contacts
only). As the ring index case is admitted to an ETU, the
ring is randomized, with probability 50 %, to receive

immediate vaccination (3 days after the admission of the
ring index case, reflecting logistical constraints experi-
enced in the actual trial [20]) or delayed vaccination
(21 days after enrollment). Ring members are eligible for
vaccination if aged 18 years or more. We assume that the
vaccine is administered to 90 % of eligible members and
that there is a delay of 6 days between vaccine adminis-
tration and maximal protective efficacy in individuals
for whom the vaccination is efficacious [4]. Three levels
of vaccine efficacy are evaluated: 75 %, 90 %, or 100 %
of vaccinated individuals are completely protected [4].

Results
The adequacy of the model can be analyzed by comparing
the official data through mid-May 2015 with the model
output according to the posterior distributions of the pa-
rameters. The weekly incidence produced by the model in
shows a temporal pattern similar to the observed data
and captures the slow decay in incidence beginning in
March 2015 (see Fig. 1a). The two data points in
December 2014 that fall just outside the 95 % CI of model
predictions are likely linked to superspreading events that
occurred during two traditional (unsafe) burials reported
in Kissidougou [1–3, 21]. A similar temporal pattern of

Fig. 1 Model validation and estimates. a Weekly number of cases over the period August 2014 – May 2015 according to the WHO Ebola situation
report, patient database and Guinean Ministry of Health (bars) and predicted by the model (the blue line is the average, and the shaded blue region is
the 95 % confidence interval of simulated epidemics). The red line, set on February 25, 2015, marks the end of the calibration period. b Predicted and
observed cumulative number of cases by prefecture and region as of February 25, 2015. c Boxplot of the proportions of transmission by setting as of
August 15, 2014, and February 25, 2015, in order to show the variation of these quantities. August 15, 2015, is chosen in such a way as to allow a
comparison with the results for Liberia presented previously [5]; February 25, 2015, corresponds to the end of the calibration period
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case counts is estimated by the model when assuming
that only 80 % of cases have been reported to WHO
(Additional file 1). Although model calibration con-
siders only nationally aggregated data, we can check
the model adequacy by comparing model results at a
finer geographical resolution with the available data
(Fig. 1b). Both the data and model output show that the
most affected regions are Nzérékoré (in particular
Macenta and Guéckédou prefectures), the region where
EVD was first seeded; Conakry, the capital region with
an operational ETU since March 2014; and Kindia, a
region close to Conakry (in particular Coyah, Dubréka
and Forécariah prefectures). Further analyses including
the temporal pattern at the prefecture level and cumu-
lative attack rates by region are reported in Additional
file 1. These results suggest that, although the calibra-
tion does not contain explicit information on interven-
tion timing and intensity for each specific region, the
dynamics of the model adequately reproduce the spatial
heterogeneity observed in the epidemic [6].
The estimated proportions of EVD transmission at-

tributable to each of the three modeled transmission
settings are shown in Fig. 1c. Using data through
February 25, 2015, modeling results suggest that 65.7 %
(95 % CI, 43.7–82.8) of cases were due to transmission
between household and extended family members, 23.4 %
(95 % CI, 5.3–43.6) were caused by unsafe burials, and
only 10.9 % (95 % CI, 5.7–17.7) occurred in hospitals and
ETUs. The distribution of secondary infections by setting
is highly variable due to different numbers of potential
contacts across different settings and individual variation
in infectivity. Specifically, as individuals are explicitly con-
sidered in the model, we are able to identify the infector
of each case, and thus to reconstruct the whole transmis-
sion tree for each simulation. The simulated transmission
trees (an example is reported in Fig. 2a, b, c) show high
heterogeneity in the number of secondary infections, with
few individuals responsible for the majority of infections.
This result is in good agreement with reports from
other studies (see for instance [6, 7, 19]). Moreover, we
found that the distributions of secondary cases differ by
setting, although they are all highly skewed (Fig. 2d).
Interestingly, we found highly skewed distributions, to
the right, of secondary cases in the household and ex-
tended families, although the distribution of contacts
between individuals in the extended family network
shows a well behaved distribution of about 44 contacts
on average (Fig. 2e).
The simulated case series generated by the model

allows the reproductive number Rt to be estimated as a
function of time (details in Additional file 1). We esti-
mated the mean Rt in early July 2014 to be 1.27 (95 % CI,
0.36–2.49). In early November 2014, Rt decreased below
the critical threshold (Fig. 3). This suggests sustained

exponential growth in the very early phases of the epidemic.
Using a simple compartmental model to analyze age-
specific incidence data early in the epidemic, not account-
ing for intervention strategies (Additional file 1), we found
a consistent estimate of the reproduction number R. Specif-
ically, we estimated the mean reproduction number to be
1.18 (95 % CI, 1.17–1.19). Estimates obtained by using both
approaches are remarkably lower than estimates for neigh-
boring countries [5, 22, 23].
The overall behavior of epidemic incidence over time

can be readily linked to temporal variation in the level of
CT. A precise quantification of the key role of CT
(whose variability is shown in Fig. 4a) is provided by the
time series correlation analysis of epidemic incidence
with intervention indicators such as CT, safe burials,
and ETU admissions. We find that the average number
of contacts per case included in CT at any given time is
strongly negatively correlated with the incidence of cases
observed 10–30 days later (Fig. 4b). The correlation is
most negative at a lag of 17 days (ρ = −0.74, P < 0.001),
meaning that CT effort at a given time has its greatest
effect on the number of cases that will be observed
17 days later. Fig. 4c shows that (1) the average level of
CT has increased over time (the linear model best fitting
the data shows an average increase of 0.53 persons per
month, P < 0.001); and that (2) increasing CT is associ-
ated with a decrease in incidence after a delay. The im-
pact of safe burial procedures has been rather constant
during the course of the epidemic. Indeed, the number
of unsafe burials itself has remained quite constant
(Fig. 4d; no significant correlation was found at any lag
between 0 and 30 days; Additional file 1). As expected,
we find a positive correlation (Fig. 4e) between the num-
ber of admissions to ETUs and daily incidence (ρ = 0.91,
P < 0.001, without lag; Additional file 1). Based on a par-
tial correlation analysis, we found that the significant
negative correlation between observed cases and CT still
holds after correcting for the effect of ETU admission
(Spearman partial correlation coefficient: −0.295, P < 0.001).
We estimate that the average probability of hospitalization
(approximated crudely as the number of cases admitted to
ETUs divided by the total number of cases over the consid-
ered time) has increased over time – average increase:
4.3 % per month, P < 0.001; mean over the entire period:
approximately 83 %. This result is adequately reproduced
by the model driven by the CT data. The low level of CT
observed in August–October 2014 corresponds to an in-
crease in the number of weekly cases until early November
2014 (Fig. 1a). Following higher levels of CT observed in
November, the number of cases in the model sharply de-
creases until the beginning of January 2015 (from about
130 to about 50 weekly cases). In February 2015, the inten-
sity of CT was reduced, leading to a slower decline in
disease incidence with potentially new epidemic waves, as
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shown by the observed peak of cases recorded in both
WHO and GMoH data in mid-March 2015.
The model allows us to disentangle the effects of dif-

ferent interventions in Guinea by analyzing counterfac-
tual scenarios in which specific interventions are not
implemented (Fig. 5). In the absence of any intervention,
the estimated median number of cases by February 25,
2015, would have been 204,225 (95 % CI, 31,597–
1,090,032), corresponding to an attack rate of 1.9 %
(95 % CI, 0.3–10.3). With case isolation in ETUs and safe
burials, the median number of cases decreases to 21,263
(95 % CI, 1,587–360,832; i.e., 0.2 % attack rate, 95 % CI,
0.01–3.4), and decreases further to 3,002 (95 % CI, 869–
14,287; i.e., 0.03 % attack rate, 95 % CI, 0.001–0.1) with
case isolation in ETUs and CT, in line with observed data.
These results confirm the key role of ETUs and CT for
controlling the epidemic and suggest that traditional

Date
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t
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0.0

0.5

1.0
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2.0
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3.0

Fig. 3 Reproductive number over time. Rt as computed from the
time series of cases obtained by simulating the calibrated model
(details on the computation of Rt are reported in Additional file 1).
Mean and 95 % credible interval are shown

Fig. 2 Transmission tree and distribution of secondary infections. a Transmission tree of one randomly chosen epidemic obtained by simulating
the calibrated model. Different colors represent the setting where the individual was infected. As the whole transmission tree would have been
too wide to display on a page (thousands of edges on average), we show only one component. Simulated infections occurring over the period
April 2014 to September 2014 are shown. b As a, but showing infections over the period April 2014 to November 2014. c As a, but showing
infections over the period April 2014 to July 2015 (i.e., the entire simulated epidemic). d Distribution of the number of secondary cases by setting
as obtained by the analysis of the whole transmission tree reported in panel c. e Degree distribution of contacts with members of the same
household and of the extended family as resulting from the model
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burials, while possibly leading to superspreading events
that are most relevant when the prevalence is low, are not
the main driver of the epidemic.
These results suggest that the level of CT is a key pa-

rameter for controlling an Ebola epidemic. Since CT has
fluctuated considerably over time, we provide different sce-
narios that project the probability of disease elimination in

Guinea assuming variable levels of CT (after February 25,
2015). Model simulations highlight that both the probabil-
ity of disease elimination and the number of secondary
cases vary remarkably on the basis of CT levels (Fig. 6 and
Additional file 1). If 20 contacts are traced per Ebola
case, the estimated probability of disease elimination by
February 2016 is 99.5 % (the estimated cumulative
number of cases would be 4845 at most). In contrast, if
no CT is performed, disease elimination becomes un-
likely (23.6 % probability).
An interim assessment reported an estimated 100 %

(95 % CI, 74.7–100) vaccine efficacy [4], opening the path
to vaccination strategies aimed at EVD elimination. The
agent-based model presented here allows us to simulate
the ring vaccination strategy. In particular, we assume that
the ring vaccination strategy, roughly corresponding to
the protocol, started on March 23, 2015, and we estimate
the added impact of ring vaccination on disease elimin-
ation. In Fig. 6b we report the increase in the probability
of disease elimination due to ring vaccination at different
points in time, assuming a vaccine efficacy of 90 % and
with different levels of CT. The major benefit of ring vac-
cination is observed at low levels of CT (5–10 individuals
per case). In this range of CT, the probability of disease

Fig. 4 Correlations between interventions and number of cases. a Probability distribution of number of traced contacts per case over the period
August 4, 2014, to February 25, 2015. b Cross-correlation between the average number of contacts included in contact tracing per case at a given
time and the incidence of cases observed 0 to 40 days later. The average number of contacts included in contact tracing per case is computed
as the sum of followed contacts over 21 days divided by the sum of new cases over the same 21 days (alternative definitions of contact tracing
are considered in Additional file 1). The highest absolute value of cross-correlation is obtained for a lag of 17 days. c Red line: daily number of
cases (as obtained with a moving average of 15 days, i.e., 1 week previous and 1 week following the data point) over time; blue line: number of
traced contacts per case (defined as in b) over time; dotted line: linear model best fitting the number of traced contacts. Scale for blue and dotted
curves is on the right axis. d Red line: as in c; blue line: probability of unsafe burials over time computed as the fraction of daily community safe burials
over the daily total number of community burials (scale on the right axis); the curve is then obtained by computing a moving average of 15 days, i.e.,
1 week previous and 1 week following the data point. e Red line: as in c; blue line: number of admissions to ETUs over time (scale on the right axis);
the curve is then obtained by computing a moving average of 15 days, i.e., 1 week previous and 1 week following the data point. Dates in panels
c–e refer to the period August 2014 to June 2015

Fig. 5 Disentangling the impact of different interventions. Boxplots
for the cumulative number of cases from September 2014 through
February 2015 assuming different interventions
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elimination increases noticeably by performing a ring vac-
cination strategy if individuals of all ages are vaccinated
without delays (Fig. 6c). In Additional file 1, we report a
sensitivity analysis for varying vaccine efficacy. Briefly, this
analysis shows that the impact of ring vaccination on
EVD elimination when assuming low vaccine efficacy
(i.e., 75 %) is remarkable only at low levels of CT.

Discussion
The modeling approach presented here adequately cap-
tures the complex spatiotemporal pattern of the Guinea
EVD epidemic through microsimulations. This computa-
tional modeling approach was previously applied to the
EVD epidemic in Liberia, allowing us to compare the re-
sults obtained for the two countries to determine how
differences in healthcare infrastructure and the imple-
mentation of interventions can explain the distinct
epidemic patterns. For Guinea, the model yields an esti-
mated reproduction number (R ~ 1.2) that is much lower
than those reported for Liberia (estimates in the range
1.7–2.0) [5, 14, 22, 23] and Sierra Leone (estimates in
the range of 1.4–2.0) [14, 23, 24]. The model suggests

that this particular feature of the epidemic in Guinea
stems from the early availability of ETUs (which were
already open in the phase where we computed the
reproduction number) and their more developed health-
care system that helped to prevent sustained exponential
growth of the epidemic. This seems to be consistent
with evidence from the field that a lower proportion of
cases in Guinea were associated with transmission in
healthcare settings compared with Liberia; in particular,
the analysis of the initial transmission chain in Conakry
attributed 9 % of EVD infections to hospitals over the
period April to August, 2014 [6]. Consistently, we esti-
mate that 8.8 % (95 % CI, 3.6–15.8) of transmissions
were linked to hospital/ETU contacts through August
15, 2014. A similar proportion of transmissions in
hospital settings (namely 7.7 %) was reported in an ana-
lysis of an infection tree in Pujehun district of Sierra
Leone [7]. On the other hand, these estimates differ
substantially from analogous estimates in Liberia where,
according to modeling results [5], a much larger proportion
of transmission (30.8 %) was attributed to hospitals, espe-
cially in the initial phase of the epidemic. This difference is

Fig. 6 Impact of interventions on disease elimination. a Probability of disease elimination over time, assuming different values for the number
of traced contacts per case since February 25, 2014. Blue bars represent a situation comparable to what was observed in April 2015. b As a but
assuming ring vaccination starting on March 23, 2015, enrollment 3 days after the admission of ring index cases to ETU, 90 % vaccine efficacy,
6 days for vaccinated individuals to develop protective immunity, and vaccine administered to 90 % of adults (≥18 years old). In 50 % of rings,
vaccine is administered with a delay of 21 days with respect to immediately vaccinated rings. c As b but vaccine is administered to 90 % of all
individuals and all rings are vaccinated at the time of enrollment. The number of traced contacts matches the data (see Methods and Additional file 1)
until February 25, 2015; then, it is assumed to be constant over time until the end of the simulation, at the level reported in the legend
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likely due to the lack of sufficient beds in ETUs in Liberia
in the initial phase of the epidemic. In Guinea, even at the
time of the peak incidence (November–December 2014),
the daily number of admissions to ETUs ranged from
about 10 to 30, lower than the estimated bed capacity
of the four ETUs already open at that time. The esti-
mated proportion of transmission linked to unsafe
burials is higher than that previously observed [6] over
the period February 10 to August 25, 2014. However,
that analysis preceded our current one and was not able
to take the subsequent rise in the number of unsafe
burials into account (Fig. 4d). Our analysis shows the
key role of CT for limiting Ebola spread. An analysis of
the Ebola epidemic in Liberia [5] showed that the
distribution of household protection kits had the effect
of significantly accelerating the elimination phase. In
sum, the results of both studies highlight the import-
ance of reducing transmission between household and
extended family members for controlling Ebola spread.
The model also indicates that the long tail of the disease

elimination phase in Guinea could be explained by fluctu-
ations in the level of CT that, although adequate to pre-
vent resurgence of a large epidemic [25], were not enough
for timely elimination of the disease (Fig. 6). Specifically,
we found numerical evidence that 7–10 contacts traced
per Ebola case were consistently needed to achieve disease
elimination with relatively high probability (>90 %) before
the end of 2015. To effectively perform CT, human and
logistical resources are required. Human behavior, such as
fear and hostility, can also drive acceptance of CT, as well
as the fraction of population seeking care in ETUs and
safe burials for the deceased [26]. Thus, the estimated im-
pact of the interventions that we report incorporates
population compliance to public health directions; differ-
ent human behavioral responses of the population would
lead to increased or decreased effectiveness of control
measures. Indeed, this represents a possible explanation
for the observed larger effect of CT in 2015 than in 2014
(Fig. 4c). Contact tracers could have become more skilled
over the course of the epidemic after acquiring experience
on the ground. Alternatively, the population could have
changed its behavior, allowing health personnel to perform
CT more efficiently. However, our modeling analysis does
not have the capability to disentangle these effects.
Another important element to consider in discussing

disease elimination scenarios is the WHO-sponsored
ring vaccination trial of the rVSV vaccine in Guinea.
The interim data analysis shows an impressive 100 %
vaccine efficacy [4]. Numerical simulations show that it
is reasonable to assume that the vaccination trial itself
may have had a considerable impact on the disease con-
trol effort. These simulations show that the vaccination
program provides the largest benefit in regions with low,
deteriorating or fluctuating CT, thereby considerably

accelerating disease elimination. Consistent with other
modeling studies [27–29], we found that the major benefit
of ring vaccination is observed at low levels of CT (5–10
individuals per case). Finally, vaccination gives direct pro-
tection to vaccinees, which is important for controlling
epidemics on a local level as well as protecting those pro-
viding front line care.
Most of the assumptions and limitations of the model

have already been discussed by Merler et al. [5]. It is
worth mentioning however that, similar to the model for
Liberia, we assume that Ebola cases in Guinea are un-
likely to travel long distances when they have active
symptoms, unless they are seeking hospital care or help
from relatives and friends. This assumption has been
validated for Liberia and appears to adequately repro-
duce the geographical incidence in Guinea. However, we
cannot exclude the possibility that local population mo-
bility could drive EVD dynamics, especially during the
elimination stage where the epidemic can be dominated
by rare fluctuations. Another feature that we have not
considered in the model is the effect of asymptomatic
infection and acquired immunity [30]. While the early
stage of the epidemic is probably not overly affected by
asymptomatic infections, acquired immunity may play a
role in speeding up the elimination of the disease. Not-
withstanding the mentioned limitations, the model is able
to adequately describe the dynamics of the epidemic in
Guinea, provide estimates of transmission by setting in
agreement with reported data [6], and capture the highly
heterogeneous pattern of transmission reported in previ-
ous studies [6, 7]. These findings support our choice of
using an individual-based modeling approach, capturing
the observed high heterogeneity in the number of second-
ary infections and the clustering effect due to the low
number of effective contacts in the different settings.

Conclusions
Our findings demonstrate the usefulness of computational
modeling approaches in which explicit assumptions can be
validated across epidemic outbreaks in different countries.
Contrasting the results obtained for Guinea and Liberia
[5], it is possible to characterize the role of interventions in
both countries and their effect on the spatiotemporal pat-
tern of the outbreak. In particular, our analysis identifies
contact tracing, together with the early availability of beds
in Ebola treatment units, as key drivers of the different pat-
terns of spread observed in Guinea, Liberia, and Sierra
Leone. This study lends confidence to the assumptions and
modeling choices used and makes a strong case for extend-
ing the model to Sierra Leone, and to the analysis of
vaccination trials and campaigns. Finally, it provides a
computational approach for the preparation and analysis of
contingency plans, including vaccination strategies, for fu-
ture EVD outbreaks in other countries.

Ajelli et al. BMC Medicine  (2016) 14:130 Page 9 of 10



Additional file

Additional file 1: Supplementary information. Text describing methods
in detail and additional results. (PDF 3870 kb)

Abbreviations
CT, Contact tracing; ETU, Ebola treatment unit; HCW, Health care worker;
EVD, Ebola virus disease; GMoH, Guinean ministry of health; CI, Confidence
interval

Acknowledgements
We acknowledge funding from the NIH MIDAS-U54GM111274 and the EU
Cimplex Grant agreement n. 641191 under the H2020 Framework program.
We would like to thank Dennis L. Chao for helpful comments on the
manuscript and Nicole Samay for graphic technical support.

Authors’ contributions
MA, SM, IML, MEH, and AV designed the study. MA and SM performed the
experiments. LF collected and analyzed the data. MA, SM, LF, APyP, NED, IML,
MEH, and AV contributed to interpreting the results. MA, SM and AV drafted
the manuscript. LF, NED, IML, and MEH edited the manuscript. All authors
read and approved the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Bruno Kessler Foundation, Via Sommarive 18, Trento 38123, Italy.
2Laboratory for the Modeling of Biological and Socio-technical Systems,
Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
3Department of Biostatistics, University of Florida, 2004 Mowry Rd,
Gainesville, FL 32611, USA. 4Vaccine and Infectious Disease Division, Fred
Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109,
USA. 5School of Public Health, University of Washington, 1959 NE Pacific
Street, Seattle, WA 98195, USA. 6Institute for Quantitative Social Sciences at
Harvard University, 1737 Cambridge St, Cambridge, MA 02138, USA. 7Institute
for Scientific Interchange Foundation, Via Alassio 11/c, Turin 10126, Italy.

Received: 29 April 2016 Accepted: 20 August 2016

References
1. World Health Organization. WHO Global Alert and Response. One year into

the Ebola epidemic: a deadly, tenacious and unforgiving virus. 2015.
http://www.who.int/csr/disease/ebola/one-year-report/introduction/en/.
Accessed 29 Aug 2016.

2. World Health Organization. WHO Global Alert and Response. Situation
reports: Ebola response roadmap (2014–2015). http://apps.who.int/ebola/
ebola-situation-reports. Accessed 29 Aug 2016.

3. Guinean Ministry of Health. Rapport de la Situation Epidemiologique
Maladie a Virus Ebola en Guinee. 2014–2015. In French. http://guinea-ebov.
github.io/sitreps.html. Accessed 29 Aug 2016.

4. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A,
Carroll MW, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S,
Hossmann S, Konde MK, Kone S, Kuisma E, Levine MM, Mandal S, Norheim G,
Riveros X, Soumah A, Trelle S, Vicari AS, Watson CH, Keta S, Kieny MP,
Rottingen J-A. Efficacy and effectiveness of an rVSV-vectored vaccine
expressing Ebola surface glycoprotein: interim results from the Guinea ring
vaccination cluster-randomised trial. Lancet. 2015;386(9996):857–66.
doi:10.1016/s0140-6736(15)61117-5.

5. Merler S, Ajelli M, Fumanelli L, Gomes MF, Pastore y Piontti A, Rossi L, Chao DL,
Longini IM, Halloran ME, Vespignani A. Spatiotemporal spread of the
2014 outbreak of Ebola virus disease in Liberia and the effectiveness of
non-pharmaceutical interventions: a computational modelling analysis.
Lancet Infect Dis. 2015;15(2):204–11.

6. Faye O, Boelle P-Y, Heleze E, Faye O, Loucoubar C, Magassouba N,
Soropogui B, Keita S, Gakou T, Koivogui L, et al. Chains of transmission and
control of Ebola virus disease in Conakry, Guinea, in 2014: an observational
study. Lancet Infect Dis. 2015;15(3):320–6.

7. Ajelli M, Parlamento S, Bome D, Kebbi A, Atzori A, Frasson C, Putoto G,
Carraro D, Merler S. The 2014 Ebola virus disease outbreak in Pujehun, Sierra
Leone: epidemiology and impact of interventions. BMC Med. 2015;13:281.

8. Legrand J, Grais RF, Boelle P-Y, Valleron A-J, Flahault A. Understanding the
dynamics of Ebola epidemics. Epidemiol Infect. 2007;135(04):610–21.

9. Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED,
Nichol ST, Damon IK, Washington ML. Estimating the future number of
cases in the Ebola epidemic – Liberia and Sierra Leone, 2014–2015. Morb
Mortal Wkly Rep. 2014;63:1–14.

10. The DHS Program. Guinea Demographic and Health Survey 2005. Final
Report. 2005. http://dhsprogram.com/publications/publication-FR162-DHS-
Final-Reports.cfm. Accessed 29 Aug 2016.

11. Institut National de la Statistique Guinee. Resultats definitifs du
Troisieme Recensement General et de la Population et de l'Habitation.
(In French) 2014. http://www.stat-guinee.org/index.php/res-def-rgph3.
Accessed 29 Aug 2016.

12. Institut National de la Statistique Guinee: Guinee - Annuaire des statistiques
sanitaires 2007. 2007. [In French] http://www.stat-guinee.org/nada/index.
php/catalog/1. Accessed 29 Aug 2016.

13. World Health Organization. WHO Regional Office for Africa. Country Health
Profile – Guinea Factsheets of Health Statistics 2010. 2010. http://www.aho.
afro.who.int/profiles_information/index.php/Guinea:Index?lang=en.
Accessed 29 Aug 2016.

14. WHO Ebola Response Team. Ebola virus disease in West Africa: the first
9 months of the epidemic and forward projections. N Eng J Med. 2014;
371(16):1481–95. doi:10.1056/NEJMoa1411100.

15. WHO Ebola Response Team. West African Ebola epidemic after one year:
slowing but not yet under control. N Engl J Med. 2015;372:584–7.

16. WHO Ebola Response Team. Ebola virus disease among children in West
Africa. N Engl J Med. 2015;372(13):1274–7.

17. Dowell SF. Ebola hemorrhagic fever: why were children spared? Pediatr
Infect Dis J. 1996;15(3):189–91. doi:10.1097/00006454-199603000-00002.

18. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect
of individual variation on disease emergence. Nature. 2005;438(7066):355–9.

19. Althaus CL. Ebola superspreading. Lancet Infect Dis. 2015;15(5):507–8.
doi:10.1016/s1473-3099(15)70135-0.

20. Ebola ça suffit ring vaccination trial consortium. The ring vaccination trial: a
novel cluster randomised controlled trial design to evaluate vaccine efficacy
and effectiveness during outbreaks with special reference to Ebola. BMJ.
2015;351:h3740. doi:10.1136/bmj.h3740.

21. Victory K, Coronado F, Ifono S, Soropogui T, Dahl B. Ebola transmission linked
to a single traditional funeral ceremony – Kissidougou, Guinea, December,
2014-January 2015. MMWR Morb Mortal Wkly Rep. 2015;64(14):386–8.

22. Chowell G, Nishiura H. Transmission dynamics and control of Ebola virus
disease (EVD): a review. BMC Med. 2014;12(1):196.

23. Nishiura H, Chowell G. Early transmission dynamics of Ebola virus disease
(EVD), West Africa, March to August 2014. Euro Surveill. 2014;19(36):20894.

24. Kucharski AJ, Camacho A, Checchi F, Waldman RJ, Grais RF, Cabrol J-C,
Briand S, Baguelin M, Flasche S, Funk S, Edmunds WJ. Evaluation of the
benefits and risks of introducing Ebola community care centers, Sierra
Leone. Emerg Infect Dis. 2015;21(3):393–9.

25. Browne C, Gulbudak H, Webb G. Modeling contact tracing in outbreaks with
application to Ebola. J Theor Biol. 2015;384:33–49. doi:10.1016/j.jtbi.2015.08.004.

26. Chan M. Ebola virus disease in West Africa – no early end to the outbreak.
N Eng J Med. 2014;371:1183–5.

27. Wells C, Yamin D, Ndeffo-Mbah ML, Wenzel N, Gaffney SG, Townsend JP,
Meyers LA, Fallah M, Nyenswah TG, Altice FL, et al. Harnessing case isolation
and ring vaccination to control Ebola. PLoS Neglect Trop Dis. 2015;9(5):
0003794.

28. Kucharski AJ, Camacho A, Flasche S, Glover RE, Edmunds WJ, Funk S.
Measuring the impact of Ebola control measures in Sierra Leone. Proc Natl
Acad Sci. 2015;112(46):14366–71.

29. Kucharski AJ, Eggo RM, Watson CH, Camacho A, Funk S, Edmunds WJ.
Effectiveness of ring vaccination as control strategy for Ebola virus disease.
Emerg Infect Dis. 2016;22(1):105–8. doi:10.3201/eid2201.151410.

30. Bellan SE, Pulliam JRC, Dushoff J, Meyers LA. Ebola control: effect of
asymptomatic infection and acquired immunity. Lancet. 2014;384(9953):
1499–500. doi:10.1016/s0140-6736(14)61839-0.

Ajelli et al. BMC Medicine  (2016) 14:130 Page 10 of 10

dx.doi.org/10.1186/s12916-016-0678-3
http://www.who.int/csr/disease/ebola/one-year-report/introduction/en/
http://apps.who.int/ebola/ebola-situation-reports
http://apps.who.int/ebola/ebola-situation-reports
http://guinea-ebov.github.io/sitreps.html
http://guinea-ebov.github.io/sitreps.html
http://dx.doi.org/10.1016/s0140-6736(15)61117-5
http://dhsprogram.com/publications/publication-FR162-DHS-Final-Reports.cfm
http://dhsprogram.com/publications/publication-FR162-DHS-Final-Reports.cfm
http://www.stat-guinee.org/index.php/res-def-rgph3
http://www.stat-guinee.org/nada/index.php/catalog/1
http://www.stat-guinee.org/nada/index.php/catalog/1
http://www.aho.afro.who.int/profiles_information/index.php/Guinea:Index?lang=en
http://www.aho.afro.who.int/profiles_information/index.php/Guinea:Index?lang=en
http://dx.doi.org/10.1056/NEJMoa1411100
http://dx.doi.org/10.1097/00006454-199603000-00002
http://dx.doi.org/10.1016/s1473-3099(15)70135-0
http://dx.doi.org/10.1136/bmj.h3740
http://dx.doi.org/10.1016/j.jtbi.2015.08.004
http://dx.doi.org/10.3201/eid2201.151410
http://dx.doi.org/10.1016/s0140-6736(14)61839-0

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Synthetic population and transmission model
	Non-pharmaceutical interventions
	Age-dependent risk of infection and heterogeneity
	EVD parameters
	Ring vaccination

	Results
	Discussion
	Conclusions
	Additional file
	show [ab]
	Acknowledgements
	Authors’ contributions
	Competing interests
	Author details
	References

