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Multilayer networks are widespread in natural and manmade systems. Key properties of these networks are
their spectral and eigenfunction characteristics, as they determine the critical properties of many dynamics
occurring on top of them. Here, we numerically demonstrate that the normalized localization length β of the
eigenfunctions of multilayer random networks follows a simple scaling law given by β = x∗/(1 + x∗), with
x∗ = γ (b2

eff/L)δ , δ ∼ 1, and beff being the effective bandwidth of the adjacency matrix of the network, whose size
is L. The scaling law for β, that we validate on real-world networks, might help to better understand criticality
in multilayer networks and to predict the eigenfunction localization properties of them.
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I. INTRODUCTION

Real systems are naturally structured in levels or intercon-
nected substructures, which in turn consists of nodes organized
in networks [1]. For instance, individuals are connected
through different social circles, each of which can be thought
of as a network. People and goods are transported through
different mobility modes, such as airlines, roads, and ships.
These systems are nowadays referred to as multilayer networks
[1,2]. The study of these systems is important as many
critical properties of several phenomena are determined by
the topology of them, and specifically by the spectral and
eigenfunction properties of the adjacency and the Laplacian
matrices of the networks. One particularly suitable approach to
address the relation between the structure and the dynamics of
a networked system is given by random matrix theory (RMT).
RMT has numerous applications in many different fields, from
condensed matter physics to financial markets [3]. In the case
of complex networks, the use of RMT techniques might reveal
universal properties [4], which are always of interest, as they
allow to reduce the set of parameters describing the system
and provide relations that allow to deduce its behavior from
those few global parameters.

In this paper, we study whether there are universal scaling
properties in multilayer systems. We perform a scaling analysis
of the eigenfunction localization properties of multilayer
networks using RMT models and techniques. We explore
multilayer networks whose networks of layers [2] are of
two types: (i) a line and (ii) a complete graph (node-aligned
multiplex networks). In the first case, we study weighted layers
coupled by weighted matrices, whereas in the latter case,
weighted and binary layers coupled by identity matrices are
considered. We demonstrate that the normalized localization
length of the eigenfunctions of multilayer random networks
exhibits a well defined scaling function and also test the scaling
law on real-world networks. Our results can be used to predict
or design the localization features of the eigenfunctions of
multilayer random networks and to better understand critical
properties that depend on eigenfunction properties.

II. MODEL DEFINITION AND PROBLEM STATEMENT

A multilayer network is formed by M undirected random
layers with corresponding adjacency matrices A(m) having Nm

nodes each. The respective adjacency matrix of the whole
network is expressed by A = ⊕M

m=1 A(m) + pC, where
⊕

represents the direct sum, p is a parameter that defines the
strength of the interlayer edges, and C is the interlayer coupling
matrix, whose elements represent the relations between nodes
in different layers, thus implicitly containing the information
of a network of layers [7]. Examples of multilayers are
shown in Fig. 1. Observe that the spectra of the adjacency
matrix A is a function of the parameter p. As a consequence,
eigenvalue crossings, structural transitions [8], near crossings
[9], or localization problems [9,10] are inherent to the network
spectra, depending on p for multilayer networks. Regarding
dynamical processes, p plays a fundamental role. For instance,
in diffusion processes, it can drive the multilayer system to a
superdiffusion regime [11]. Likewise, in contagion dynamics,
in which p is associated to the ratio of intralayer and interlayer
spreading rates, there can be both localized and delocalized
states [9] depending on the value of p. Here, we restrict
ourselves to p = 1: for p � 1 the layers can be considered
as uncoupled, while for p � 1 the topology of the network of
layers dominates the spectral properties [7,8]. In this way,
p = 1 represents a suitable intermediary case (multilayer
phase).

We define two ensembles of multilayer random networks as
adjacency matrices. As the first model we consider a network
of layers on a line [see Fig. 1(a)], whose adjacency matrix A
has the form

A =

⎛
⎜⎜⎜⎝

A(1) C(1,2) · · · 0
C(2,1) A(2) 0

...
. . . C(M−1,M)

0 0 C(M,M−1) A(M)

⎞
⎟⎟⎟⎠, (1)

where (C(m,m′))i,j = (C(m,m′))
T
j,i are real rectangular ma-

trices of size Nm×Nm′ and 0 represents null matrices.
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(a)

(b)

FIG. 1. Illustration of the two types of multilayer networks
studied here. The network of layers are (a) a line and (b) a complete
network. Here, each network is composed by M = 3 layers having
N = 5 nodes.

Furthermore, we consider a special class of matrices A(m)

and C(m,m′) which are characterized by the sparsities αA and
αC , respectively. In other words, since with a probability
α∗ their elements can be removed, these matrices represent
Erdös-Rényi–type random networks. Notice that when the
Nm are all the same Nm = const ≡ N , which is the case
we explore here. Also, the adjacency matrix A has the
structure of a block-banded matrix of size L = M×N . In
addition, we consider this model as a model of weighted
networks, i.e., the nonvanishing elements Ai,j are independent
Gaussian variables with zero mean and variance 1 + δi,j .
We justify the addition of self-loops and random weights
to edges by recognizing that in real-world networks the
nodes and the interactions between them are in general
nonequivalent. Moreover, with this prescription we retrieve
well known random matrices [12] in the appropriate limits: a
diagonal random matrix is obtained for αA = αC = 0 (Poisson
case), whereas the Gaussian orthogonal ensemble (GOE) is
recovered when αA = αC = 1 and M = 2. For simplicity,
and without loss of generality, in this work we consider
the case where α ≡ αA = αC . As an example, this network
model can be applied to transportation networks, where the
interlayer edges represent connections between two different
means of transport. An obvious constraint is that no layer
can be connected to more than two layers. In addition to the
above configuration, we are also interested on the node-aligned
multiplex case, whose network of layers is a complete graph
[see Fig. 1(b)].

There is a well known RMT model known as the banded
random matrix (BRM) model which was originally introduced
to emulate quasi-one-dimensional disordered wires of length
L and width b (with b � L). The BRM ensemble is defined
as the set of L×L real symmetric matrices whose entries are
independent Gaussian random variables with zero mean and
variance 1 + δi,j if |i − j | < b and zero otherwise. Therefore,
b is the number of nonzero elements in the first matrix
row which equals 1 for diagonal, 2 for tridiagonal, and L

for matrices of the GOE. There are several numerical and
theoretical studies available for this model (see, for example,
Refs. [13–27]). In particular, outstandingly, it has been
found [13–20] that the eigenfunction properties of the BRM
model, characterized by the scaled localization length β, are
universal for the fixed ratio x = b2/L. More specifically, it was
numerically and theoretically shown that the scaling function

β = γ x

1 + γ x
, (2)

with γ ∼ 1, holds for the BRM model. Admittedly, the ensem-
ble of adjacency matrices of the multilayer network with layers
on a line [see Eq. (1)] can be considered as a nonhomogeneous
diluted version of the BRM model. Therefore, motivated by
the similarity between these two matrix models, we propose
the study of eigenfunction properties of the adjacency matrices
of multilayer and multiplex random networks as a function of
the parameter

x = b2
eff

L
, (3)

where beff ≡ beff(N,α) is the adjacency matrix effective
bandwidth and L = M×N .

A commonly accepted tool to characterize quantitatively
the complexity of the eigenfunctions of random matrices (and
of Hamiltonians corresponding to disordered and quantized
chaotic systems) is the information or Shannon entropy S.
This measure provides the number of principal components of
an eigenfunction in a given basis. In fact, S has been already
used to characterize the eigenfunctions of the adjacency
matrices of random network models; see some examples in
Refs. [6,28–32]. The Shannon entropy for the eigenfunction �l

is given as S = −∑L
n=1(�l

n)2 ln(�l
n)2 and allows computing

the scaled localization length as [33]

β = exp (〈S〉 − SGOE), (4)

where SGOE ≈ ln(L/2.07), used as a reference, is the entropy
of a random eigenfunction with Gaussian distributed ampli-
tudes (i.e., an eigenfunction of the GOE). With this definition
[34], β can take values in the range (0,1]. Here, as well as in
BRM model studies, we look for the scaling properties of the
eigenfunctions of our random network models through β [35].

III. SCALING ANALYSIS OF MULTILAYER NETWORKS

We now analyze in detail the multilayer network model
with adjacency matrix given by Eq. (1). In Fig. 2(a), we
present β as a function of x [see Eq. (3)] for ensembles of
networks characterized by the sparsity α. We have defined
beff as the average number of nonvanishing elements per
adjacency-matrix row

beff = 2Nα. (5)

We observe that the curves of β versus x in Fig. 2(a) have
a functional form similar to that for the BRM model. To show
this, we are including Eq. (2) (black dashed line) with γ = 1.4
(the value of γ reported in Ref. [13] for the BRM model)
which is very close to our data for α = 0.8. In addition, in
Fig. 2(b) the logarithm of β/(1 − β) as a function of ln(x)
is presented. The quantity β/(1 − β) was useful in the study
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(a)

(b)

FIG. 2. (a) Scaled localization length β as a function of x =
b2

eff/L for ensembles of multilayer networks characterized by the
sparsity α. The dashed line close to the data for α = 0.8 is Eq. (2)
with γ = 1.4. Horizontal dotted-dashed lines at β ≈ 0.12 and 0.88
are shown as a reference (see the text). (b) Logarithm of β/(1 − β)
as a function of ln(x). Upper inset: power δ, from the fittings of the
data with Eq. (6), as a function of α. Lower inset: enlargement in the
range ln[β/(1 − β)] = [−2,4] including data for α = 0.6, 0.8, and 1.
Lines are fittings of the data using Eq. (6).

of the scaling properties of the BRM model [13,16] because
β/(1 − β) = γ x, which is equivalent to scaling (2), implies
that a plot of ln[β/(1 − β)] versus ln(x) is a straight line with
unit slope. Even though, this statement is valid for the BRM
model in a wide range of parameters {i.e., for ln[β/(1 − β)] <

2} it does not apply to our multilayer random network model
[see Fig. 2(b)]. In fact, from this figure we observe that plots of
ln[β/(1 − β)] versus ln(x) are straight lines (in a wide range
of x) with a slope that depends on the sparsity α. Therefore,
we propose the scaling law

β

1 − β
= γ xδ, (6)

where both γ and δ depend on α. Indeed, Eq. (6) describes well
our data, mainly in the range ln[β/(1 − β)] = [−2,2], as can
be seen in the inset of Fig. 2(b) where we show the numerical
data for α = 0.6, 0.8, and 1 and include fittings through Eq. (6).

We stress that the range ln[β/(1 − β)] = [−2,2] corresponds
to a reasonable large range of β values, β ≈ [0.12,0.88],
whose bounds are indicated with horizontal dotted-dashed
lines in Fig. 2(a). Finally, we notice that the power δ, obtained
from the fittings of the data using Eq. (6), is very close to unity
for all the sparsity values we consider here [see the upper inset
of Fig. 2(b)].

Therefore, from the analysis of the data in Fig. 2, we
are able to write a universal scaling function for the scaled
localization length β of the eigenfunctions of our multilayer
random network model as

β

1 − β
= x∗, (7)

where the scaling parameter x∗ = γ xδ , as a function of the
multilayer network parameters, is given by

x∗ ≡ γ

(
4Nα2

M

)δ

. (8)

To validate Eq. (7) in Fig. 3(b) we present again the data for
ln[β/(1 − β)] shown in Fig. 2(b) but now as a function of
ln(x∗). We do observe that curves for different values of α

fall on top of Eq. (7) for a wide range of the variable x∗.
Moreover, the collapse of the numerical data is excellent in
the range ln[β/(1 − β)] = [−2,2] for α � 0.5, as shown in
the inset of Fig. 3(b). Additionally, we rewrite Eq. (7) into the
equivalent, but explicit, scaling function for β:

β = x∗

1 + x∗ . (9)

In Fig. 3(a), we confirm the validity of Eq. (9). We emphasize
that the universal scaling given in Eq. (9) extends outside the
range β ≈ [0.12,0.88], for which Eq. (6) was shown to be
valid [see the main panel of Fig. 3(a)]. Clearly, the collapse of
the numerical data following Eq. (9) is remarkably good for
α � 0.5, as shown in the inset of Fig. 3(a).

Furthermore, we verify below that scaling (9) is also
applicable to node-aligned multiplex networks, which are
relevant for certain applications, once beff is properly defined.

IV. SCALING ANALYSIS OF MULTIPLEX NETWORKS

In the node-aligned multiplex case, whose network of layers
is a complete graph, the coupling matrices are restricted to
identity matrices and all layers have the same number of
nodes [see Fig. 1(b)]. The adjacency matrix of a node-aligned
multiplex is given as

A =

⎛
⎜⎜⎜⎜⎜⎝

A(1) I I · · · I

I A(2) I I

I I A(3) I
...

. . . I

I I I I A(M)

⎞
⎟⎟⎟⎟⎟⎠

. (10)

Similarly to the multilayer model of Eq. (1), this configuration
is characterized by the sparsity α which we choose to be
constant for all the M matrices A(m) of size N×N composing
the adjacency matrix A of size L = M×N . Additionally,
the configuration (10) is considered in two different setups:
weighted and unweighted multiplex without self-loops. In the
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(a)

(b)

FIG. 3. (a) β as a function of x∗ [as defined in Eq. (8)] for
ensembles of multilayer networks with α ∈ [0.2,1] in steps of 0.05.
Inset: data for α ∈ [0.5,1] in steps of 0.05. Dashed lines are Eq. (9).
(b) Logarithm of β/(1 − β) as a function of ln(x∗) for α ∈ [0.2,1] in
steps of 0.05. Inset: enlargement in the range ln[β/(1 − β)] = [−2,2]
including curves for α ∈ [0.5,1] in steps of 0.05. Dashed lines
are Eq. (7).

weighted case, the nonvanishing elements of the matrices
A(m) are chosen as independent Gaussian variables with
zero mean and variance 1 + δi,j . A realistic example of this
configuration are online social systems, where each layer
represents a different online network (e.g., Facebook, Twitter,
and Google+, etc). In the unweighted case, the nonvanishing
elements of A(m) are equal to unity. In (10), I are identity
matrices of size N×N .

A. Weighted multiplex

Now, we consider weighted multiplex networks (i.e., where
the nonvanishing elements of the adjacency matrices A(m) in
(10) are chosen as independent Gaussian variables with zero
mean and variance 1 + δi,j ). We follow the same methodology
as in the multilayer case. Thus, in Fig. 4(a) we first present
curves of β versus x; however, we redefine beff as

beff = Nα, (11)

(a)

(b)

FIG. 4. (a) Scaled localization length β as a function of x =
b2

eff/L for ensembles of weighted multiplex networks characterized
by the sparsity α. The black dashed line corresponds to Eq. (2) with
γ = 1.4. Horizontal black dotted-dashed lines at β ≈ 0.12 and 0.88
are shown as a reference (see the text). (b) Logarithm of β/(1 − β)
as a function of ln(x). Upper inset: power δ, from the fittings of the
data with Eq. (6), as a function of α. Lower inset: enlargement in the
range ln[β/(1 − β)] = [−2,2] including data for α = 0.6, 0.8, and 1.
Lines are fittings of the data with Eq. (6).

which is the average number of nonvanishing elements per
row inside the adjacency-matrix band in the multiplex setup.
From Fig. 4(a) we observe that the curves of β versus x have
functional forms similar to those for the multilayer model
[compare with Fig. 2(a)], however, with larger values of β

for given values of x. As a reference we also include Eq. (2)
(black dashed line) with γ = 1.4, corresponding to the BRM
model, which is even below the data for α = 1. Moreover, in
Fig. 4(b) we show the logarithm of β/(1 − β) as a function
of ln(x). As in the multilayer case, here we observe that plots
of ln[β/(1 − β)] versus ln(x) are straight lines mainly in the
range ln[β/(1 − β)] = [−2,2] with a slope that depends on the
sparsity α. We indicate the bounds of this range with horizontal
dotted-dashed lines in Fig. 4(a). Therefore, the scaling law of
Eq. (6) is also valid here. Indeed, in the upper inset of Fig. 4(b)
we report the power δ obtained from fittings of the data
with Eq. (6).
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(a)

(b)

FIG. 5. (a) β as a function of x∗ [as defined in Eq. (8)] for
ensembles of weighted multiplex networks with α ∈ [0.2,1] in steps
of 0.05. Inset: Data for α ∈ [0.5,1] in steps of 0.05. Dashed lines in
main panel and inset are Eq. (9). (b) Logarithm of β/(1 − β) as a
function of ln(x∗) for α ∈ [0.2,1] in steps of 0.05. Inset: Enlargement
in the range ln[β/(1 − β)] = [−2,2] including curves for α ∈ [0.5,1]
in steps of 0.05. Dashed lines in main panel and inset are Eq. (7).

In order to validate the scaling hypothesis of Eq. (7) for the
node-aligned multiplex setup, in Fig. 5(b) we present the data
for ln[β/(1 − β)] shown in Fig. 4(b), but now as a function of
ln(x∗). We observe that curves for different values of α fall on
top of Eq. (7) for a wide range of the variable x∗. Moreover,
the collapse of the numerical data on top of Eq. (7) is excellent
in the range ln[β/(1 − β)] = [−2,2] for α � 0.5, as shown
in the inset of Fig. 5(b). Finally, in Fig. 5(a) we confirm the
validity of Eq. (9) which is as good here as for the multilayer
case. We emphasize that the collapse of the numerical data on
top of Eq. (9) is remarkably good for α � 0.5, as shown in the
inset of Fig. 5(a).

B. Unweighted multiplex

The last analyzed scenario is the binary multiplex case. We
recall that, in contrast to the two previous random network
models, this model does not include weighted self-loops.
Therefore, the Poisson limit is not recovered when α → 0
and β is not well defined there. Thus, we will compute β for
values of x as smaller as the adjacency-matrix diagonalization

(b)

(a)

FIG. 6. (a) Scaled localization length β as a function of x =
b2

eff/L for ensembles of unweighted multiplex networks characterized
by the sparsity α. The black dashed line corresponds to Eq. (2) with
γ = 1.4. Horizontal black dotted-dashed lines at β ≈ 0.5 and 0.98
are shown as a reference (see the text). (b) Logarithm of β/(1 − β) as
a function of ln(x). Lower inset: enlargement in the range ln[β/(1 −
β)] = [−2,4] including data for α = 0.6, 0.7, and 0.85. Lines are
fittings of the data with Eq. (6).

produces meaningful results. Also, as for the weighted multi-
plex, we use here the effective bandwidth given in Eq. (11).

The conducted experiments are similar to the previous ones.
Then, in Figs. 6(a) and 6(b) we present curves of β versus
x and ln[β/(1 − β)] versus ln(x), respectively. Here, due to
the absence of self-loops, we observe important differences
with respect to the previous cases: In particular, the curves
β versus x present minima at given small values of x. This
feature can be seen clearer in Fig. 6(b) since it is magnified
there. Also, from Fig. 6(b) we can notice that the range where
ln[β/(1 − β)] is a linear function of ln(x) has been shifted
upwards for all the values of α considered. Therefore, we
perform fittings to the curves ln[β/(1 − β)] versus ln(x) with
Eq. (6) in the interval ln[β/(1 − β)] = [0,3.75]; the bounds
of this interval are marked as dotted-dashed lines in Fig. 6(a).
The corresponding values of δ are reported in Fig. 9(a). Now,
under the above conditions, we validate our scaling hypothesis
by plotting β versus x∗ and ln[β/(1 − β)] versus ln(x∗)
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(a)

(b)

FIG. 7. (a) β as a function of x∗ [as defined in Eq. (8)] for
ensembles of unweighted multiplex networks with α ∈ [0.2,1] in
steps of 0.05. Inset: data for α ∈ [0.5,1] in steps of 0.05. Dashed lines
in main panel and inset are Eq. (9). (b) Logarithm of β/(1 − β) as a
function of ln(x∗) for α ∈ [0.2,1] in steps of 0.05. Inset: enlargement
in the range ln[β/(1 − β)] = [−1,4] including curves for α ∈ [0.5,1]
in steps of 0.05. Dashed lines in main panel and inset are Eq. (7).

[see Figs. 7(a) and 7(b), respectively]. Remarkably, we observe
a clear scaling behavior also in the unweighted multiplex case
(despite the minima in the curves β versus x∗ for small x∗).

V. APPLICATION TO REAL-WORLD NETWORKS

Finally, we test the scaling law for β for a number of
real-world multiplex networks (see Table I and Appendix).

TABLE I. Parameter values of the networks reported in Fig. 8.

Network name N M α x∗

Kapferer tailor shop [36] (◦) 39 4 0.1862 29.417
Oryctolagus genetic [37,38] (�) 144 3 0.0044 0.1056
HepatitusC genetic [37,38] (♦) 105 3 0.0076 0.5292
Krackhardt high tech [39] (�) 21 3 0.3873 22.596
Padgett-Florentine families [40] (�) 16 2 0.1458 19.957
Vickers-Chan 7th graders [41] (�) 29 3 0.4252 32.707
Lazega law firm [42] (�) 71 3 0.2231 92.037

FIG. 8. ln[β/(1 − β)] as a function of ln(x∗) for several real-
world multiplex networks (see symbol code in Table I). Dashed line
is Eq. (7).

We proceed as follows. First, since these networks are highly
nonhomogeneous, we compute an average sparsity α. Then,
with Eq. (8) we obtain the corresponding x∗ = x∗(N,M,α)
(see Appendix for details of the calculation of γ and δ). There-
fore, we can already use Eq. (9) to predict the eigenfunction
localization length of these networks that we will compare
to the values of β computed directly from them. In Fig. 8
we report all data we obtained. Remarkably, although these
real networks are binary multiplexed (basically different to
the weighted multilayer networks used to derive the scaling
of β) and highly nonhomogeneous, we observe a reasonably
good general correspondence between the actual values of β

(symbols) and the corresponding prediction (dashed line).

VI. CONCLUSIONS

Summarizing, in this study we have demonstrated that
the normalized localization length β of the eigenfunctions
of multilayer random networks scales as x∗/(1 + x∗). Here,
x∗ = γ (b2

eff/L)δ; where beff is the effective bandwidth of the
network’s adjacency matrix, L is the adjacency matrix size,
and δ ∼ 1. We showed that such scaling law is robust covering
weighted multilayer and both weighted and unweighted node-
aligned multiplex networks. Moreover, the scaling law was
validated on real-world networks. Our results might shed addi-
tional light on the critical properties and structural organization
of multilayer systems. Interestingly enough, our findings might
be used to either predict or design (e.g, tune), by means of
Eq. (9), the localization properties of the eigenfunctions of
multilayer random networks. For instance, we anticipate the
following cases: (i) Due to the banded nature of the adjacency
matrices of the network models considered here, beff < L, it is
unlikely to observe fully delocalized eigenfunctions unless the
value of x∗ is driven to large values, for example, by increasing
the size of the subnetworks N and/or their sparsity α for a fixed
value of M . (ii) For a fixed subnetwork size N and sparsity
α, the eigenfunctions of the multilayer network become more
localized when increasing the number of subnetworks M . We
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hope our results motivate further numerical and theoretical
studies.
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APPENDIX: SOME DETAILS ABOUT THE REAL-WORLD
NETWORKS OF SEC. V

The methodology was applied to seven real networks,
where two are biological networks and five from the social
domain. The biological ones are constructed using the (Bi-
oGRID, thebiogrid.org) Biological General Repository for
Interaction Datasets [37,38] and consider different types
of interactions: (i) direct interaction, (ii) association, and
(iii) physical association. On the other hand, regarding the
social networks, each layer represents a different type of
interaction: (i) on Pedgett-Florentine families [40], they are
marriage alliances and business relationships; (ii) on Vickers-
Chan 7th graders [41], they are based on the answer of
three questions: “Who do you get on with in the class?”
“Who are your best friends in the class?” “Who would you
prefer to work with?”; (iii) on Lazega law firm [42], they
are co-work, friendship, and advice; (iv) on Krackhardt high
tech [39] they are advice, friendship and “reports to” and (v)
on Kapferer tailor shop [36], they are “instrumental” (work
and assistance related) and “societal” (friendships), recorded
at two different times. For more information, please see their
individual references on Table I.

In the main text, we tested the scaling law for β on
the above real-world multiplex networks (see Fig. 8). Here,
we give details regarding the calculation of γ and δ used
to compute x∗ = x∗(N,M,α). First note that since the real
networks we are analyzing are binary multiplex, we use the
unweighted multiplex model of Sec. IV B as the reference
model. Also, recall that we have already obtained γ and δ for
several values of α, indeed we used those values of γ and
δ to produce the scaled curves of Fig. 7. However, in order
to provide γ and δ corresponding to the specific values of

α

δ

(a)

(b)

FIG. 9. (a) δ and (b) γ as a function of α for ensembles of
unweighted multiplex networks (symbols). Continuous lines are cubic
spline interpolations of the data.

α of the real-world networks (see Table I), we proceed as
follows. First, we consider the region of α < 0.2, not explored
in Sec. IV B. Again, we extract γ and δ from the fittings of the
curves ln[β/(1 − β)] versus ln(x) with Eq. (6). But, in contrast
to the region α � 0.2, where we performed the fittings in the
fixed interval ln[β/(1 − β)] = [0,3.75], now we have to adjust
the fitting interval because the linear behavior of the curves
ln[β/(1 − β)] versus ln(x) diminishes by decreasing α. Thus,
in Fig. 9 we report the values of γ and δ obtained for α < 0.2
(in steps of 0.01) and for α � 0.2 (in steps of 0.05). Then, we
perform a cubic spline interpolation (see continuous lines in
Fig. 9); so, given a specific value of α we retrieve interpolated
values of γ and δ that we use to compute x∗ = x∗(N,M,α)
with Eq. (8).
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