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Abstract. We consider strongly interacting boson-boson mixtures on one-dimensional lattices and, by
adopting a qualitative mean-field approach, investigate their quantum phases as the interspecies repulsion
is increased. In particular, we analyze the low-energy quantum emulsion metastable states occurring at
large values of the interspecies interaction, which are expected to prevent the system from reaching its
true ground state. We argue a significant decrease in the visibility of the time-of-flight images in the case

of these spontaneously disordered states.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, soli-
tons, vortices, and topological excitations — 03.75.Mn Multicomponent condensates; spinor condensates —
64.60.My Metastable phases — 73.43.Nq Quantum phase transitions

1 Introduction

In recent years the study of systems of ultracold atoms
loaded into optical lattices has drawn much attention be-
cause of their value as experimental probes for the inves-
tigation of models of condensed matter physics exhibit-
ing key properties of complex many-body systems. One of
the most relevant examples in this sense is certainly the
Bose-Hubbard model, originally introduced by Haldane [1]
as a simple yet interesting variant of the better known
fermionic Hubbard model, and later investigated at length
and proposed for the description of superfluid *He trapped
in porous media in a seminal paper by Fisher et al. [2].
The observation of the distinctive superfluid-Mott insula-
tor quantum phase transition in a system of ultracold ru-
bidium atoms [3] brilliantly demonstrated the prediction
that, under suitable conditions, ultracold bosonic atoms
trapped in optical lattices could provide a physical real-
ization of the Bose-Hubbard model [4]. The impressive
control in atom cooling and trapping soon allowed the
realization of more general Bose-Hubbard Hamiltonians,
including, e.g., disordered local potentials [5,6].

The quest for novel and unconventional quantum
phases has recently pushed the interest towards even more
general variants of the Hubbard model, involving mixtures

® e-mail: pierfrancesco.buonsante@polito.it

of particles obeying either the same or different statistics.
Beyond their theoretical appeal, these systems are relevant
to interesting applications such as implementation of dis-
ordered systems [7,8], association of dipolar molecules [9],
schemes for quantum computation [10] and realization of
quantum spin chains and arrays [11,12].

So far, most of the experiments on lattice-atom mix-
tures have involved atoms obeying different statistics. Sev-
eral experimental realizations of lattice Bose-Fermi mix-
tures have been engineered [8,13,14], whereas, to the best
of our knowledge, the first experiment on mixtures involv-
ing two different bosonic species has been carried out very
recently at LENS, in Florence [15].

At the theoretical level, various investigations have
been carried out on lattice Bose-Fermi [16-21] as well as
Bose-Bose mixtures [22-27]. This wealth of work demon-
strates that a comprehensive and systematic study of the
phases of atomic lattice mixtures requires a significant an-
alytic and synthetic effort. Indeed, one should be aware
that even in the ideal case of a homogeneous lattice,
the Hamiltonian describing a bosonic mixture contains
five parameters, namely the two intra-species interaction
strengths, the inter-species interaction strength and one
hopping amplitude for each species. Moreover, the possible
phases depend on many physical parameters such as, e.g.,
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the populations of the two atomic species and their com-
mensurability with the lattice size.

For the above reasons, we confine the present analy-
sis to a rather limited region of the phase diagram of a
boson-boson mixture, which however encompasses a fair
wealth of quantum phases effects. Specifically, we consider
two different bosonic species loaded in a 1-D homogeneous
lattice, and vary only the interaction among them.

We assume that one of the species is soft-core and at
unitary filling, whereas the other is hard-core and at fill-
ing 2/5. Our choice is similar to that considered in ref-
erences [28,29], where the ground state of a Bose-Fermi
mixture on a 1-D lattice is analyzed by means of quantum
Monte Carlo simulations. Recall indeed that on 1D lat-
tices hard-core bosons and spinless fermions share many
features. While we find a qualitatively similar phase di-
agram, our analysis differs from that in reference [29] at
least in two respects. Firstly, we adopt a less quantitative
yet more computationally affordable approach. More in-
terestingly, we focus on the configurations that emerge at
strong values of interspecies interactions. We find that for
sufficiently large interspecies interactions the system sup-
ports a large number of low energy metastable quantum
emulsion states exhibiting glassy features despite the com-
plete absence of any source of disorder in the Hamiltonian
parameters. Such a complex energy landscape for lattice
bosonic mixtures was pointed out in reference [26] and
further discussed in reference [27] in the presence of the
inhomogeneous local potential typical of realistic setups.
Interesting related results are presented in reference [24]
based on a multi-orbital Gross-Pitaevskii approach, while
a phase diagram for metastable states is derived in refer-
ence [30] for dipolar bosons. We carry the analysis of quan-
tum emulsions further on, discussing the arrangement and
features of the droplets, as well as the interference pattern
obtained after free-expansion of the atomic cloud.

The plan of the paper is as follows: in Section 2 we
recall the Hamiltonian of the system as well as the mean-
field approach we adopt. After the introduction of the
quantities characterizing the quantum phases occurring in
the system, our results are presented in Section 3. In par-
ticular, we focus on the behavior of all the aforementioned
quantities as functions of the interspecies interaction. As
we mention, particular attention is devoted to the quan-
tum emulsion states characterizing the phase-separated
regimes. Interestingly we evidence a phase where the soft-
core bosons behave as a disordered superfluid, featuring a
global superfluid (quasi long-range) order but a spatially
inhomogeneous density. We conclude with a brief sum-
mary of our results.

2 The system

The arguments of reference [4] can be generalized to a
lattice loaded with atoms of two different bosonic species.
Under suitable conditions, the system is described by the
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two-flavor Bose-Hubbard Hamiltonian

H:Uwznunm

+ZZ[ ngi(ngi—1)— Jf(fzaszJrhc)}
(1)

where the lattice boson operators a}i, af;i, and ny; =

a},i afq, create, destroy and count atoms of the flavor, or
species, f at site ¢. The parameters Uy and U; 2 quantify
the repulsive interaction between atoms of the same or
different species, respectively (henceforth intra- and inter-
species repulsion). The possibly different hopping ampli-
tude of the two species is quantified by the parameters
Jf. Two-species Bose-Hubbard Hamiltonians similar to
the one in equation (1) have been considered previously
in several works, possibly referring to different internal
states of the same bosonic species [23] to spin-1 [31-33] or
dipolar bosons [9,34].

Since we are in a strongly interactive regime, we as-
sume that the state of the system |¥) is well described by
a Gutzwiller factorized form,

Z (4)
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where the symbols = and ~ denote complex conjugation
and nearest-neighborhood, respectively, and the quanti-
ties in equation (4) are shorthand notations to simplify
equation (3).

The ground-state of the system is the lowest-energy
normal mode of equation (3), which can be found as the
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ground state of the mean-field Hamiltonian
Uy :
H:Z { 2 npi(ngi—1—=pg)=Jy [af,i(af,i+1 +ayi-1)
i,f

+api(agip + @f,i—l)} } +U12 Y niingi. (5)

Subject to the self consistency constraint oy; =
(Play,;|¥) = (¥jlas;|¢;). Note indeed that the eigen-
states of Hamiltonian (5) have the form in equation (2).
A few points are worth observing here. First of all, the
explicit presence of the (species-specific) chemical poten-
tials py, which act as Lagrange multipliers fixing the
total populations Njy. This is explicitly needed since
Hamiltonian (5) does not commute with the total popula-
tions Ny = >, ny ;, unlike Hamiltonian (1). Second, the
mean-field theory can be equivalently obtained from equa-
tion (1) by means of the so-called decoupling approzima-
tion, consisting in the substitution a}yiaf,j — a}’iaﬁj +
agiar; — ooy 5. More interestingly, we note that the
above approach treats the on-site terms of Hamiltonian (1)
exactly. This in particular means that the cross-correlation
function C 2 introduced in equation (7) below makes
sense also for our decoupled trial state (2). We empha-
size the explicit site dependence of our method. That is,
unlike earlier works adopting the Gutzwiller approxima-
tion [22,23,36], we do not force translational invariance
in equation (2), and hence do not end up with an effec-
tive single site theory, which would be unable to describe
the structure of phase-separated or generically inhomoge-
neous configurations. Since we are interested in the effects
of an increasing U, 5 on a given system, we do not look for
the ground state of Hamiltonian (5) at fixed values of the
chemical potentials, as it is usually done. Rather, we ad-
just the puy and po so that we obtain the desired fillings.
This procedure, by the way, avoids the so-called species
depletion problem affecting single-site theories [23,36].

The quantities o r, referred to as local order param-
eters, are directly related to several interesting physical
quantities, such as the one-body density matrix — related
in turn to the condensate fraction of the system and to
the interference pattern observed in experiments — and
the superfluid fraction.

In the simple case of a single-species homogeneous lat-
tice one recognizes two phases, corresponding to the local
order parameters being all zero or all finite. These situ-
ations are readily identified with the insulating and su-
perfluid phases, respectively. The resulting phase diagram
turns out to be qualitatively correct, and its quantitative
agreement with the exact result improves with increasing
dimensionality of the lattice.

Being an approximation, the mean-field approach suf-
fers from some limitations. As we mention, its out-
comes, however qualitatively correct, may exhibit signifi-
cant quantitative deviations from the exact results. Also,
as it is well known, the decoupling approximation makes
the correlation between two sites of a homogeneous lat-
tice independent of their distance, which results in the su-
perfluid phase being always condensate. This clearly does
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not apply to 1D lattices, where the power-law decay of
the two-site correlations prevents long-range order in the
thermodynamic limit. Despite this artifact, the mean-field
approach proves useful also on one-dimensional systems.
Indeed, at the finite — however large — experimentally rel-
evant sizes, the mean-field prediction provides an accept-
able approximation to the slow decay of the exact corre-
lations. This for instance results in qualitatively correct
interference patterns, characterized by a sharp peak at
zero momentum [37]. Such a peak is completely washed
out in the Mott-insulating regime.

Furthermore, the local nature of the mean-field order
parameters allows for configurations where different por-
tions of the system exhibit different phases, thus proving
effective in capturing the geometric fluctuations that add
to the quantum ones in the presence of inhomogeneity.
Different phase domains typically occur in the presence
of site-dependent (possibly random) local potentials, but
are possible also on homogeneous lattices when the trans-
lation invariance is spontaneously broken.

The comparison of the results presented here and in
reference [27] with those in references [26,29] is a clear
evidence of the validity of the qualitative picture provided
by the mean-field approach.

For the sake of completeness it should be mentioned
that the description of a boson-boson mixture such that
both of the atomic species are in a Mott state reveals a
further limitation of the mean-field approach. In this case
an unrealistic degeneracy for the ground state of the sys-
tem is predicted, which can be resolved only taking into
account second-order quantum fluctuations [22, 36]. How-
ever, the conditions for this artifact to occur are rather
specific (the total boson population has to be commensu-
rate with the lattice size) and are never considered in the
following.

3 Results

The zero-temperature phases of the system are determined
by the properties of the ground state of Hamiltonian equa-
tion (1). We characterize such properties making use of
several quantities. The superfluidity of each species can be
estimated as the stiffness under phase variations [20,38,39]

1 B(6) — E(0)

EY =1

s H—I%t Nf92 ’ (6)
where FE(f) is the ground state energy of the

Hamiltonian obtained from equation (1) by the sub-

stitution a}’ja‘f’j_{_l + af,ja}7j+1 — eiea}yjaﬁjﬂ +
(3’1'9(1f7j(1;rc7j_|r1 in the hopping term of species f, while
Ny =3_;{ny;) is the population of the same species. The
introduction of the so-called Peierls phases [40] is equiva-
lent to the imposition of twisted boundary conditions.
Two further quantities will be useful in the character-
ization of the phases we are going to encounter, namely
the creation-annihilation cross correlation functions and
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Fig. 1. (a) Phase diagram of the system as obtained for a lattice with M = 2000. The plotted quantities, discussed in Section 3,
allow us to identify four different quantum phases; panels (b) and (c) refer to regions 3 and 4 of the phase diagram, respectively,
and demonstrate the linear relation between the system energy and the number of phase interfaces in the quantum emulsion
states the system gets trapped into. Each panel shows 100 data points obtained for a lattice with 600 sites. Panel (d) shows the
color code for the phase of the local order parameter characterizing the emulsion droplets in Figure 2.

the local density fluctuation

Cr2 = ]\14 Z (<a}7iaf,i> - <a},i><af,i>)v
if

Ang = 1 3 (g - ( Ny Z<nf,i>> G

where the operation ~ exchange the two species, i.e. f =
1,2 if f = 2,1 respectively. The first quantity is specific
to mixtures, accounting for nontrivial local quantum cor-
relations between particles of different kind and, as we
observed in the previous section, is well posed for the
Gutzwiller trial state in equation (2). The second quan-
tity is sensitive to spatial inhomogeneity, and hence it
is useful in the characterization of the quantum emul-
sion states appearing at large interspecies interactions.
Also, it conveniently signals phase separation which, in the
mean-field approximation, occurs through the emergence
of ground states breaking the translational symmetry of
the Hamiltonian due to nonlinear effects. The expected
homogeneous ground state is recovered as a symmetric
superposition of the set of degenerate symmetry-breaking
states obtained from each other by a lattice translation.
Finally, the interference pattern in the experimental
absorption images of each species is basically determined
by the Fourier transform of the relevant one-body density
matrix summarizing the first-order correlations [41],

1 1k-(r;—r
Sy(k) = Mzek( s o) = (ah ap) (8)

je

where r; is the spatial position of the jth optical lattice
site, k is the (momentum) coordinate in the absorption
image. As we will illustrate shortly, these results provide

a reasonable description of the system, despite the above-
mentioned artifact prediction of a finite condensate frac-
tion.

As we mention above, we focus our attention on a com-
bination of Hamiltonian parameters where several differ-
ent and interesting phases take over as the interspecies re-
pulsion Uj » is increased. As to the remaining parameters,
we choose U; = 1 as our energy scale, Uy = oo (hard-core
bosons), J; = Jo = 0.05, Ny /M =1 and No/M = 0.4. In
order to rule out contributions arising from geometric in-
homogeneity we choose a homogeneous lattice comprising
M sites, with periodic boundary conditions.

The above described quantities allow us to identify 4
different phases for the system, as it is clear from Figure 1.
When U, » is sufficiently small the situation is similar to
the non-interacting limit U; o = 0, in which species 2 is
superfluid and species 1, being strongly interacting and at
unitary filling, is in a Mott-insulating state. Since the two
species are virtually noninteracting, the cross-correlation
C'1,2 vanishes. The different quantities characterizing the
system are independent of U; 2 and each species behaves
as if it was alone in the lattice. In this situation there are
no density fluctuations, as it is expected for single-species
systems on homogeneous lattices.

As soon as the interspecies interaction exceeds a first
critical value, Uy 5 & 0.7, it becomes sufficiently strong to
induce a nonzero cross correlation. The interaction with
the hard-core bosons melts the Mott insulator, and the
atoms of species 1 enter a superfluid phase. This can be
intuitively explained by observing that, owing to the large
interspecies interaction, the simultaneous presence of two
atoms of different species on the same site is energetically
unfavourable. Hence the atoms of species 1 are so-to-say
expelled from the sites occupied by hard-core bosons, and
give rise to a nonzero superfluid fraction. Since Uj is still
sufficiently larger than U s, the bosons of both species
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Fig. 2. Typical quantum emulsion states in regions 3 (left, Uy 2 = 1.1) and 4 (right, U2 = 1.35) of the phase diagram in
Figure la. In both cases the top and bottom panels focus on the soft- and hard-core bosons, respectively. The black solid
line represents the local site occupation (ny ;), whereas the coloured areas are related to the complex local order parameter,
(af;) = |ag ;|e"?#3. Specifically, the height of the area is |ay ;|?, while the color is associated to the phase ¢y ; through the

colorbar in Figure 1d.

remain delocalized and homogeneous, as demonstrated by
the vanishing of Any. It is interesting to observe that the

. 1) . .
increase of FS( ) in this phase corresponds to a decrease

of FS(Q), as if the hard-core bosons felt the presence of
soft-core bosons like a viscous medium slowing down their
motion through the lattice.

When the interspecies interaction exceeds a second
critical value, Ui’y =~ 1.09, the mean-field ground-state
of the system breaks the translational symmetry of
Hamiltonian (5), which signals the occurrence of phase-
separation. This is recognized by the nonzero value of
the average local density fluctuations of both species. As
we mention above, the expected homogeneous density is
recovered through a symmetrization of the symmetry-
breaking state. As long as the interspecies interaction does
not exceed the further critical value U}, = 1.16, the two
atomic species remain correlated, 01727 > 0, and coher-
ent. However, while the soft-core bosons are superfluid,

the hard-core bosons loose their superfluidity, P = .

For Uy > U{”Q both Fs(l) and (2 vanish: the system
has reached a completely phase-separated state where no
atoms of species 1 are found at sites hosting hard-core
bosons, and vice-versa.

The above scenario is qualitatively very similar to what
is obtained in reference [29], where a Bose-Fermi mixture
is analyzed by means of more precise but much more nu-
merically demanding quantum Monte Carlo simulations.
The four phases, with a sufficiently large value of U, in-
stead of an infinitely large one, have been proven to be
stable under small variations of the interaction parame-
ters.

A very interesting issue recently raised by Roscilde
and Cirac [26] concerns the possibility that strongly-
interacting mixtures exhibit a complex low-energy land-
scape challenging very efficient relaxation dynamics such
as that inherent in quantum Monte Carlo simulations.
As a result, usually efficient minimization algorithms fail
to converge to the configuration attaining the minimum

energy, and get virtually trapped into low-energy quan-
tum emulsion states consisting of a random arrangement
of droplets characterized by different phases of the two
atomic species. The same phenomenology is captured by
the Gutzwiller mean-field approach, as discussed in refer-
ences [27,30] for strongly interacting bosonic mixtures and
single-species bosons with long range dipolar interactions,
respectively.

For interspecies interactions exceeding the phase-
separation threshold, Uy, the minimization algorithm we
adopt gets trapped in quyantum emulsion states, which ex-
hibit different features in regions 3 and 4 of the phase
diagram in Figure 1. In order to illustrate this, we discuss
the properties of the quantum emulsion configurations at
two representative values of the interspecies interaction,
Uio = 1.1 and Uy 2 = 1.35. We first of all notice that,
as discussed in references [26,27] the energy of quantum
emulsion states exhibits a clear linear dependence on the
number of interfaces between neighbouring droplets, as it
is shown by panels b and ¢ of Figure 1. Clearly, the min-
imum energy is attained by a configuration featuring the
lowest possible number of phase interfaces, i.e. two. We
emphasize that the lowest-energy states in Figures 1b, 1c
have been obtained by including an ad hoc constraint on
the number of interfaces. Indeed, the presence of a large
number of low-energy metastable states makes the reach-
ing of the true ground state a very hard task.

Figure 2 shows the appearance of the typical quan-
tum emulsion state at Uy o = 1.1 (left) and Uy 2 = 1.35
(right). In both cases the upper and lower panels focus on
soft- and hard-core bosons, respectively. The solid black
line corresponds to the local density (ny ), whereas the
coloured areas represent the complex local order parame-
ter ayj = |as j|e"?fi = (as ;). More precisely, the height
of such areas is determined by |ay j|* whereas the colors
denote the phase ¢ ; according to the colorbar in Fig-
ure 1d. We note that each droplet can be characterized by
an unique value of the phase, which can vary arbitrarily
from droplet to droplet. A light gray solid line representing
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the local density of the species analyzed in detail in the
other panel is also drawn for comparison in each panel. In
both cases one can recognize the presence of “droplets” of
two kinds.

For U 2 = 1.1 the hard-core species comprises irregu-
larly interleaved superfluid and insulating domains, which
prevents a superfluid flow. Indeed, on a one-dimensional
system such as that under investigation, as ; must be fi-

nite at every site in order to produce a nonzero S [42].
Hence the hard-core bosons are in a kind of glassy insu-
lator, as we discuss in more detail below. Conversely, the
phase of soft-core bosons could be defined as a disordered
superfluid. Indeed it also consists of irregularly interleaved
domains, which however always exhibit a superfluid char-
acter since the value of a; 2 never vanishes.

For Uy, = 1.35 the two atomic species never oc-
cupy the same lattice site, i.e. they are completely phase-
separated. Mott-like hard-core droplets are randomly in-
termingled with superfluid soft-core domains. Hence in
this case the soft-core species is in a Bose-glass-like phase.

In both the examined cases the droplets composing the
quantum emulsion are arranged in a random fashion. This
feature is quite interesting, and demonstrates the sponta-
neously disordered nature of the low energy configurations
in strongly interacting atomic mixtures [26]. Recall indeed
that the original Hamiltonians do not contain any explicit
disorder source. Even ignoring the configurations which
are equivalent through a lattice translation, an extremely
large number of spatial arrangements of droplets is pos-
sible with essentially the same energy, very close to the
ground state. Furthermore, in cases where oy ; is finite
only inside one of the two classes of droplets — as for species
2 at U2 = 1.1 and for species 1 at Uy 2 = 1.35 — a further
source of energy degeneracy lies in the phase ¢y ; of the
order parameter. Note indeed that in the above-mentioned
cases such phase has a constant value within each droplet,
but varies across different droplets. This is explained by
observing that each droplet can be well approximated as
a virtually isolated and almost uniform system, owing to
the vanishing of the order parameter in the surrounding
droplets. In this situation one expects the chosen periodic
boundary conditions to be irrelevant. In a uniform system
an overall constant phase of the local order-parameter has
no effect on the observables, and in particular on the sys-
tem energy. In the present case different droplets have in
general a different phase, which manifests itself in observ-
ables involving different lattice sites, e.g. like

(a} jare) = lag|lagle’ereer), 9)

This has virtually no effect on the energy, since it gets
contributions from terms where ¢ and j are nearest neigh-
bours. Indeed when both sites belong to the same droplet
the equal phases cancel out, while when the sites are on
different sides of a droplet boundary the possible phase
difference is canceled by the virtual vanishing of the order
parameter outside the droplet. It is also clear that small
variations of the phases ¢ ; result in an increase of the
energy, which demonstrates the local-minimum character
of these configurations [43].
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Interestingly, the different phases of the droplets can
play an important role in the experimental measure of
the system coherence. This is usually obtained by imag-
ing the ultracold atomic cloud after a few milliseconds of
free expansion. The interference pattern in the absorption
image is substantially described by the Fourier transform
of the one-body density matrix summarizing the two-site
correlations [41], equation (8), whose mean-field form is

2
1 1 e
Sf(k):MZ("f,r|af7j|2)+M D etlerimeriiay | .
j J

(10)
We once again recall that in the homogeneous case the
mean-field approach results in two-site correlations inde-
pendent of the site distance, which leads to an artifact
finite condensate fraction in the thermodynamic limit of
one-dimensional systems. On finite systems this artifact is
less serious, since the exact result is anyway very slowly
decaying with inter-site distance [37]. For instance, in both
the mean-field and exact cases Sy(k) exhibits a large peak
at k = 0 surrounded by small secondary peaks. Therefore
the (incipient) long-range order predicted by the mean-
field approach turns out to be a reasonable approximation
to the expected quasi-long-range order on homogeneous
systems.

In the case of single a quantum emulsion state such as
those depicted in Figure 2 the correlations in equation (9)
would be also finite at arbitrary distance, however mod-
ulated by a phase factor. This is in contrast to what one
would expect in a disordered, strongly interacting regime.
Nevertheless, the expected short range correlations are to
some extent captured by our mean-field approximation.
Indeed, it seems reasonable to assume that the state of
the system consists of a superposition of many almost-
degenerate low-energy quantum emulsion states. These
will be characterized by different phase-interface arrange-
ments compatible with the typical droplet size dictated by
the system parameters, as well as by different phases of the
local order parameter within each droplet. This results in
pij & lag|laj| = |a;|* > 0 for sites i and j belonging to the
same droplet, and p;; = 0 otherwise, which shows that the
correlation length is comparable with the average droplet
size, as expected. When this size is of the order of a few
lattice sites we expect the absorption image of a quantum
emulsion phase to be hardly distinguishable from that of a
Mott-insulating phase. This presents some analogies with
the case of the Bose-glass phase induced in a single-species
system by (quasi)random local potentials [5,44].

4 Conclusion

In summary, by adopting a qualitative mean-field ap-
proach, we have discussed the occurrence of four different
phases in a 1D lattice bosonic mixture as a result of the in-
crease of a single parameter, i.e. the interspecies repulsion.
The features of the different phases have been analyzed
by employing suitable observables, and special attention
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has been devoted to the quantum emulsion metastable
states occurring at large value of the interspecies repul-
sion [26,27]. Also, we discussed experimental issues such
as the visibility of these quantum emulsion states, which
could greatly reduced by the randomness of the phase of
the order parameter within each isolated droplet. Owing
to the large parameter space, we expect that further quan-
tum phases can crop out in different regimes. For example,
we verified that for a sufficiently large increase in the hop-
ping amplitudes phase 3 is replaced by a different quantum
emulsion where both species behave as a disordered fluid.
Such complex phases and the effect of the dimensionality
on phase segregation will be the subject of future work.
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