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Abstract

Background: Estimating the effectiveness of meningococcal vaccines with high accuracy and precision can be
challenging due to the low incidence of the invasive disease, which ranges between 0.5 and 1 cases per 100,000 in
Europe and North America. Vaccine effectiveness (VE) is usually estimated with a screening method that combines in
one formula the proportion of meningococcal disease cases that have been vaccinated and the proportion of
vaccinated in the overall population. Due to the small number of cases, initial point estimates are affected by large
uncertainties and several years may be required to estimate VE with a small confidence interval.

Methods: We used a Monte Carlo maximum likelihood (MCML) approach to estimate the effectiveness of
meningococcal vaccines, based on stochastic simulations of a dynamic model for meningococcal transmission and
vaccination. We calibrated the model to describe two immunization campaigns: the campaign against MenC in
England and the Bexsero campaign that started in the UK in September 2015. First, the MCML method provided
estimates for both the direct and indirect effects of the MenC vaccine that were validated against results published in
the literature. Then, we assessed the performance of the MCML method in terms of time gain with respect to the
screening method under different assumptions of VE for Bexsero.

Results: MCML estimates of VE for the MenC immunization campaign are in good agreement with results based on
the screening method and carriage studies, yet characterized by smaller confidence intervals and obtained using only
incidence data collected within 2 years of scheduled vaccination. Also, we show that the MCML method could
provide a fast and accurate estimate of the effectiveness of Bexsero, with a time gain, with respect to the screening
method, that could range from 2 to 15 years, depending on the value of VE measured from field data.

Conclusions: Results indicate that inference methods based on dynamic computational models can be successfully
used to quantify in near real time the effectiveness of immunization campaigns against Neisseria meningitidis. Such an
approach could represent an important tool to complement and support traditional observational studies, in the
initial phase of a campaign.

Keywords: Neisseria meningitidis, Vaccine effectiveness, Invasive meningococcal disease, Meningococcal carriage,
Bexsero, Monte Carlo maximum likelihood, Computational dynamic models

Background
Neisseria meningitidis is an aerobic Gram-negative diplo-
coccus that causes annually 1.2 million cases of meningitis
and 135,000 deaths globally [1]. This human-restricted
opportunistic pathogen is part of the commensal flora
that colonizes the upper respiratory tract of healthy
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individuals. N. meningitidis strains are divided into 12
serogroups, on the basis of the immunochemistry of their
capsular polysaccharides [2]. Serogroups A, B, C, W, Y,
and X account for most of the invasive disease cases
worldwide; serogroup B (MenB) is the leading cause of
meningococcal meningitis in Europe (90 %), New Zealand
(82 %), Australia (80 %), Argentina (67 %), Japan (57 %),
and Canada (53 %) [3–11].
Invasive meningococcal disease (IMD) has the high-

est fatality rate among other vaccine-preventable dis-
eases after rabies [12] (up to 40 % for meningococcal
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septicemia [13]), is easily misdiagnosed [14] and can cause
death in 24 hours. Up to 20 % of survivors exhibit per-
manent lifelong disabilities, including brain damage, deaf-
ness, kidney failure, and limb amputation [15]. All age
groups are susceptible to IMD. Infants, however, are 17
times more likely to develop disease compared to the gen-
eral population [16]. A smaller peak of IMD incidence is
also observed in adolescents and young adults. Notably,
more than 10 % of the general population asymptomati-
cally carries N. meningitidis [17], and in the first 30 years
of life, each person is expected to become a carrier of
the meningococcus 10 times [18]. The age distribution
of asymptomatic carriage, however, is markedly different
from that of IMD. Carriage in infants is low, and grows
slowly up to approximately 10 % in pre-adolescents. A
sharp increase of carriage prevalence is observed after
15 years of age, reaching 25 % or more at the age of 20,
and then it decreases slowly to approximately 10 % in the
elderly [19].
Due to the ambiguous initial clinical manifestations and

to the extremely rapid development of disease, vaccina-
tion is the only broadly effective measure against IMD
[15]. Vaccines based on serogroup A, C, W, and Y capsu-
lar polysaccharide conjugates have been licensed in many
parts of the world [20–23]. Among others, a national
immunization campaign that started in 1999 in the UK
showed the high efficacy of meningococcal C (MenC)
conjugate vaccines against serogroup-specific disease and
carriage [21, 24–30]. Only very recently two broadly pro-
tective MenB vaccines were licensed, Bexsero (GSK) and
Trumenba (Pfizer), both licensed in the USA for persons
between 10 and 25 years of age. Bexsero was also licensed
in Europe, Canada, Australia, and elsewhere for individ-
uals from 2 months of age and older and is being used
in a national immunization program for infants and chil-
dren in the UK that started in September 2015 [31]. Both
vaccines were licensed based on safety and immunogenic-
ity data. Although strain coverage was also assessed for
Bexsero worldwide through the Meningococcal Antigen
Typing System [32], indicating strain coverage between
66 and 91 % worldwide [33], no formal proof of field
effectiveness is available yet.
Mass immunization campaigns can be evaluated in the

field by observational studies, monitoring the number of
cases emerging in vaccinated and non-vaccinated cohorts
[34]. A number, called vaccine effectiveness (VE), mea-
sures how much a vaccine is efficacious in reducing the
incidence of a certain disease in groups of vaccinated,
when compared to the incidence in subjects that have not
received the vaccine [34].
Case–control studies would represent the first choice

when estimating meningococcal VE, since cohort stud-
ies are not feasible due to the low disease incidence
[34]. However, IMD incidence is so low that also the

applicability of case–control studies is severely limited. A
popular alternative to case–control studies is the screen-
ing method [35]. This method is a variant of the case–
control methods where, instead of choosing one or more
individual controls per case, the entire population at
risk is used as a reference group [36]. The screening
method estimates the VE using a mathematical formula
(see Additional file 1 for details) that combines three basic
quantities, measured at one point in time: the reported
number of disease cases, the number of vaccinated among
cases, and the proportion of the overall population under
study that has been vaccinated [35]. Compared to other
observational methods, screening is considerably less
resource-intensive, because all the information needed
is usually available from surveillance systems and does
not require specific designs. Additionally, it has the great
advantage of being rapid, and this is why it has been pro-
posed as a first step to determine VE [36]. On the other
hand, the screening method is known to lack precision, its
estimates being very sensitive to errors in the input data
[37, 38].
For meningococcal vaccines, the screening method is

the main candidate to estimate VE. It has been employed
to evaluate the 1999 MenC immunization campaign in
England [25], and it will likely be used to estimate Bexsero
effectiveness from field data. However, in this context its
advantages are significantly reduced by the very low inci-
dence of the disease, which will inevitably lengthen the
time needed to obtain a precise VE estimate. Simple statis-
tics arguments [35] allow us to predict the number of IMD
cases that will be needed to estimate some hypothetical
true value of VE with a desired precision, that is with a
95 % confidence interval (CI), possibly bounded not too
far from the point estimate. Using available incidence data
[39], cases can be converted into observation time. For
instance, assuming that the expected IMD incidence in
the UK will be the same as that experienced during 2012–
2014, on average, and assuming a VE of 60 % or higher,
at least 15 years will be needed to estimate effectiveness
with a lower bound of the 95 % CI higher than 45 % (see
Additional file 1 for details).
An important role in meningococcal vaccines is played

by the ability to confer or not a mucosal immunity that
can protect people from N. meningitidis nasopharynx
colonization, therefore reducing asymptomatic transmis-
sions of invasive strains. Here, we will refer to it as the
indirect effect of the vaccine because it can provide pro-
tection also to unvaccinated individuals, conferring herd
immunity. This mechanism can strongly impact the trans-
mission dynamics and reduce the morbidity of pathogens
like N. meningitidis, as has been observed and quanti-
fied for vaccines against MenC [28, 30, 40]. However, by
employing notified IMD cases only, the screening method
fails to evaluate the indirect VE, since it contributes to
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lower the IMD incidence both in vaccinated as well as in
unvaccinated individuals (details in Additional file 1).
It is possible to evaluate VE by comparing the dis-

ease incidence among unvaccinated individuals only with
the disease incidence in the same population, measured
before the vaccination campaign [34]. This has been done
for the MenC conjugate vaccines in England [29], pro-
viding evidence of a herd immunity effect, but with low
precision and large fluctuations around the point estimate
across age groups. A more robust way to evaluate the
indirect effectiveness is by measuring the meningococcal
carriage, instead of the invasive disease, at two points in
time. For this purpose, large cross-sectional carriage stud-
ies have been conducted to quantify the meningococcal
carriage in adolescents recruited in England before and
after the vaccination campaign [28, 30]. However, such an
approach is inevitably expensive and time-consuming.
The challenge of shortening the time needed to evalu-

ate the direct VE and, at the same time, providing a tool to
improve the evaluation of the indirect effectiveness using
notified cases only, motivated our work. For this aim,
we devised a VE estimation method based on a Monte
Carlo maximum likelihood (MCML) inferential approach
that combines stochastic simulations of a computational
dynamic model for N. meningitidis asymptomatic trans-
mission and real case notification data. More specifically,
we built a discrete mechanistic model that stochastically
reproduces the dynamics of N. meningitidis infection and
vaccination at the population level. The model structure is
based on previous works [18, 41–43] and explicitly takes
into account both the direct and indirect effect of the
vaccine as two free parameters. Unlike previous works,
where modeling was used to forecast the impact of differ-
ent vaccination strategies in England, generating scenarios
of future disease incidence based on hypothetical values of
VE, here we adopted a reverse approach: we inferred the
most probable values of VE via likelihood maximization
given the time series of disease cases notified before and
after the campaign start, using a sequential Monte Carlo
(SMC) method, also known as particle filtering [44].
The main goal of our study was to estimate the direct

effectiveness of meningococcal vaccines with the same
accuracy as the screening method but faster, aiming at
a better precision in a shorter time. Furthermore, we
wanted to show that our model-based approach allows
for a simultaneous estimation of the indirect effective-
ness, achieving similar results as carriage studies without
using additional data beside IMD notifications and vac-
cine uptake.

Methods
In our work, we focused on two different mass immuniza-
tion campaigns against meningococcal disease in England:
the MenC campaign that started in 1999 and the MenB

campaign that started in September 2015. In the follow-
ing, we describe the model’s definition, the data used to
parameterize it, and the MCML inference method used
to estimate the VE. Further details on the methods are
reported in Additional file 1.

Dynamic model of meningococcal transmission, carriage,
and invasive disease
Wedefined a dynamical compartmental model that repro-
duces meningococcal carriage, transmission, invasive dis-
ease, and vaccination. In particular, we were interested
in those characteristics that are relevant to the inference
of (i) the VE in inducing protection from invasive dis-
ease, or direct effectiveness, and (ii) the VE in reducing
the asymptomatic transmission, or indirect effectiveness.
In the following, we will refer to them as VEdir and VEind,
respectively.
The compartmental structure of the model is shown

in Fig. 1a. It is an age-structured Susceptible-Infected-
Susceptible (SIS) model, similar to others already used in
the literature for evaluating the impact of vaccination on
N. meningitidis [41–43]. The entire population of Eng-
land is divided into 160 age classes expressed in quarters
of a year, plus one group of ≥40 years old. Individuals
in a given age class are divided into two possible health
statuses: susceptibles and asymptomatic carriers of N.
meningitidis, represented by the symbols S and C, respec-
tively. In addition, the population is divided into three
vaccination statuses depending on the campaign schedule
and the immunization outcome. Altogether the popula-
tion of a given age class is stratified into six possible
classes, namely susceptible and carrier that are: not vacci-
nated (S and C), vaccinated and immune (SVI and CVI),
and vaccinated but not immune (SV andCV ). By immune,
we refer to the immunity against IMD provided by the
vaccine. We model only those N. meningitidis strains or
serogroups for which we want to assess the effectiveness
of the vaccine under study. Therefore, no coinfection or
competition between different meningococcal serogroups
is possible.
Overall, the model is based on 966 compartments (i.e.,

the system’s variables), each one representing the number
of individuals of a given age and infection and vaccina-
tion status at a given time. The system evolves under the
dynamics defined by all the possible transitions between
compartments. All variables are updated with a discrete
time step corresponding to 3 months. At each time step,
the following transitions are allowed:

• Birth. Newborns are added to the unvaccinated
susceptibles of age 0, according to the natural birth
rate.

• Ageing. Individuals in a given age group move to the
next age group, if not already in the last age class.
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Fig. 1 Schematic representation of the Monte Carlo maximum likelihood method to infer vaccine effectiveness. a An age-structured stochastic
compartmental model reproduces the transmission and vaccination dynamics of Neisseria meningitidis. The population is stratified by age a,
infection status (susceptible S or asymptomatic carrier C), and vaccination status (V), where the additional I indicates that the vaccination induced
full immunity to the invasive disease. All compartments are subject to demographic transitions: birth, ageing, and death (not shown). At each time
step, susceptibles are infected with probability λa and recovery from carriage to susceptible status happens with probability ρ . The force of
infection λa is reduced by 1 − VEind for those susceptibles who are successfully immunized (SVI). Individuals are vaccinated with probability γa . A
fraction VEdir of them becomes fully immune to the invasive disease, while the remaining fraction is vaccinated but not immune. For a fraction ωa of
the immunes, the acquired immunity wanes after a time period τimm. The outcome of the transmission model is the number of infections by age
group in non-vaccinated and vaccinated compartments during an epidemiological year: Ja and JVa . We use these numbers in the observational
disease model (b). Given the probability of developing the invasive disease for a single age group θa , calibrated using data before vaccination, and
given the number of cases observed in reality, we compute the likelihood function of VEind and VEdir (c). The likelihood maximum will correspond to
the best estimates of the two vaccine’s effectiveness. The two-dimensional likelihood is sliced in correspondence of its maximum to calculate
confidence intervals around the best estimates

• Death. Some individuals of a given age in every
compartment die, according to the natural death rate.

• Infection. Susceptibles become carriers depending on
the force of infection λa(t). If vaccinated immune,
the probability of being infected is reduced by a factor
corresponding to 1 − VEind.

• Recovery. Carriers spontaneously lose the carrier
status with frequency ρ, whose inverse 1/ρ is the
average duration of carriage τcar.

• Progression to IMD. In rare cases, susceptible
individuals develop IMD 2–10 days after
meningococcal carriage acquisition [17, 45, 46]. We
model progression to IMD as an event alternative to
the asymptomatic infection. It can happen only
immediately after transmission, with an
age-dependent risk of IMD given infection, denoted
as θa(t).

• Vaccination. Unvaccinated individuals in cohorts
targeted by vaccination are moved to the vaccinated
compartments according to the vaccine schedule and

the population coverage γa. Only a fraction VEdir of
the vaccinated gains immunity to IMD.

• Waning of immunity. A fraction ωa of the vaccinated
and immune spontaneously move to the vaccinated
non-immune compartment, after a time period τimm
that depends on age and vaccine type (MenC or
MenB vaccine).

The model is stochastic. The compartments and the tran-
sitions between them can be represented as a set of
stochastic differential equations (see Additional file 1).
Once the model is parameterized to reproduce the epi-

demiology of meningococcal disease in the absence of
vaccination campaigns, the effectiveness is inferred via
MCML by means of two parameters, namely the VE
against invasive disease VEdir and against carriage acqui-
sition VEind. Both are bounded between zero and one, but
they act in very different ways. At each time step after
the start of the vaccination campaign, VEdir represents the
fraction of vaccinated individuals who successfully gain



Argante et al. BMCMedicine  (2016) 14:98 Page 5 of 14

vaccine-induced protection against IMD. Those individu-
als are, therefore, immune and cannot develop the IMD.
The remaining fraction (1 − VEdir) of individuals go into
the not-immune compartments and can develop the dis-
ease as if they were not vaccinated at all. In this sense, our
modeling approach uses an all-or-nothing vaccine [34].
On the other hand, VEind is a parameter that multi-

plies only the force of infection experienced by vaccinated
and immune compartments, thus reducing the probabil-
ity of meningococcal colonization, i.e., the transition SVI
→ CVI. It represents the ability gained by vaccinated sub-
jects for developing a certain level of protection againstN.
meningitidis acquisition.
The parameters VEind and VEdir are in fact inputs of

the transmission model, which is otherwise completely
specified by the other parameters and the initial compart-
ment population. The outputs of the transmission model
are the numbers of infection events per time step that
can generate IMD cases (transitions S → C and SV →
CV ). We call these numbers Ja(t) and JVa(t), respectively,
for non-vaccinated and vaccinated of age a. They will be
used to infer which values of VE will most likely lead
to the reported time series of IMD cases. It is impor-
tant to note that the number of infections experienced by
immune individuals is not collected because in the model
formulation, those infections cannot lead to IMD cases.
In the model, diseased individuals are not explicitly

treated as a compartment. The risks θa are used to link the
transmission model, whose outcomes are Ja(t) and JVa(t),
quantitatively to the number of IMD cases reported by
the surveillance. The progression-to-disease process is, in
fact, treated as an observational process (see Fig. 1b and
Additional file 1 for more details). The number of lab-
confirmed IMD cases of age a observed during a certain
time period τ , Dobs

a (τ ), is modeled to follow a binomial
distribution:

Dobs
a (τ ) ∼ bin(Ja(τ ), θa),

DV obs
a (τ ) ∼ bin(JVa(τ ), θa), (1)

where the right-hand side represents the probability that
Dobs
a,v (y) IMD cases emerge from Ja,v(y) infection events,

when the probability of an IMD given infection is θa.

Model parameterization
All the parameters, except for VE, are quantified by cal-
ibrating the model in the absence of immunization cam-
paigns on demographic, carriage, and disease data, or by
integrating estimates reported in the literature (see Table 1
for a full list of parameters and their values).
The model reproduces the English demographic struc-

ture and its temporal evolution, according to population
estimates and annual birth and death rates, as reported by
the UK Office of National Statistics [47].

Before vaccination, the model is parameterized by
assuming the carriage prevalence to be temporally sta-
ble across age groups [19], thus we constrain the model’s
equations to keep the carriage by age constant at every
time step. The carriage prevalence of C and B serogroups
by age class is assumed to follow the average overall
meningococcal carriage age pattern reported in European
studies [19], after weighting on the specific fraction of
C or B serogroups reported before the beginning of the
campaign [30]. The number of infections per time step
depends on the force of infection λ, which is proportional
to the fraction of carriers among contacts:

λa(t) = βa
∑

a′
maa′

carrier population of age a′ at time t
total population of age a′at time t

.

(2)

The symbol maa′ denotes the reported number of daily
contacts between persons of age a and a′, and it is
assumed to follow contact patterns observed in Great
Britain [48]. The carriage acquisition rate βa is a free
parameter to be calibrated against serogroup-specific car-
riage data (see Additional file 1 for details).
Infected individuals lose their carrier status with prob-

ability ρ per time step and can be infected again. We set
ρ = 1/τcar with τcar representing the average duration of
carriage. In our base case, we assumed τcar to be equal to 6
months and independent from the serogroup under study.
For a sensitivity analysis, we tested values between 3 and 9
months as reported in the literature [18, 41, 43, 45, 49–51]
(see Additional file 1 for details).
During the immunization campaign, a fraction γa of

non-vaccinated individuals belonging to cohorts sched-
uled for vaccination moves to the vaccinated com-
partments. Only individuals who have received all the
recommended doses are taken into account and they are
moved according to the approximate dates of injections,
for both routine and catch-up implementation. TheMenC
campaign coverage data have been published [25, 41, 52].
For Bexsero, we use expected coverage data, following
previous works [43, 53].
The vaccine confers protection for a limited time and

the duration of vaccine-induced immunity τimm depends
on the specific vaccine and the age of the vaccinated
cohort. For the MenC campaign, the protection is set to
last 15 months for the routine vaccination, 5 years for chil-
dren vaccinated at 12 months, and 10 years for all those
vaccinated at older ages [41]. For the MenB campaign, we
assume infants to be routinely vaccinated at 2, 4, and 12
months, as announced by Public Health England (PHE)
[54]. Estimates of the duration of protection for Bexsero
are not available yet [55]. We assume the vaccine-induced
protection to last at least 18months after the booster dose,
in line with previous works [43].
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Table 1 Parameter values of the dynamic model

Description Value Source

α Yearly crude birthrates Between 11.3 and 13.0 per 1000 population,
variable by year

[47]

μa Yearly mortality rates Variable by age (Additional file 1: Figure S2) [47]

τcar Duration of carriage (1/ρ) 6 [3–9] months [41, 43, 49]

βa Quarterly rates of infection given
contacts with carriers

Variable by age (Additional file 1: Figure S4) Fitted

maa′ Daily contact rates matrix Variable by age of subject and contact
(Additional file 1: Figure S3)

[48]

θa Quarterly risks of disease given
infection

Variable by age (Additional file 1: Figure S5) Fitted

γa Quarterly fraction of population
vaccinated

MenB: 95 % of 1 year olds
MenC: variable by age and schedule

MenB: assumed
MenC: [52]

τimm,a Duration of immunity to disease MenB: 18 months
MenC: variable by age
(15 [9–24] mths, 5 years, 10 years)

MenB: assumed
MenC: [25, 41]

ωa Waning of immunity fraction MenB: 100 %
MenC: 58.4 %

MenB: assumed
MenC: [26]

Meningococcal disease in the UK is primarily endemic,
with episodic hyperendemic waves [45, 56, 57]. We cali-
brate the age-dependent risks of IMD given infection to
be

θa = Dexp
a

Jexpa
, (3)

where the numbers Dexp
a are occurrences of IMD cases

and the Jexpa are the numbers of infection events pro-
duced by the model, both expected to emerge during a
time step when no vaccination campaign is implemented.
The Dexp are the yearly average numbers of laboratory-
confirmed IMD cases by age, reported during the last
1–3 epidemiological years before the vaccination cam-
paign. The numbers Jexpa are calculated from the infection
term of the model’s equations set at the initial time step
(see Additional file 1). The risks θa of IMD given infec-
tion by age are fixed, implying the assumption that the
pathogenicity of meningococci would remain constant in
the absence of immunization campaigns.

Inference of VE
TheMCML procedure that we use to infer the parameters
VEdir and VEind is based on a SMC approach, also known
as particle filtering [44]. This method was first introduced
in epidemiology to estimate the environmental contribu-
tion to cholera transmission [58], and then applied to a
variety of epidemic models [59–61]. Here, the likelihood
of the combination of VEs is calculated given empirical
observations, which are time series of the number of cases
by age group notified during each epidemiological year
after vaccination start. The observables are connected to
the above-described transmission model by means of the
risks θa.

Consider Dobs
a,v (1 : Y ), the time series of notified cases

per epidemiological year y = 1, . . . ,Y , age a, and vacci-
nation status v (v = 0 denotes unvaccinated and v = 1
vaccinated). The likelihood of VEdir and VEind is

L(VEdir,VEind) =
∏

a,v
P(Dobs

a,v (1 : Y )|VEdir,VEind,H)

=
∏

a,v

Y∏

y=1
P(Dobs

a,v (y)|Dobs
a,v (1 : y − 1),VEdir,VEind,H).

P is the probability of observing cases given the trans-
mission model (denoted as H), the history of observed
cases, and the VE values. It is calculated as:

P(Dobs
a,v (y)|Dobs

a,v (1 : y−1),VEdir,VEind,H)=bin(Ja,v(y), θa).
(4)

The particle filtering procedure allows us to sample the
trajectories probabilistically in the space of the J , taking
into account the history of cases and the model structure.
The best estimates of VEdir and VEind correspond to the

maximum of the likelihood. Likelihood profiling allows to
calculate 95 % CIs around it.

MCMLmethod settings for the MenC vaccination in
England
In the first part of our work, we simulated the mass immu-
nization campaign against MenC disease that started in
England at the end of 1999. To calibrate the model,
England’s population is initially set to mid-1998 estimates.
The age-dependent distribution of MenC IMD cases Dexp

a
used to calibrate the method is the one reported during
1998 and the first half of 1999, then normalized to repro-
duce, on average, the total number of cases notified during
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the epidemiological year 1998/99. As a sensitivity analy-
sis, we tested different Dexp

a by varying the average total
number of cases generated by the model, while keeping a
constant age distribution (see Additional file 1: Section 5).
We normalized the carriage prevalence distribution by
age to reproduce the prevalence of serogroup C samples
observed in carriage studies before 1999 [25]. The SMC
algorithm was run using 1000 particles and varying the
values of VEdir and VEind between 0 % and 100 % with
steps of 0.1 % to build the yearly likelihood surfaces.

Simulation of MenB vaccine campaign in England and
MCML settings
In the second part of our work, we simulated the
mass immunization campaign against MenB disease that
started in England in September 2015. The initial popula-
tion of England employed for calibration is the one esti-
mated in 2014. To calculate the expected occurrences of
MenB cases Dexp

a , we used the age-dependent distribution
of MenB IMD cases reported during the epidemiological
year 2007/08, then normalized to produce, on average, the
total number of cases notified every year from mid-2012
to mid-2015. The carriage prevalence distribution by age
was normalized to reproduce the prevalence of serogroup
B samples observed in carriage studies [30].
In this scenario, disease case occurrences after the cam-

paign startDobs
a,v are not available yet. To test our approach,

we used the model in a generative way, thus simulating
future incidence scenarios with constant values of VEdir
and VEind, as usually done to predict the impact or the
cost-effectiveness of vaccination campaigns [41, 43, 62].
In detail, we assumed VEind to be always equal to 0 %,
to be as conservative as possible, since reliable estimates
of the indirect effect of Bexsero are not available. Then,
we assumed four possible values of VEdir: 60 %, 70 %,
80 %, and 90 %. For each of the four scenarios, we ran
the model 10,000 times, thus producing 10,000 trajecto-
ries in the space of the MenB disease case occurrences,
stratified by age and vaccination status. Then, we selected
the median trajectory to be the reference time series of
synthetic MenB cases observed after vaccination.
Given the simulated IMD incidence curve, we used the

MCML to estimate the most likely value of VEdir and the
corresponding CIs at different years, by assuming a con-
stant VEind. In each scenario, the SMC algorithm was
run using 1000 particles and varying the values of VEdir
between 0 % and 100 % with steps of 0.1 % to build the
yearly likelihood curves.
Finally, we compared the results obtained with the

MCML method against the screening method’s sample
size analysis [35]. In particular, for eight consecutive years
after the start of the vaccination, we compared theMCML
point estimate of VEdir and its CI against the CI provided
by the screening method, for the same value of VEdir.

We estimated the screening method’s CIs by converting
the required sample of IMD cases given by the Farring-
ton formula [35] to the time needed to observe such cases
(see Additional file 1 for details). Here, we calculated that
the baseline incidence of IMD would be 70 cases a year
in the fully immunized cohort (12–23 months old), if no
vaccination is implemented.

Results
The four main results that we achieved using the MCML
method are:

1. The underlying calibration of the dynamic model
allows us to reproduce realistically the epidemiology
of meningococcal disease in England.

2. The MCML method allows us to estimate both
direct and indirect VE using case notification data.

3. It provides realistic estimates of the VE compared to
observational methods.

4. It is faster than the screening method in reaching the
same precision around the point estimate of VE.

Here, we discuss these in detail.

The dynamic model is calibrated to reproduce
meningococcal epidemiology realistically
We calibrated the model for simulating two different vac-
cination campaigns in England, against the serogroup C
and B meningococcal disease, as described in “Methods”.
In both cases, we tested the calibration by running the
model for 50 years under the basic transmission dynamics
without any vaccination campaign.
The model reproduces a realistic demographic evolu-

tion of the population in England, with fluctuations due to
population differences across age groups (see Additional
file 1: Figure S6). The carriage prevalence remains con-
stant for all age groups (see Additional file 1: Figure S7),
indicating that the model has been adequately formu-
lated and calibrated to reproduce the temporal stability
of asymptomatic carriage [19]. The model reproduces
the endemicity of the IMD, and the age pattern of cases
remains roughly constant from year to year, as reported
in the literature [63], with fluctuations due only to the
demographic shifts (see Additional file 1: Figure S7).

The MCMLmethod estimates both direct and indirect
effectiveness
In November 1999, a large mass immunization campaign
against MenC disease started in England and Wales, con-
sisting of a routine vaccination of infants and a catch-up
vaccination targeting people up to 18 years old [52]. The
overall MenC IMD incidence fell by about 80 % in the
following 2 years. This achievement was accomplished
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thanks to the high effectiveness of the vaccine, which was
found to provide both direct and indirect protection [28].
After calibrating the model to reproduce the vaccina-

tion schedule of the MenC campaign (see “Methods”), we
used the time series of IMD cases by age groups notified to
PHE since mid-2000 to infer the values of VEdir and VEind
via MCML. Figure 2a shows the two-dimensional likeli-
hood function of the VE values obtained using the cases
reported between mid-2000 and mid-2002 (the first two
full epidemiological years after the campaign started).
The likelihood function displays a unique and well-

defined maximum in both dimensions, indicating that
both the direct effectiveness and indirect effectiveness are
identifiable parameters of the model under the conditions
investigated and can be co-estimated byMCML. The 95 %
CI of the most likely values are included in the white
dotted line. Fig. 2b, c shows the logarithm of the unidi-
mensional likelihoods of Fig. 2a, as a function of VEdir and
VEind, respectively, obtained by slicing the log-likelihood
surface in correspondence of the maximum. The best esti-
mates of VEdir and VEind and the corresponding 95 % CIs
are shown as vertical dashed lines.
Here, we see that the model’s structure allows us to dis-

entangle the two effects of the vaccine, which concur with
the global decline of cases. Remarkably, the inferential
MCMLmethod can provide an estimate of the two param-
eters independently and very parsimoniously in terms of
field data, comparable with the screening method.

The MCMLmethod accurately estimates MenC VE
To assess the quality of the MCML method, we compared
the best estimates of VEdir and VEind with a number of

independent measures of the same quantities reported in
the literature.
Studies based on the screening method previously

assessed the direct effectiveness using field data [25, 26].
After 4 years of MenC vaccination, the direct VE was esti-
mated to be 93 % (CI = [67 %, 99 %]) for the routine
vaccination and 96 % (CI = [89 %, 99 %]) for the catch-up
[25], as reported in Fig. 3b with gray symbols.
More precise estimates were published after monitoring

the occurrence of MenC disease cases for 10 years [26].
The catch-up vaccination was confirmed to be 96 % effec-
tive (CI = [92 %, 99 %]). The effectiveness of routine
vaccination was slightly higher than previous estimates:
97 % (CI = [91 %, 99 %]).
Considering vaccine uptake statistics and IMD case

reports stratified by age and vaccinal status from mid-
2000 to mid-2002, the MCML method estimated the
direct effectiveness to be VEdir = 96.5 % (red sym-
bols in Fig. 3b), in good agreement with the value found
by Campbell et al. [26]. The MCML method reached a
higher precision than the screening method (95 % CI
= [94.8 %, 97.9 %]), yet required a shorter observation
period.
The indirect effectiveness of theMenC vaccine was esti-

mated a few years after the campaign start, based on
carriage studies. Figure 3c shows the best estimates and
95 % CIs of the indirect effectiveness, represented as gray
dots and whiskers, published in 2002 [28] and 2008 [30].
Comparing the carriage prevalence reported by the 1999
survey and the one observed 1 year later, VEind was esti-
mated to be 63 % (CI = [−50 %, 80 %]) [28]. After collect-
ing additional data on the carriage prevalence with a third

Fig. 2 Maximum likelihood profiles for direct and indirect effectiveness against MenC. a The likelihood function of VEdir (y-axis) and VEind (x-axis)
calculated using IMD cases reported during the first two full epidemiological years of the MenC immunization campaign in England (cases notified
from June 2000 to June 2002). The maximum is colored in light yellow, and unlikely values of VE are in dark blue. The 95 % CI is included inside the
white dotted line. The log-likelihood function is sliced around its maximum, as a function of VEdir (b) and VEind (c). The solid line interpolates the
discrete values of the log-likelihood to identify the 95 % CLs, as indicated by the vertical dotted lines. CI confidence interval, CL confidence limit, IMD
invasive meningococcal disease, loglik log-likelihood,MenC serogroup C meningococcal
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Fig. 3 Vaccine effectiveness of MenC vaccine in England. Number of serogroup C disease cases notified by Public Health England (PHE) during the
epidemiological years between 1995 and 2006. The vaccination campaign started in November 1999 (a). The red solid line represents the average
number of IMD cases generated by the model, with the best estimates of VEdir and VEind. The MCML best estimate of vaccine effectiveness against
disease VEdir after 2 years of observed disease cases in the cohorts targeted by routine or catch-up vaccination is 96.5 % [94.8 %, 97.9 %] (b, in red).
Gray symbols in (b) indicate the results obtained after 4 and 10 years by observational studies [25, 26] using the screening method. The MCML
method simultaneously estimates the indirect vaccine effectiveness VEind (c, in red) with a best estimate equal to VEind = 68.8 % (95 % CI = [54.4 %,
83.3 %]), based on PHE notified cases. This value is compared to best estimates based on carriage studies [28, 30] (c, in dark gray). IMD invasive
meningococcal disease,MCMLMonte Carlo maximum likelihood,MenC serogroup C meningococcal

survey in 2002, VEind was 75 % (CI = [23 %, 92 %]) [30].
As described in the previous section, the MCML also pro-
vided an estimate for VEind, based on IMD incidence data
only. Figure 3c shows in red the best MCML estimate,
corresponding to VEind = 68.8 % (95 % CI = [54.4 %,
83.3 %]). Also in this case, the value is in good agreement
with those published byMaiden and collaborators and the
uncertainty around the point estimate is much smaller.

MCML is more precise than the screening method
Finally, we assessed the applicability and the expected per-
formance of the MCML method in estimating the VE of
the 2015 MenB campaign in England. As described in
“Methods”, here we assumed that Bexsero can provide
only direct protection against IMD.
Figure 4 shows the results of four hypothetical scenarios,

where we considered different values of the best estimate
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Fig. 4 Comparing MCML and the screening method for Bexsero. Confidence intervals around four hypothetical values of VEdir = 60 % (a), 70 % (b),
80 % (c), and 90 % (d) for the Bexsero immunization campaign in England, as a function of years required to obtain the precision. The shaded red
area indicates the predicted CI produced by the MCML method. The shaded gray area indicates the predicted CI obtained with the screening
method power analysis. CI confidence interval,MCMLMonte Carlo maximum likelihood

for VEdir. Each panel shows the 95 % CI around the best
estimate of VEdir computed with the two methods, the
screening method (in gray) and the MCML method (in
red), and plotted against the observational time expressed
in years after the campaign start.
In Fig. 4a, we assumed VEdir = 60 %. The gray area

bounded by solid lines indicates the extension of the 95 %
confidence limits (CL), calculated using the Farrington
formula. The higher 95 % CL converges faster than the
lower one to the best estimate. The lower CL requires
about 3 years just to reach 0 % effectiveness. To get a
fairly precise estimate, we would need to wait longer. If
we consider as sufficiently precise a lower 95 % CL not
further than 15 % from the point estimate, thus above
VEdir = 45 %, we must wait 15.6 years from the begin-
ning of the campaign. The shaded red area displays the
95 % CI for VEdir = 60 % obtained with the MCML
method. Here, the red dots indicate the CLs that we could
obtain at mid-2016 (9 months of vaccination), mid-2017
(1 year and 9 months of vaccination), mid-2018, and so
on. For all estimates, the CLs of the MCML method are
well inside the interval of the screening method. Com-
pared to the screening method, the MCML lower 95 %
CLs are about 20-fold faster in getting close to the point
estimate: after 9 months of observation, the MCML can
provide acceptable CIs, with the CLs about 15 % distant
from 60 %.

Figure 4b–d show the same comparison between the
two methods assuming a best estimate of VEdir = 70 %,
80 %, and 90 %, respectively. As expected, as the effec-
tiveness increases, the time required to estimate VEdir
precisely becomes shorter for all methods. However, in
all panels the red area identifying the CLs of the MCML
method always falls well inside the gray area, indicating
that the CLs of MCML converge faster than the screen-
ing method to the point estimate. As the effectiveness
increases to 90 %, the difference between the higher 95 %
CLs gets smaller. On the other hand, the lower 95 %
CLs remain far enough away for there to be a substan-
tial advantage with the MCML method. For instance, for
VEbest = 90 % (Fig. 4d), the screening lower 95 % CL
reaches 80 % in about 4.6 years. In contrast, the MCML
lower 95 % CL reaches 80 % in only 9 months, while in the
same 9 months, the screening method is not expected to
get over 0 %.

Discussion
The use of MCML methods to infer relevant epidemi-
ological parameters from dynamic epidemic models is
becoming more and more important. There are several
examples in the literature of similar approaches aimed at
characterizing epidemiological quantities that would not
be accessible from incidence or prevalence data only, such
as the worldwide transmission potential of pandemic flu
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[64], the environmental contribution to cholera transmis-
sion [59], or the interaction between influenza and pneu-
monia [61]. Here, we have shown that a MCML approach
can be useful also in estimating unknown quantities, such
as the VE, which could be easily quantified with incidence
data as well, but over a longer time frame and with higher
uncertainty, given the specific characteristics of meningo-
coccal disease. Overall, our results suggest that a MCML
approach to estimate the VE could be generally relevant
for vaccines preventing low-incidence diseases, whose
effectiveness may need several years to be estimated with
enough precision by observational methods. From this
perspective, the methodological framework presented in
this work is rather general and could be extended in prin-
ciple to different diseases and immunization scenarios
where the limitations of the screening method are known
to be relevant [37].
It is important to notice, though, that our approach

relies considerably on the integration of a large body
of knowledge about the transmission and colonization
mechanisms, the emergence of the invasive disease, and
the global epidemiology of N. meningitidis. Any extension
to different diseases would necessarily require the avail-
ability of similar or better knowledge for the pathogen of
interest.
For the same reason, our study carries some limitations.

The power of theMCMLmethod in providing a fast, accu-
rate, and more precise estimate of VE than the screening
method can be ascribed to two main elements:

1. The MCML method fits the whole time series of
disease cases before and after vaccination, while
estimates by the screening method are based on a
single data point in time.

2. The dynamic model must be calibrated on
epidemiological data by incorporating a large
number of assumptions about the population
structure, the means of transmission, and the
incidence and prevalence of the disease.

While the first element does not carry significant limi-
tations, the calibration on meningococcal epidemiology
before the vaccination campaign may affect the MCML
results. Specifically, the initial calibration relies on two
assumptions: the carriage prevalence across age groups
is forced to be stable from year to year and the risk
of IMD given transmission by age and per time step is
fixed to reproduce the disease endemicity. Despite the
abundance of information on meningococcal disease, the
relation between disease incidence and carriage preva-
lence is unclear. In particular, in the literature there are
no clinical studies broadly assessing acquisition rates of
meningococcal carriage in different age classes. Only a
very recent work [65] provided an estimate of acquisition

rates, measured by aggregating subjects between 10 and
25 years old. To fill this gap, we had to calculate indirectly
the transmission rates βa, by combining available infor-
mation on the carriage prevalence by serogroup and the
duration of carriage τcar. Different combinations of these
parametersmay lead to the same transmission rates, but to
different MCML estimates of VE. For instance, assuming
a shorter duration of carriage is equivalent to considering
a smaller fraction of carriage due to a single serogroup.
We tested the sensitivity of our VE estimates on vari-

ations of τcar, and we found that estimates of VEdir are
fairly unaffected by the assumed value of τcar. In con-
trast, estimates of VEind are sensitive to the duration of
carriage: assuming a longer duration of carriage would
lead to higher estimates of the indirect effectiveness. In
Additional file 1: Figure S9, we show and discuss in detail
how estimates of VEind and VEdir for the MenC vaccine
vary as τcar is varied between 4 and 8 months, as well as
how they evolve in time, with an increasing number of
data points available for inference.
In general, there is not a strong consensus around the

average duration of asymptomatic carriage, whose assess-
ment requires large longitudinal carriage studies. In a
recent review [45], the authors indicated 5–6 months as
a reasonable value for τcar, and the most recent model-
ing efforts rely on this value [43, 62]. We, therefore, chose
τcar = 6 months as our baseline case. Retrospectively, this
appears to be a good choice since it produces the best esti-
mates of VEind that are in agreement with those that have
been published in the literature (Fig. 3). Further applica-
tions of our approach would need to identify carefully the
most plausible values of τcar; however, it is important to
note that changes in τcar do not affect the results pre-
sented here for Bexsero, since we only estimate its direct
effectiveness. More importantly, additional clinical stud-
ies aimed at measuring acquisition rates of meningococcal
carriage would be extremely helpful in removing such
uncertainties.
We also assumed that the risks of invasive disease given

transmission θa are constant over time. This assumption,
combined with the temporal stability of carriage, repro-
duces the observed endemicity of meningococcal disease.
Therefore, the model does not capture long-term trends
in the incidence of disease, such as the decline of inva-
sive disease observed in MenB or the rise of MenC cases
observed just before vaccination. The mechanisms behind
such trends are not completely understood so we do not
try to model them; however, this assumption could lead to
over- or underestimating the VE. To address this point, we
tested whether, in theMenC setting, the inference of VE is
affected when the model is calibrated assuming different
values of θ , that is, different values of the total number of
IMD cases occurring every year. As reported in Additional
file 1, we found that estimates of the direct effectiveness
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are robust against variations in the assumed number of
IMD cases generated by the model. Even by varying the
number of expected IMD cases in 1999 from 600 to 1000,
against a baseline value of 869, the MCML estimate of
VEdir is basically unaffected. On the other hand, estimates
of VEind may vary significantly, as reported in Additional
file 1: Table S4.
In summary, the MCML method is based on stochas-

tic simulations of a dynamical compartmental model that
describes the transmission of N. meningitidis in the pop-
ulation. The model is calibrated on epidemic data before
vaccination, and, once the model is calibrated, the param-
eters VEdir and VEind are uniquely identified via MCML.
We carefully considered the impact of all the assumptions
we made to parameterize the model fully before vaccina-
tion and found that, overall, estimates of VEdir are very
robust to changes in the initial calibration assumptions,
thus supporting the validity of our method as a good can-
didate for an initial assessment of VE from field data.
On the other hand, we found that estimates of VEind are
significantly affected by the specific choice of parame-
terization, which, therefore, should be carefully assessed
before evaluating the indirect effect of a meningococcal
vaccine.
Finally, we tested the robustness of the MCML esti-

mates against changes in the duration of vaccine-induced
protection τimm for the routine vaccination in the MenC
campaign. By varying the duration of immunity between
9 months and 24 months, we found that estimates of
both VEdir and VEind are not significantly affected by this
parameter, as shown in Additional file 1: Figure S10.
Another important assumption we made is that a sin-

gle strain model can be used to describe the transmission
dynamics of different meningococcal serogroups (C and
B), thus neglecting the interaction between serogroups.
Although modeling this interaction could explain more
realistically the age-dependent risk of disease given infec-
tion [42], and it might impact our estimates of VE [66], it
comes at the cost of introducing several unknown param-
eters that must be estimated with the little empirical
knowledge available. Here, we opted for a more par-
simonious approach in terms of parameterization aim-
ing at reducing all possible model uncertainties, thus
minimizing the uncertainty on the VE. Moreover, the
interaction between serogroups is expected to play a
relevant role on long time scales, such as decades or
hundreds of years [66], while we are interested only
in the dynamics of the first few years after vaccine
introduction.

Conclusions
In this work, we have shown how a MCML method, com-
bining stochastic simulations of a dynamic model and
field data, can provide a fast and accurate estimate of the

effectiveness of vaccines against meningococcal disease,
by integrating epidemiological and demographic knowl-
edge into an inferential framework.
We have retrospectively tested the MCML method on

the MenC vaccination campaign that started in 1999 in
England and found estimates of the VE that are in good
agreement with those obtained with the classic screening
method. In this context, we showed threemain advantages
of theMCMLmethod: the shorter time required to obtain
estimates, the higher precision in terms of CIs, and the
ability to quantify both the direct and indirect effect of the
vaccine, based on disease incidence data only.
Finally, we have shown how these advantages could have

a high practical importance in estimating the effectiveness
of Bexsero, a multicomponent vaccine that is currently
being administered in a mass immunization campaign
that started in England in September 2015. It will be
important to test the MCML method for the ongoing
campaign as soon as data on IMD incidence are avail-
able. This approach could provide an initial estimate of
the VE, which, along with traditional observational meth-
ods, could support the work of public health officials.
Furthermore, Bexsero is made with four antigenic com-
ponents. The method presented in this work could be
extended by considering the four antigens as individual
strains to assess how each component contributes to the
overall VE.
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