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We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial
representation, extending the models of monoplex networks to this context. We derive analytical
expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-
infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady
state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of
disease localization and the emergence of two or more susceptibility peaks, which are characterized
analytically and numerically through the inverse participation ratio. At variance with what is observed in
single-layer networks, we show that disease localization takes place on the layers and not on the nodes
of a given layer. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we
observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of
the ratio of two spreading rates: If the rate at which the disease spreads within a layer is comparable to
the spreading rate across layers, the individual spectra of each layer merge with the coupling between
layers. Finally, we report on an interesting phenomenon, the barrier effect; i.e., for a three-layer
configuration, when the layer with the lowest eigenvalue is located at the center of the line, it can
effectively act as a barrier to the disease. The formalism introduced here provides a unifying
mathematical approach to disease contagion in multiplex systems, opening new possibilities for the
study of spreading processes.
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I. INTRODUCTION

Epidemic-like spreading processes are paradigmatic, as
they can describe not only the temporal unfolding and
evolution of diseases but also of ideas, information, and
rumors in fields as diverse as biological, information,
and social sciences [1]. Because of their fundamental nature
and simplicity, two particular models have received special
attention by the scientific community, the susceptible-
infected-susceptible (SIS) and the susceptible-infected-
recovered (SIR) models. In both models, an infected
individual spreads the disease to its neighbors at a given

(spreading) rate, and infected individuals recover at some
other rate. The difference between both scenarios lies in the
fact that in the SIS case, once recovered, infected individuals
can catch the disease again; therefore, they go back to the
susceptible state. On the contrary, in the SIR model, recov-
ered individuals are supposed to acquire permanent immunity
and do not play any active role in the spreading process
anymore. There are many other variations of these two
models, including more realistic and intricate compartmental
models [1]. However, these two schemes are sufficient to
capture the main phenomenology of disease dynamics—and
many other contagion-like processes—including the onset of
epidemics, while remaining simple.
Originally, the modeling of diseases was confined to

homogeneous systems, where any pair of individuals have
the same contact probability [2,3]. However, most real-
world networks are heterogeneously organized, leading to
the reexamination of previous results considering nontrivial
patterns among individuals, such as power-law degree
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distributions [4–6]. In Ref. [7], the authors presented the
heterogeneous mean-field approach (HMF), showing that
the epidemic threshold tends to zero in the thermodynamic
limit on scale-free networkswhen the characteristic exponent
is less than 3. This observation about the role of network
organization completely changed our previous understanding
of how disease outbreaks should be modeled and controlled,
placing the focus of attention not only on newways to model
disease dynamics but also on the incorporation of real contact
patterns in the dynamical settings [3,8–11].
Since then, many computational and theoretical frame-

works have been proposed, which undoubtedly made the
modeling of disease contagion an active area of research
and provided new phenomenological insights and accurate
methods for the study of real outbreaks. For instance,
instead of the HMF approach, one can adopt the quenched
mean-field (QMF) method, where a specific network is
fixed and the dynamics is modeled in terms of nodal
probabilities [12,13]. The results obtained with the latter
approach show that the epidemic threshold depends on the
inverse of the leading eigenvalue of the adjacency matrix
[12,13]; a similar result was also obtained using a discrete
Markov chain approach [14]. Other scenarios explored
recently include the case of temporal networks [15,16],
competing and interacting diseases [17–23], as well as the
inclusion of human behavioral responses [24–26].
However, the vast majority of the works so far deal with

single-layered networks, despite the fact that many real
systems exhibit a large degree of interconnectivity and
hence should be modeled as multilayer networks [27]. Such
systems represent multimodal, multicategorical, or tempo-
ral interactions, such as social relations, the ecosystem
formed by different online social networks, or modern
transportation systems [27]. Cozzo et al. [28] showed that
disregarding the multilayer structure can lead to misleading
conclusions, missing fundamental aspects of the critical
dynamics of spreadinglike processes. Such findings
reinforce the importance of a more detailed investigation
of contagion processes on multilayer networks. Here, we
develop a theoretical and computational framework for the
analysis of disease spreading, generalizing the results of
Ref. [13] to multilayer networks. A continuous counterpart
to the model presented in Ref. [28] is provided in terms of
the tensorial notation introduced in Ref. [29]. Our meth-
odology allows for several new results. First, we are able to
write down, in a compact form, the equations describing the
disease dynamics in a multilayer system. Second, we derive
the corresponding epidemic thresholds for the SIS and SIR
cases, as well as establish bounds for the prevalence of the
disease in the SIS scenario. More importantly for future
works, we identify previously unnoticed multiple suscep-
tibility peaks and show that there is disease localization but
that it takes place on the layers instead of on the nodes of a
given layer. All these findings are traced back to the very
topological nature of the system and described in terms of

the eigenvalue spectra of the supra-contact tensor and the
localization of eigenstates.
The rest of the paper is organized as follows: We first

formally define the concept of multilayer network, intro-
ducing the tensorial notation. Next, we derive the equations
describing the dynamics of the disease for the SIS scheme,
calculating the upper and lower bounds for the prevalence
of the disease in the steady state, followed by the analytical
expression for the epidemic threshold, which is also derived
for the SIR model. Furthermore, we use the results in
Ref. [30] to define some constraints on the critical point. In
addition, we explore the notion of localization of eigen-
states, formerly applied on epidemic spreading in Ref. [31],
to inspect layerwise disease localization transitions. Finally,
we also present results from extensive numerical simula-
tions considering multiplex networks with scale-free and
scale-rich structures, computing their respective epidemic
thresholds. We present our conclusions in the last section.

II. CONTINUOUS FORMULATION FOR
MULTILAYER EPIDEMIC SPREADING

Multilayer networks have been shown to better describe
interdependent systems. Mathematically, they can be
described by either generalizing the matrix representation
and formalism [27] or by encoding the system’s topology in
a tensorial representation, which was recently proposed
[29] and first applied to describe a dynamical process in
Ref. [32]. Here, we use the latter framework to formulate a
continuous time Markov chain model that describes the
evolution of an epidemic processes.

A. Tensorial representation

Tensors are elegant mathematical objects that generalize
the concepts of scalars, vectors, and matrices. A tensorial
representation provides a natural and concise framework
for modeling and solving multidimensional problems and is
widely used in different fields, from linear algebra to
physics. In particular, general relativity is completely
formulated under the tensorial notation. Here, we use the
representation formerly presented in Ref. [29]. We also
adopt the Einstein summation convention, in order to have
more compact equations: If two indices are repeated, where
one is a superscript and the other a subscript, then such an
operation implies a summation. Aside from that, the result
is a tensor whose rank lowers by 2. For instance,
Aα
βA

γ
α ¼

P
αA

α
βA

γ
α. In our notation, we use Greek letters

to indicate the components of a tensor. In addition, we use a
tilde (~⋅) to denote the components related to the layers, with
dimension m, while the components without a tilde have
dimension n and are related to the nodes.
A multilayer network is represented as the fourth-order

adjacency tensor M ∈ Rn×n×m×m, which can represent
several relations between nodes [29],
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Mα~δ
β~γ ¼

Xm
~h;~k¼1

Cα
βð ~h ~kÞE~δ

~γð ~h ~kÞ

¼
Xm
~h;~k¼1

Xn
i;j¼1

wijð ~h ~kÞEα~δ
β~γðij ~h ~kÞ; ð1Þ

where E~γ
~δ
ð ~h ~kÞ ∈ Rm×m and Eα~δ

β~γðij ~h ~kÞ ∈ Rn×n×m×m

indicate the tensor in its respective canonical basis.
Observe that we can extract one layer by projecting the
tensor Mα~δ

β~γ to the canonical tensor E~γ
~δ
ð~r ~rÞ. Formally, from

Ref. [29], we have

Mα~δ
β~γE

~γ
~δ
ð~r ~rÞ ¼ Cα

βð~r ~rÞ ¼ Aα
βð~rÞ; ð2Þ

where ~r ∈ f1; 2;…; mg is the selected layer and Aα
βð~rÞ is

the adjacency matrix (rank-2 tensor). Moreover, aiming at
having more compact and clear equations, we define the
all-one tensors uα ∈ Rn and Uβ~δ ∈ Rn×m. Here, we restrict
our analysis to multilayer networks with a diagonal
coupling [27]. In other words, each node can have at most
one counterpart on the other layers. In addition, for
simplicity, we focus on unweighted and undirected con-
nected networks, in which there is a path from each node to
all other nodes. For complementary information about the
tensorial representation, its projections, and the generali-
zation of the eigenvalue problem, see Appendix A.

B. Susceptible-infected-susceptible model

Despite its simplicity, the SIS and SIR models capture
the main features of disease spreading [1]. In this section,
we focus on the first-order approximation of the SIS model.
Additionally, we present some aspects of the SIS exact
formulation in Appendix B 1 and a brief analysis of the SIR
model in Appendix C.
We model the SIS disease dynamics associating a

Poisson process with each of the elementary dynamical
transitions: intralayer and interlayer spreading and the
recovery from the infected state. The first two processes
are associated with the edges of the graph and are
characterized by the parameters λ and η, respectively.
The latter transition is modeled in the node, also via a
Poisson process with parameter μ. Using the tensorial
notation defined above, the equations describing the system
dynamics read

dXβ~δ

dt
¼ −μXβ~δ þ ð1 − Xβ~δÞλRα~γ

β~δ
ðλ; ηÞXα~γ; ð3Þ

where the supra-contact tensor is defined as

Rα~γ

β~δ
ðλ; ηÞ ¼ Mα~η

β ~σE
~σ
~ηð~γ ~δÞδ~γ~δ þ

η

λ
Mα~η

β ~σE
~σ
~ηð~γ ~δÞðU ~γ

~δ
− δ~γ~δÞ; ð4Þ

which encodes the contacts. It has a similar role as the
matrix R in Ref. [28]. Notice that we have implicitly
assumed that the random variables Xβ~δ are independent.
Formally, if the state variable (Bernoulli random variable)
Sβ~δ is such that Sβ~δ ¼ 1 when the node β on layer ~δ is a
spreader and Sβ~δ ¼ 0 otherwise, then P½Sβ~δ ¼ 1� ¼ Xβ~δ.
In this way, the independence of random variables implies
that P½Sβ~δ ¼ 1;Sα~γ ¼ 1� ¼P½Sβ~δ ¼ 1�P½Sα~γ ¼ 1� ¼Xβ~δXα~γ .
Cator and Van Mieghem [33] proved rigorously that
the states of any two nodes in the SIS model are non-
negatively correlated for all finite graphs. This result can be
easily extended to our case since we are considering
constant rates and Markovian processes. Because of the
positive contribution of the infected nodes, we have
P½Sβ~δ ¼ 1jSα~γ ¼ 1� ≥ P½Sβ~δ ¼ 1�, implying that the model
is always overestimated. A similar conclusion was also
obtained in Ref. [13] for the monolayer case.
Naturally, the order parameter, also called the macrostate

variable, is defined as the average of the individual
probabilities, formally given by

ρ ¼ 1

nm
Xβ~δU

β~δ: ð5Þ

Note that the steady state is not an absorbing state in the
Markov sense since there is a set of possible states where
the system remains trapped and there is a stochastic
variation over time. In addition, note that there are many
different configurations for which the fraction of infected
nodes is the same. More formally, there is a set of states
above the threshold, which have finite probability larger
than zero, configuring a metastate. The only absorbing state
of this set of equations is thus the disease-free state since
when it is reached, the (micro and macro) dynamics stops.
Furthermore, one of the most important concepts of

disease-spreading processes is the epidemic threshold:
Before the threshold, the system is in a disease-free state.
On the other hand, when increasing the spreading rate, it
drives the population to an endemic state. In other words,
there is a nonzero probability that the disease remains in the
population, configuring the metastate described above.
Analogously to the results for monolayer systems, we have
a critical point given as�

μ

λ

�
c
¼ Λ1; ð6Þ

where Λ1 is the largest eigenvalue of R. The complete
derivation of the critical point is presented in Appendix B 2.
Observe that the eigenstructure of the tensor R is the same
as for the matrix R in Ref. [28] since it can be understood as
a flattened version of the tensor Rα~γ

β~δ
ðλ; ηÞ. As argued in

Ref. [29], the supra-adjacency matrix corresponds to a
unique unfolding of the fourth-order tensor R yielding

DISEASE LOCALIZATION IN MULTILAYER NETWORKS PHYS. REV. X 7, 011014 (2017)

011014-3



square matrices. Moreover, if ηMξ~γ

ν~δ
Eν
ξðββÞ ≪ λMα~ξ

β~γE
~γ
~ξ
ð~δ ~δÞ,

the critical point is dominated by the individual-layer
behavior and the epidemic threshold is approximated to
that of a SIS model on monolayers, when considering the
union of m disjoint networks. Consequently, the epidemic
threshold is determined by the largest eigenvalue, consid-
ering all layers. The same conclusion was reached in
Ref. [28] using perturbation theory on the supra-contact
matrix.
Finally, the nodal probability on the steady state can be

bounded by

1 −
1

1þ dβ~δ
dmin ½ðλμÞdmin − 1�

≤ X∞
β~δ

≤ 1 −
1

ðλμÞdβ~δ þ 1
; ð7Þ

where X∞
β~δ

denotes the probability that node β in layer ~δ is

in the steady-state regime, dβ~δ ¼ Rα~γ

β~δ
ðλ; ηÞUα~γ [also

defined in (B9)] and dmin ¼ minfdβ~δg. The derivations
of such bounds are shown in detail in Appendix B 3.
Interestingly, observe that the higher dmin, the closer the
lower and upper bounds. In the extreme case ðλ=μÞ → ∞,
the bounds approach each other and all nodes tend to be
infected. Phenomenologically, the latter parameter configu-
ration models the limiting case of a SI-like scenario, where
μ ¼ 0. In such a dynamical process, all individuals are
infected in the steady state.

III. SPECTRAL ANALYSIS OF Rðλ; ηÞ
As observed in the previous section, the supra-adjacency

tensor Rðλ; ηÞ plays a major role in the epidemic
process. Consequently, a deeper analysis of the spectral
properties of such objects can give us further insights about
the whole process. First of all, the generalization of the
eigenvector problem to the eigentensor is described in
Appendix A 2, allowing us to use some well-established
linear algebra tools. Additionally, in this section, we
generalize the spectral results of interlacing, obtained in
Refs. [30,34], to the tensorial description adopted here.
We also make use of the inverse participation ratio ½IPRðΛÞ�
as a measurement of eigenvalue localization [31]. As a
convention, we assume that the eigenvalues are ordered as
Λ1 ≥ Λ2 ≥ …Λnm and the individual-layer eigenvalues
are denoted as Λl

i.

A. Interlacing properties

Invoking the unique mapping presented in Appendix A 2
and considering the results of Refs. [30,34], we can use the
interlacing properties to relate the spectra of the multilayer
network with the spectra of the network of layers. First, we
define the normalized network of layers in terms of the
supra-contact tensor as

Φ~γ
~δ
ðλ; ηÞ ¼ 1

n
Rα~γ

β~δ
ðλ; ηÞUβ

α; ð8Þ

where we are implicitly assuming a multilayer network in
which the layers have the same number of nodes and a
dependency on the spreading rates (the demonstration that
such a tensor is an unfolding of the matrix exposed in
Ref. [30] is shown in Appendix A 3). Additionally, let us
denote by μ1 ≥ μ2 ≥ … ≥ μm the ordered eigenvalues of
Φ~γ

~δ
ðλ; ηÞ. Following Ref. [30], the interlacing properties

imply

Λnm−mþj ≤ μj ≤ Λj; ð9Þ
for j ¼ m;…; 1. As examples, Table I shows the spectrum
of three simple networks of layers that can be computed
analytically: a line with two and three nodes and a triangle.
Figure 1 shows a schematic illustration of those three
multilayer networks.
Furthermore, using similar arguments, we can also

obtain results for the normalized projection, formally
given as

Pα
β ¼

1

m
Rα~γ

β~δ
ðλ; ηÞU ~δ

~γ ; ð10Þ

whose ordered eigenvalues, denoted by ν1 ≥ ν2 ≥ … ≥ νm,
also interlace with the supra-contact tensor satisfying

Λnm−nþj ≤ νj ≤ Λj; ð11Þ
for j ¼ n;…; 1. Finally, the adjacency tensor of an
extracted layer also interlaces, yielding

Λnm−nþj ≤ Λl
j ≤ Λj; ð12Þ

for j ¼ n;…; 1. These results show that the eigenvalue of
the multilayer adjacency tensor is always larger than or
equal to all of the eigenvalues of the individual isolated
layers, as well as the network of layers.
The interlacing properties presented here imply some

constraints on the epidemic threshold. As in Ref. [30], let
ΛiðMÞ be the ith eigenvalue of the tensor M and consider
that the set of eigenvalues is ordered as before. Moreover,
for simplicity, we suppress the argument when referring to
the supra-contact matrix. First, assuming a fixed ratio of
spreading rates, we observe that the eigenvalue of the
multilayer follows,�

λ

μ

�
~r

c
¼ 1

Λ1ðAα
βð~rÞÞ

≥
1

Λ1

; ∀ ~r ∈ 1; 2;…; m; ð13Þ

where ðλ=μÞ~rc is the critical point for the single layer ~r and�
λ

μ

�
Φ

c
¼ 1

Λ1ðΦ~γ
~δ
Þ ≥

1

Λ1

; ð14Þ
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where ðλ=μÞΦc denotes the critical point of the network of
layers. Finally, considering the projection, we get�

λ

μ

�
P

c
¼ 1

Λ1ðPα
βÞ

≥
1

Λ1

; ð15Þ

where ðλ=μÞPc is the critical point of the normalized
projection. Thus, the spreading process on the whole
system is at least as efficient as it is on the layers and
on the network of layers. Note that efficiency is understood
here in terms of the position of the critical point and not
regarding the fraction of infected individuals in the
steady state.

B. Localization and spreading of diseases

Next, we investigate the behavior of the system near the
phase transition and whether the phenomenon of disease

localization shows up. These two issues were explored for
monoplex networks in Refs. [10] and [31], respectively, but
have not been addressed for the case of multilayer systems.
The nodal probabilities can be written as a linear combi-
nation of the eigenbasis of R as

Xβ~δ ¼
X
Λ

cðΛÞfβ~δðΛÞ; ð16Þ

where cðΛÞ are the projections of Xβ~δ on the eigentensors f.
Similarly to Ref. [31], substituting such an expression in
the middle term of Eq. (B7), we obtain

cðΛÞ ¼
X
α~γ

λ
P

Λ0cðΛ0ÞΛ0fα~γðΛ0Þfα~γðΛÞ
λ
P

Λ0cðΛ0ÞΛ0fα~γðΛ0Þ þ μ
: ð17Þ

Considering only the contributions of the first eigen-
value and eigentensor, for λ ≥ λc, the first-order

(a) (b) (c)

(a)

(b)

(c)

FIG. 1. Schematic illustration of the three multilayer network cases considered as examples. The left panels represent the original
networks, which give rise to three distinct configurations for the networks of layers (right panels). See the text for more details.

TABLE I. Structure and spectra of the normalized network of layers Φ~γ
~δ
ðλ; ηÞ. The eigenvalues assumes that the

average degree of each layer, hkli, is the same, i.e., hkli ¼ hki, ∀ l.

Network Φ~γ
~δ
ðλ; ηÞ Eigenvalues

Line with two nodes
� hkl¼1i η=λ

η=λ hkl¼2i
� hki − ðη=λÞ hki þ ðη=λÞ

Line with three nodes " hkl¼1i η=λ 0

η=λ hkl¼2i η=λ
0 η=λ hkl¼3i

# hki hki − ffiffiffi
2

p ðη=λÞ hki þ ffiffiffi
2

p ðη=λÞ

Multiplex " hkl¼1i η=λ η=λ
η=λ hkl¼2i η=λ
η=λ η=λ hkl¼3i

# hki − ðη=λÞ hki − ðη=λÞ hki þ 2ðη=λÞ
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approximation of the macrostate parameter is ρ ≈ α1τ,
where τ ¼ ½ðλ=μÞ=Λ1 − 1�, which yields

α1 ¼
fβ~δðΛ1ÞUβ~δ

nm½fβ~δðΛ1Þ�3Uβ~δ
: ð18Þ

Such an expression is exact if there is a gap between the
first two eigenvalues [10,31]. Furthermore, considering two
eigentensors, we have ρ ≈ α1τ þ α2τ

2. In addition, follow-
ing a similar approach as in Ref. [31], we can use the
inverse participation ratio:

IPRðΛÞ≡ ðfβ~δðΛÞÞ4Uβ~δ: ð19Þ

In the limit of nm → ∞, if the IPRðΛÞ is of orderOð1Þ, the
eigentensor is localized and the components of fβ~δðΛÞ are
of order Oð1Þ only for a few nodes. On the other hand, if
IPRðΛÞ → 0, then this state is delocalized and the compo-
nents of fβ~δðΛÞ ∼Oð1= ffiffiffiffiffiffiffi

nm
p Þ. Additionally, another pos-

sible scenario, completely different from the traditional
single-layer one, is possible if we consider layerwise
localization, i.e., localization on layers instead of on a
fraction of nodes. In such a case, the IPR(Λ) will be of order
Oð1=nÞ in the localized phase, whereas it will be of order
Oð1=nmÞ in the delocalized phase. This is because, in the
layerwise localized phase, the components of the eigen-
tensor are of order Oð1= ffiffiffi

n
p Þ for all the nodes in the

dominant layer and of order zero for nodes in other layers.
Thus, one easily realizes that the correct finite-size scaling
to take in order to characterize such a transition is m → ∞;
i.e., the number of layers goes to infinity while the number
of nodes per layer remains constant. In fact, in this limit,
IPR(Λ) will vanish on one side of the transition point while
remaining finite on the other side. In this way, we can also
observe localized states in the case in which there is no
possibility for localization in each of the layers if they were
isolated.

IV. MONTE CARLO SIMULATIONS

We next compare the analytical results with Monte Carlo
simulations of the spreading process. The method proposed
in Refs. [11,35] is adapted here to the case of multilayer
networks. At each time step, the time is incremented by
Δt ¼ ½1=ðμNi þ λNk þ ηNmÞ�, where Ni is the number of
infected nodes, and Nk and Nm are the number of intralayer
and interlayer edges emanating from them, respectively.
With probability μNi=ðμNi þ λNk þ ηNmÞ, one randomly
chosen infected individual becomes susceptible. On the
other hand, with probability λNk=ðμNi þ λNk þ ηNmÞ, one
infected individual, chosen with a probability proportional
to its intralayer degree, spreads the disease to an incident
edge chosen uniformly at random. Finally, with probability
ηNm=ðμNi þ λNk þ ηNmÞ, one infected individual, chosen

with a probability proportional to its interlayer degree,
propagates the disease to an edge chosen uniformly. If an
edge between two infected individuals is selected during
the spreading, nothing happens; only time is incremented.
The process is iterated following this set of rules, simulat-
ing the continuous process described by the SIS scenario.
The quasistationary state (QS) method [11,35] restricts

the dynamics to nonabsorbing states. Every time the
process tries to visit an absorbing state, it is substituted
by an active configuration previously visited and is stored
on a list with M configurations, constantly updated. With a
probability pr, a random configuration on such a list is
replaced by the actual configuration. In order to extract
meaningful statistics from the quasistatic distribution,
denoted by P̄ðnIÞ, where nI is the number of infected
individuals, the system must be on the stationary state and a
large number of samples must be extracted. In this way, we
let the simulations run during a relaxation time tr and
extract the distribution P̄ðnIÞ during a sampling time ta.
The threshold can be estimated using the modified sus-
ceptibility [11], given by

χ ¼ hðnIÞ2i − hnIi2
hnIi ¼ nm

�hðρQSÞ2i − hρQSi2
hρQSi

�
; ð20Þ

where ρQS is the quasistationary distribution P̄ðnIÞ. As
argued in Refs. [11,35], the susceptibility presents a peak at
the phase transition on finite systems. Such a measure is the
coefficient of variation of the temporal distribution of states
over time on the steady state. Note that the magnitude of the
susceptibility χ is not of primary interest to us, but rather
the position of its maximum value with respect to λ=μ is of
interest since it will coincide with the critical threshold for
sufficiently large systems.
In addition, after obtaining the curves of χ × λ by the QS

method, we also apply a moving average filter in order to
get rid of the noise. Such an approach improves the visual
quality of the plots and does not interfere with the results
since the order of magnitude of the noise is smaller than
those of the peaks corresponding to the transition points.
The parameters used in the QS method are pr ¼ 0.01, ta

varies from 105 to 106, and tr varies from 105 to 3 × 106 in
order to obtain a smoother curve. The QS method demands
a large sample size since it is estimating the variance of a
distribution. Moreover, we construct the χ × λ curves in
steps of Δλ ¼ 10−3, and the moving average window has
five points.

V. TWO-LAYER MULTIPLEX SYSTEMS

In this section, we numerically study two-layer multiplex
systems. First, we focus on the phase diagram of the
spreading process as a function of the interlayer and
intralayer spreading rates for both SIS and SIR scenarios.
Next, we analyze the spectral properties of such systems,
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comparing with results of Sec. III. Finally, we perform
Monte Carlo simulations that show the existence of
multiple susceptibility peaks on multiplex networks. The
latter results are analyzed in terms of the spectral properties
of Rðλ; ηÞ.

A. Numerical solution

Results shown in this section are the numerical solutions
of the ODE systems (3) (SIS) and (C1) (SIR) using a
Runge-Kutta (4,5) algorithm [36]. We consider a two-layer
multiplex network (m ¼ 2), where each layer has n ¼ 104

nodes. In order to build a multiplex network where the
epidemic thresholds associated with the individual layers
are well separated, we must guarantee that Λl

1 ≫ Λl
2.

Therefore, we chose the degree distribution of the first
layer to be PðkÞ ∼ k−2.5, whereas that of the second layer is
PðkÞ ∼ k−4.5. Both layers are created using the uncorrelated
configuration model [37]. Moreover, we consider a multi-
layer network in which every node has its counterpart on
the other layer. This pairing of nodes of different layers is
made randomly. Each result is the solution considering one
single (and fixed) multiplex network.
Figure 2 shows the phase diagramconsidering the average

fraction of spreaders for the SIS dynamics (or recovered for
the SIR dynamics) as themacrostate variable as a function of
the spreading parameters λ and η for a given recovering rate
μ ¼ 1. The dashedwhite line denotes the epidemic threshold
obtained from Eq. (6). In panel (a), we show the SIS
scenario, while panel (b) corresponds to the SIR model.
In both cases, it is possible to observe two changes in the
system’s behavior. The first change is in the epidemic
threshold, while the second is near the epidemic threshold
of the second layer. In addition, we note the agreement
between the theoretical epidemic thresholds and the numeri-
cal results. Furthermore, the higher η, the lower the epidemic
threshold, which is a consequence of the eigentensor
problem. Also note that ρ increases for a fixed λ as η
increases, even for λ ∼ 0, which means that in such extreme
cases, the disease spreads mainly in the interlayer edges.
Figure 3 shows the phase diagram for μ ¼ 1 and different

values of the parameter η for the SIS dynamics. For η ¼ 0,
we have no interlayer spreading, while for η ¼ 0.5, we have
a fixed spreading rate, independent of the intralayer rates. In
addition, we also evaluated cases where the ratio η=λ is
constant. In Fig. 3(a), we show the global behavior of the
system, which is an average of the individual behavior of the
layers, represented in panels (b) and (c), since both layers
have the same number of nodes. Furthermore, we also
observe that the two individual networks show different
behaviors near the epidemic threshold [10]. The first layer
[Fig. 3(b)] has a lower epidemic threshold than the second.
However, ρ grows (as a function of λ) slower in the first layer
than in the second. This feature can be observed clearly in
Figs. 3(b) and 3(c), where we show results for η ¼ 0, that is,
when there is no spreading between the layers.

Considering the discrete system, Cozzo et al. [28]
verified the shifting in the dominated layer (the largest
amongst all individual eigenvalues) as the ratio η=λ
increases. Here, we observe the same effect, as can be
seen in Fig. 3(c). Additionally, we can also note another
global change approximately beyond λ > ðΛl

2Þ−1. Our
findings suggest the possibility of multiple phase transi-
tions due to the multiplex structure of the network.
It is noteworthy that, in spite of the similarities between
our continuous model and the discrete model [28], both
represent slightly different processes. In the continuous
case, two events cannot happen at the same time. On the
other hand, in the discrete model, every node contacts its
neighbors in one discrete time step. Despite these
differences, the results show that both the continuous
and discrete formulations are phenomenologically
similar.

FIG. 2. Phase diagrams over a two-layer multiplex system,
where each layer is a scale-free network with n ¼ 104 nodes, for
a fixed value of μ ¼ 1. (a) Density of spreaders as a function
of the parameters η and λ. (b) Density of recovered individuals
as a function of the parameters η and λ. Colors represent the
fraction of spreaders, and the white line is the threshold calculated
using Eq. (6).
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B. Spectral analysis

Since the epidemic process is described through the
supra-adjacency tensor Rðλ; ηÞ, its spectral properties give
us some insights into the whole process, especially the
critical properties of the systems under analysis. In this
section, we focus on the spectral analysis of such a tensor
as a function of the ratio η=λ, considering a two-layer
multiplex network with two different layers; i.e., there is a
distance between the leading eigenvalues of each layer.
Some important aspects of the spectral properties are
discussed in Appendix D, where we present an analytical
approach to the problem of eigenvalue crossings (see
Appendix D 1 a). We focus on two special cases in
increasing order of complexity: (i) the identical case,
presented in Appendix D 1 b, where both layers are exactly
the same (i.e., there is a high correlation between the degree
in each layer), and (ii) the nonidentical case, discussed in
Appendix D 1 c, where both layers have the same degree
distribution but different configurations.
In this section, we focus on the case of two different layer

structures, with spaced leading eigenvalues. We consider a
multiplex network made up of two scale-free networks with
γ ≈ 2.2 and γ ≈ 2.8. Both layers have hki ≈ 8 and n ¼ 103

nodes on each layer, and the leading eigenvalues are
Λ1
1 ¼ 42.64 for the first and Λ2

1 ¼ 21.29 for the second.
Figure 4 shows the spectral properties of the tensor

Rðλ; ηÞ as a function of the ratio η=λ. In contrast to the
identical layers (see Appendix D 1 b) and the case of
statistically equivalent layers (Appendix D 1 c, Figs. 10
and 11), where some eigenvalues increase while others
decrease, all the observed eigenvalues always increase in
this case. Moreover, we do not observe any crossing or
near-crossing behavior. Regarding IPRðΛÞ, the same pat-
tern as for the similar case is found: For small values of η=λ
and considering the first eigenvalue, the system appears
localized in the first layer and delocalized in the second,
while for IPRðΛ2Þ, it is the contrary. For larger values of η

λ,
both layers contribute equally to the IPRðΛÞ. Furthermore,

the main difference we observe for the current setup
with respect to the two similar networks (see Fig. 11 in
Appendix D) is that now no drastic change in the inverse
participation ratio is found, as expected, since there is no
near crossing.
From Fig. 4, we can also extract an important numerical

result regarding perturbation theory. We observed that in
our case, considering a two spaced individual-layer eigen-
values problem, the leading eigenvalue can be approxi-
mated by the largest leading eigenvalue of the individual
layers for ðη=λÞ≲ 1; such an approximation becomes less
accurate as η=λ increases, but it can be acceptable up to
ðη=λÞ≲ 10, within a certain error. Apart from that, note that
both eigenvalues tend to increase, while their difference
tends to decrease.
Furthermore, analyzing the eigenfunction properties,

Fig. 5 shows the contribution of each layer to the IPRðΛÞ,
considering different values of η=λ. Results correspond to a
multiplex network composed of two Erdös-Rényi networks,
bothwithn ¼ 5 × 104—the first layerwith hki ¼ 16 and the
second with hki ¼ 12. Observe that for lower values of η=λ,
the main contribution comes from one layer, configuring a
layerwise localized state and consequently placed on one
axis (the x axis) of Fig. 5. Then,when the ratio η=λ increases,
there is a transition to a delocalized state. This corresponds to
an increase of the inverse participation ratio of the second
layer; however, this increase is at the expense of decreasing
the value of the inverse participation ratio of the first layer.
In other words, in the localized phase, only the entries
of the eigenvector associated with the dominant layer are
effectively populated, while the entries associated with
the other layers are not. In the delocalized phase, all
the entries are equally populated. The inset of the figure
further evidences this transition: It represents the angle θ
between the vector composed of the IPR contributions,
v ¼ ½IPRðΛ1

1Þ; IPRðΛ2
1Þ�T , and the x axis, where a change

from zero to 45 degrees is observed as the ratio η=λ is
increased and the system goes from a localized to a
delocalized state.

FIG. 3. Individual layer behavior over a two-layer multiplex system. Each layer has n ¼ 104 for a fixed value of μ ¼ 1. The results
considering both layers are shown in (a), while the dynamics in the individual layers are shown in (b) [PðkÞ ∼ k−2.5] and
(c) [PðkÞ ∼ k−4.5]. The arrows indicate the leading eigenvalues of the layers.
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C. Multiple susceptibility peaks

Mata and Ferreira showed that it is possible to have
multiple susceptibility peaks on monoplex networks [35].
They studied the behavior of a SIS model on networks with
γ > 3. Here, we show that such phenomena also appear, in
a natural way, in multilayer networks. Motivated by the
findings reported in the previous sections, especially by the
presence of a second change in the slope of ρ as observed in
Figs. 2 and 3, we have performed extensive Monte Carlo
simulations using the QS method, with the aim of deter-
mining, as accurately as possible, the points at which the
transitions take place for a two-layer multiplex network.
Here, we use the multiplex from Sec. V B since the leading

eigenvalues of each layer are spaced. Note that our
numerical simulations are performed in a fixed network
since we follow the quenched formalism.
Figure 6 shows that for low values of the ratio η=λ, both

networks are weakly coupled and the system exhibits two
well-defined susceptibility peaks (vertical dotted lines).
However, as this ratio increases, the peak signaling the

FIG. 4. Spectral properties of the tensorRðλ; ηÞ as a function of
the ratio η=λ for a multiplex with two layers, the first with γ ≈ 2.2
and the second with γ ≈ 2.8. Both have hki ≈ 8. In the top panel,
we present the inverse participation ratio of the two larger
eigenvalues and the individual-layer contributions, while in the
bottom panel, we show the leading eigenvalues. Every curve is
composed of 103 log spaced points, in order to have enough
resolution.

FIG. 5. Diagram of the contribution of each layer to the IPRðΛÞ
for different values of the spreading ratio η=λ. The dashed line
represents the case where both layers have the same contribution,
i.e., a linewith slope one. In the inset, we show the angle θ between
the vector composed of the contributions of each layer to the
IPRðΛÞ, v ¼ ½IPRðΛ1

1Þ; IPRðΛ2
1Þ�T , and the x axis. The multiplex

network used here is composed of two Erdös-Rényi networks,
both with n ¼ 5 × 104—the first layer is hki ¼ 16 [ðΛ1

1Þ−1 ≈
0.0625], while the second is hki ¼ 12 [ðΛ2

1Þ−1 ≈ 0.0833].

FIG. 6. Susceptibility χ as a function of the spreading rate λ for
different ratios of interlayer and intralayer spreading ratings, η=λ,
for a fixed value of μ ¼ 1 over a two-layer multiplex system,
where each layer has n ¼ 103—the first with γ ≈ 2.2 and the
second with γ ≈ 2.8. Both have hki ≈ 8. The simulated values are
ðη=λÞ ¼ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30.
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presence of the second critical point decreases and even-
tually vanishes. In our simulations, we have observed that
up to ðη=λÞ ≈ 1, the second peak, although less defined,
is still present. Beyond the latter point, only one peak
remains. As η=λ further increases, the position of the
critical point remains the same, and the peak is even more
well defined. Interestingly enough, if the ratio η=λ con-
tinues to increase—in our case, beyond ðη=λÞ ≳ 10—the
critical point shifts to the left to values that are even smaller
than the smallest critical point of the individual layers. It is
worth highlighting that a similar qualitative behavior can be
seen in the results shown in Fig. 2(a), where one can also
observe a second change in the slope of ρ near the leading
eigenvalue of the second layer. This change also vanishes as
the intralayer spreading increases.
Since the tensor Rðλ; ηÞ plays a major role in the

spreading process, our spectral results can help one under-
stand the observed critical dynamics. In epidemiological
terms—or, in general, for contagion processes—the locali-
zation of the disease in a certain layer means that most of
the spreading is expected to take place on the nodes of that
layer. Moreover, in addition to the localization in the layers,
one can also have localization effects on specific nodes or
groups of nodes, for instance.
In order to analytically explain this phenomenon, we

evaluate IPRðΛÞ for the two leading eigenvalues, as
this measure indicates the localization of an eigenstate
(see Sec. V B, results shown in Fig. 4). Comparing the
susceptibility and IPRðΛÞ, we observe that IPRðΛ2Þ starts
decaying for ðη=λÞ ≈ 1 and crosses the value 1=

ffiffiffiffiffiffiffi
nm

p
,

at which the associated eigenvector delocalizes, for
ðη=λÞ ≈ 10, comparing well with the point at which the
second peak in the susceptibility decays and finally dis-
appears. Moreover, IPRðΛ1Þ decays from 3≲ ðη=λÞ≲ 10,
which coincides with the range where the remaining
maximum in the susceptibility reaches higher values and
is better defined. More interestingly, note that IPRðΛ1Þ is
mainly composed of the contributions of the first layer
for a lower spreading ratio, suggesting that it is localized on
such layer. Therefore, our results suggest that the IPRðΛÞ
is a proper measure to detect and predict the observed
localization phenomena, and potentially for m localization
transitions, as we will show in Sec. VI.
Regarding the definition of a critical point, it is important

to highlight that the concept of phase transition only applies
in the infinite size limit (the thermodynamic limit).
However, in the literature of complex network dynamics,
especially for epidemic spreading, it is common to use
the terms “critical point” and “phase transition” in finite
systems since we find a behavioral change at that point.
More importantly, for scale-free networks, such a point
vanishes in the thermodynamic limit. Following the usual
convention in the complex network literature, the first
susceptibility peak observed in all the experiments can be
classified as a critical point of the phase transition. At such

a point, the dynamics goes from a disease-free state to an
endemic state. On the other hand, the second susceptibility
peak cannot be classified this way since the process is
already in an endemic state. Although it cannot be
considered as a critical point, we have a transition from
a layerwise localized state to a delocalized state. In other
words, before the second susceptibility peak, most of the
events take place in only one layer (the one with the largest
individual eigenvalue), while after this point, both layers
are active and spread the disease.

D. Second susceptibility peak analysis:
Erdös-Rényi layers

The second peak in the susceptibility curve suggests the
existence of a second-order phase transition. However, from
its existence alone, we cannot conclude this unequivocally
since, although this point is related to the delocalization of the
disease, the system is already in an endemic phase (upper
critical regime, in physics jargon).Observe that if η∈Oð1=nÞ,
in the thermodynamic limit, we would have a phase trans-
ition. However, such a configuration cannot be considered
a multilayer network since both layers are (virtually)
decoupled. Additionally, observe that we only analyzed
layers without correlation. The presence of correlations can
introduce different phenomena for discrete time (some were
briefly explored in Ref. [32]), however, for discrete time.
In order to better understand the second peak of

susceptibility, we analyze a two-layer multiplex network
composed of two Erdös-Rényi networks, in which we
can precisely control the mean degree and consequently
the epidemic threshold by fixing the number of edges.
Furthermore, for scale-free networks with a divergent
second moment of its degree distribution, the epidemic
threshold vanishes in the thermodynamic limit [1]. On the
other hand, Erdös-Rényi networks always have a nonzero
and finite critical point. Aside from that, since the nodes on
such a network are statistically equivalent, the probabilities
Xβ~δ are expected to be approximately the same. Henceforth,
we assume that the first layer has a higher connectivity, that
is, a lower epidemic threshold.
First, analyzing the layers individually for ðλ=μÞ >

ðΛ1
1Þ−1 ≥ Λ−1

1 , the first layer is in its upper critical regime
(endemic state), while the second layer is still in its
subcritical regime (disease-free state). Then, for a coupling
parameter, η > 0, the probability of a node in the second
layer being infected also increases. In fact, for Erdös-Rényi
layers, it will always be larger than zero. Therefore, we can
map this problem onto an ϵ-SIS model [38], where each
node has a probability of experiencing a spontaneous
infection. Note that such a model does not present an
absorbing state. In this mapping, we are interested in the
behavior of the second layer, and we consider that the self-
infection ϵ is determined by the contribution of the first
layer by means of the contacts between nodes in different
layers, which are Poisson processes with parameter η. This
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would imply that we would not have a second-order phase
transition. However, we have a transition from a layerwise
localized system, in which only the first layer is active and
able to sustain the disease for long times, to a delocalized
system, where both layers are active.
In order to explore the time evolution of the system for a

set of parameters near the second susceptibility peak, we
run the continuous simulation 50 times and perform a
moving average filter over a sampling of the original time
series, resulting in 5 × 104 points. This approach gives us
an average curve over time. Note that for continuous
simulations, the number of points can vary from one run
to another. Both networks have n ¼ 5 × 104—the first
with hki ¼ 16 [ðΛ1

1Þ−1 ≈ 0.0625] and the second with
hki ¼ 12 [ðΛ2

1Þ−1 ≈ 0.0833].
Figure 7 shows the time evolution of a disease spreading

in the second layer for different values of λ and η. The
initial conditions for these experiments consider that the
first layer has an initial probability of a node being infected
equal to 0.01, while in the second, every node spreads. Note
that we chose this initial condition for visual purposes since
any initial condition would result in a similar steady-state
regime. In this way, during the transient state, we observe a
decay of the fraction of infected individuals; then, at the
metastate that configures the steady state, we observe a
stochastic variation centered on the average value. In
addition, such fluctuations tend to increase near a “critical
point.” We observe that for ðΛ1

1Þ−1 > ðλ.=μÞ > ðΛ1
2Þ−1 for

η ¼ 10−4, the incidence is very low, of order Oð1=nÞ;
however, it is larger than zero. As we increase the value of
λ, we drive the system to its active state, being able to
sustain the disease and spreading it in the intra-edge
contacts. In addition, by increasing η we are able to
increase the incidence of the disease due to the intra-edge
contacts. Near the critical point of the second layer,
ðλ=μÞ ¼ ðΛ1

2Þ−1 ¼ 0.833, we can observe some features
that are similar to a transition. From below, we observe that

the lower the value of η, the longer it takes for the system to
reach the steady state, similarly to what is expected in phase
transitions. On the other hand, slightly above the critical
point, the time it takes to get to the steady state decreases
and the curves for η ¼ 10−4 and η ¼ 10−3 get closer. This
suggests that the effects of intralayer spreading are the main
source of spreading. Finally, for λ=μ sufficiently large, we
observe the same behavior for all values of η; i.e., all of
them are in an active state.
In addition to the analysis shown in this section, we also

inspected, in detail, the steady state for different system
sizes, showing that the fluctuations do not diverge and that
the final fraction of infected individuals does not go to zero
in the second layer. This analysis suggests that we do not
have a second-order phase transition but that the dynamics
changes from a layerwise localized to a delocalized phase.
In this phenomenological scenario, the transition point
is still of great importance for practical purposes—for
instance, when studying immunization policies. These
complementary results are shown in Appendix D 2.

VI. THREE-LAYER INTERCONNECTED
SYSTEMS: THE BARRIER EFFECT

Following the main ideas of the last sections, we explore
the spreading dynamics in multilayer networks with more
than two layers. Specifically, we have carried out numerical
simulations for a three-layer system. We generate multiplex
networks using three scale-free networks, with γ ≈ 2.3,
γ ≈ 2.6, and γ ≈ 2.9, with hki ≈ 8 and n ¼ 103 nodes on
each layer. Note that we consider three layers with spaced
individual leading eigenvalues in order to investigate
whether multiple susceptibility peaks are a generic phe-
nomenon of multilayer systems. Note that we have two
possible topologies for the network of layers: (i) a line
graph and (ii) a triangle (which is a node-aligned multi-
plex). In its turn, the first can be arranged in three possible
configurations by changing the central layer. In other

(a) (b) (c) (d)

FIG. 7. Time evolution of the fraction of infected nodes in the second layer for μ ¼ 1, different values of η (10−4, 10−3, 10−2, and
10−1), and different values of the spreading rate: (a) λ ¼ 0.078, (b) λ ¼ 0.083, (c) λ ¼ 0.085, and (d) λ ¼ 0.088. The multiplex network
used is composed of two Erdös-Rényi networks, both with n ¼ 5 × 104—the first layer with hki ¼ 16 [ðΛ1

1Þ−1 ≈ 0.0625] and the second
with hki ¼ 12 [ðΛ2

1Þ−1 ≈ 0.0833].
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words, we have four possible systems. In this section, we
focus on two configurations, the multiplex case and the line
ð2.3þ 2.9þ 2.6Þ. Both cases summarize the richness of
dynamical processes in interconnected networks, present-
ing a new phenomenon, the barrier effect of an intermediate
layer. We proceed by analyzing the spectral properties of
this multilayer system in terms of the inverse participation
ratio and the susceptibility. Regarding the other intercon-
nected networks, we present those complementary results
and analyses in Appendix E. Additionally, in Appendix E 1,
we show that increasing η=λ also increases the role
of the interlayer edges relative to the intralayer ones.
Consequently, the structure of the network of layers imposes
itself more strongly on the eigenvalues of the entire inter-
connected structure.

A. Spectral analysis

Figure 8 shows the IPRðΛ1Þ of tensor R. In the main
panel, we present the individual contribution of each layer,
while in the insets, we have the total IPRðΛ1Þ. In the top
panel, we have the line ð2.3þ 2.9þ 2.6Þ, whereas in the
bottom panel, we have the multiplex network. In this
section, we focus on the spectral comparison of two cases:
(i) the lines ð2.3þ 2.6þ 2.9Þ and ð2.3þ 2.9þ 2.6Þ and
(ii) the line ð2.6þ 2.3þ 2.6Þ and the multiplex network.
Additionally, the reader is referred to Appendix E 1,
specifically to Fig. 17 for complementary results.
An interesting phenomenon can be observed by compar-

ing the different configurations of the network of layers.
The largest eigenvalue of the whole system, Λ1, has its
associated eigenvector localized in the dominant layer, that
is, in the layer generated using γ ¼ 2.3. Regarding the line
configuration, depending on the position of that layer in the
whole system—i.e., central or peripheral layer—the con-
tribution of the nondominant layers to the IPRðΛ1Þ varies.
In particular, when the dominant layer corresponds to an
extreme node of the network of layers, the contribution
of the other two layers will be ordered according to the
distance to the dominant one. Consequently, when the
dominant layer is in the center of the network of layers,
the contributions of the nondominant ones are comparable
(see Fig. 17 in Appendix E 1 for complementary results).
Furthermore, for the first eigenvalue, which is usually

enough to analyze the localization as a first-order approxi-
mation, we observe that the layer with the largest eigen-
value dominates the dynamics. In addition, note the
similarities between the multiplex and the line configura-
tion ð2.6þ 2.3þ 2.6Þ (see also Fig. 17, Appendix E 1),
where the nondominant layers behave similarly. This is
because for small values of η=λ, the effect of the extra edge
in the network of layers (closing the triangle) is of order η2;
thus, a similar behavior is observed for the two configu-
rations. As η=λ grows, the symmetry in the node-aligned
multiplex dominates the eigenvector structure, and the
contributions of all layers are comparable. As we show

next, the different contributions of the layers to the total
IPRðΛ1Þ are at the root of the multiple susceptibility peaks
observed.

B. Multiple susceptibility peaks

Figure 9 shows the susceptibility as a function of λ for
different ratios of η=λ. We observe three well-defined peaks
on such curves when the ratio η=λ is small. In addition,
similar to the two-layer case, such peaks tend to become
less defined and vanish as the ratio η=λ increases. The third
peak is less defined than the others because the average

(a)

(b)

FIG. 8. Spectral properties of the tensorRðλ; ηÞ as a function of
the ratio η=λ for a multiplex with two layers with the same degree
distribution (different random realizations of the configuration
model) and connected to its counterpart on the other layer. In the
top panel, we present the IPRðΛÞ of the two larger eigenvalues
and the individual-layer contributions, while in the bottom panel,
we show the leading eigenvalues. Every curve is composed by
103 log spaced points, in order to have enough resolution. In
panel (a), we show the line ð2.3þ 2.9þ 2.6Þ, while panel (b) is
the multiplex case.
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number of infected nodes is larger in this case.
Consequently, the susceptibility tends to be lower since
it measures the variance in relation to the average. Such an
observation suggests that it could be harder to observe
peaks for nondominating layers that have an individual
critical point too far from the dominating layer.
Except for the line ð2.3þ 2.9þ 2.6Þ, all figures are

similar and present similar peaks, implying that the
susceptibility peaks occur approximately at the same point
(for a complementary analysis, see Appendix E 3 and
Fig. 18). On the other hand, the line ð2.3þ 2.9þ 2.6Þ
shows a slightly different behavior for the second peak,
which is found for a larger value of λ than for the other
cases. This result suggests that when the layer with the
largest eigenvalue is located at the center of the line, it can

effectively act as a barrier to the disease. In addition, it is
verified that the extra interedges of the multiplex case do
not lead to radical changes in the transition points. We
remark that the susceptibility does not measure the fraction
of spreaders in the steady state. Thus, despite the similar-
ities of those curves, the phase diagrams for the incidence
of the disease are different.
Coming back towhat is observed for the network of layers

described by the line ð2.3þ 2.9þ 2.6Þ, an interesting
phenomenon arises, namely, the formation of barriers to
the epidemic spreading. Since the middle layer has the
lowest individual eigenvalue among the layers, it creates a
barrier effect “delaying” the second transition.Moreover,we
observe that this transition also vanishes for higher values of
the ratio η=λ, if compared to the other cases. This can be
related to the inverse participation ratio of Λ1, IPRðΛ1Þ,
shown in Fig. 8. Note that, for the line ð2.3þ 2.9þ 2.6Þ, the
contribution of the layer γ ¼ 2.6 is the lowest. As shown in
Sec. VA (and in Ref. [28]), for a two-layer multiplex, the
critical point of the nondominant layer shifts to a lower value
of the spreading rate, which means that the outbreak takes
place before it would have happened if that layer were
isolated. However, here such shifting is compromised by the
fact that the central layer is unable to sustain the epidemic
process, acting effectively as a barrier for disease contagion.
Apart from this new effect, the system behaves qualitatively
similarly to the two-layer scenario.

VII. CONCLUSIONS

In this paper, we have generalized and extended previous
analyses to the case of multilayer networks. To this end, we
have made use of the tensorial representation introduced in
Ref. [29], which allows us to extract upper and lower bounds
for the disease incidence of a SISmodel and the critical points
for both the SIS and the SIR dynamical processes. We have
also validated our analytical insights with extensive numeri-
cal simulations, recovering results like those presented in
Ref. [28] regarding the shifting of the global epidemic
threshold to lower values of the spreading rate and the
role of the so-called dominant layer. Furthermore, we have
observed a transition in the spectra of the supra-contact
tensor, from the spectra resulting from the union of the
individual layers to the spectra of the network of layers. This
behavior implies that other dynamics and more complex
structures can also be significantly affected by the intercon-
nected nature of the system. In addition, we have analytically
characterized the phenomenon of eigenvalue crossing on
the supra-contact tensor for the case of two identical layers.
It is worth noticing that any dynamical process that is
described by the same tensor will be affected by this.
Our main results concern the emergence and vanishing of

multiple susceptibility peaks as a function of the ratio
between the interlayer and intralayer spreading rates and
their relation to the spectral properties of the multilayer,
which also revealed the phenomenon of layerwise disease

(a)

(b)

FIG. 9. Susceptibility χ as a function of λ considering all three-
layer configurations and many different ratios η=λ, which is
represented by the color of the lines. The recovering rate is μ ¼ 1.
The simulated values are ðη=λÞ ¼ 0.05, 0.06, 0.07, 0.08, 0.09,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2, 3, 4, 5, 6, 7, 8, 9,
10, 20. In panel (a), we show the line ð2.3þ 2.9þ 2.6Þ, while
panel (b) is the multiplex case.
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localization and, in particular, its relation to the existence of
crossings or near crossings of eigenvalues. Using the QS
method and Monte Carlo simulations, we have been able to
precisely determine the transition points. We remark that the
first susceptibility peak is a phase transition, from a disease-
free state to an endemic, but layer-localized, state. On the
other hand, the second peak is a transition from a layerwise
localized to a delocalized state, which is not a second-order
phase transition. Additionally, we have proposed an ana-
lytical approach based on the use of the inverse participation
ratio to characterize such transitions as a localization
phenomenon, thus also connecting with Ref. [31].
A detailed exploration of the parameter space showed

that, as the ratio between the interlayer and intralayer
spreading rates increases, the peaks of the susceptibility
measured for the nondominant layers tend to occur at lower
values of λ and vanish as η=λ increases up to a point at
which only one susceptibility peak is observed, which is a
true phase transition. Interestingly enough, our results point
out that such a transition can take place for even lower
values of λ than the inverse of the largest leading eigenvalue
among all individual layers.
Finally, another important finding presented here is the

opposite phenomenon, namely, the barrier effect, which
happens when the susceptibility peak takes place at a larger
value of λ than that expected as a consequence of the
multiplex topology. Specifically, if the layers are arranged in
such a way that the one with the smallest leading eigenvalue
is at the center of the network of layers [for instance, as it
happens for the line ð2.3þ 2.9þ 2.6Þ configuration], then
the corresponding transition could be delayed because
of the barrier effect. Summarizing, our results emphasize
the importance of studying multilayer systems as they are
and not only as a collection of individual layers.
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APPENDIX A: TENSORIAL REPRESENTATION

In this appendix, we extend some important concepts of
the tensorial representation. In the first subsection, we
present the projections, while in the second subsection, we

show the equivalence of the eigentensorial problem and the
eigenvector problem of the supra-adjacency matrix. Finally,
in the last subsection, we prove the relation between the
tensorial projection and the matrix representation, which is
fundamental to the interlacing results.

1. Tensorial projections

For the sake of completeness, we present other projec-
tions of multilayer networks, which are especially conven-
ient in tensorial notation because of its compactness.
Besides the adjacency tensor presented in the main text,
the network of layers [30] also characterizes the topology
of the system. In this reduced network representation, each
node represents one layer, and the edges between them
codify the number of edges connecting those two layers.
Formally, we have

Ψ~γ
~δ
¼ Mα~γ

β~δ
Uβ

α; ðA1Þ

where Ψ~γ
~δ
∈ Rm×m. Note that such a network presents self-

loops, which are weighted by the number of edges in the
layer. Additionally, since we assume that the layers have the
same number of nodes, the edges of the network of layers
have weights equal to the number of nodes n.
Another important reduction of the multilayer network is

the so-called projection [29]. Such a network aggregates all
the information into one layer, including self-loops that
stand for the number of layers in which a node appears.
Mathematically, we have

Pα
β ¼ Mα~δ

β~γU
~γ
~δ
; ðA2Þ

where Pα
β ∈ Rn×n.

2. Eigenvalue problem

As presented in the main text, the epidemic threshold is
closely related to the leading eigenvalues of the supra-
contact tensor. Here, we describe the eigenvalue problem
considering the tensorial representation. Such an eigen-
value problem can be generalized to the case of a rank-4
tensor, leading to

Rα~γ

β~δ
fα~γðΛÞ ¼ Λfβ~δðΛÞ; ðA3Þ

where Λ is an eigenvalue and fβ~δðΛÞ is the corresponding
eigentensor. In addition, we are assuming that the eigen-
tensors form an orthonormal basis. Importantly, the supra-
contact matrix R in Ref. [28] can be understood as a
flattened version of the tensor Rα~γ

β~δ
ðλ; ηÞ. Consequently, all

the results for R also apply to the tensor R. As argued in
Ref. [29], that supra-adjacency matrix corresponds to
unique unfolding of the fourth-order tensor m, yielding
square matrices. Following this unique mapping, we have
the correspondence of the eigensystems. Here, we consider
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that the eigenvalues are ordered as Λ1 ≥ Λ2 ≥ …Λnm and
denote the individual-layer eigenvalues as Λl

i.

3. Proof of Eq. (8)

Consider the supra-matrix representation of a multilayer
network, given by

A ¼ ⊕α Aα þ C ¼

2
666664

A1 C12 � � � C1m

C21 A2 � � � C2m

..

. ..
. . .

. ..
.

Cm1 Cm2 � � � Am

3
777775; ðA4Þ

where A ∈ Rnm×nm, Aα ∈ Rn×n is the adjacency matrix of
the layer α ∈ f1; 2;…mg, andC is a coupling matrix. Since
we assume a multilayer network in which the layers have
the same number of nodes, we have Cij ¼ I. We assume a
partition of such a network, represented by S ∈ Rnm×m,
which is the characteristic matrix of such a partition, where
Sij ¼ 1 if i ∈ Vj and zero otherwise, where Vj is the
network-of-layers partition.
In order to use the results of Refs. [30,34], we have to

prove that the network-of-layers matrix R̄ [30,34] is an
unfolding of our tensor Φ~γ

~δ
ðλ; ηÞ, formally given by

R̄ ¼ Γ−1STAS; ðA5Þ

where Γ is a diagonal matrix with normalizing constants
(for more details, see Refs. [30,34]). In other words, the
product AS is a summation over the blocks of the matrix A,
resulting in a matrix with the degree of each node. The
subsequent left product with ST imposes another summa-
tion, whose result is a matrix composed of the sum of all
elements of the blocks. Finally, the product of Γ−1 normal-
izes the result by 1

n. Formally, we have

AS ¼

2
666664
k11 k12 � � � k1m

k21 k22 � � � k2m

..

. ..
. . .

. ..
.

km1 km2 � � � kmm

3
777775; ðA6Þ

where kij ∈ Rn×1 is a vector with the number of edges
emanating from each node in layer i to layer j and
AS ∈ Rnm×m. Then,

STAS ¼

2
666664

P
k11

P
k12 � � � P

k1mP
k21

P
k22 � � � P

k2m

..

. ..
. . .

. ..
.

P
km1

P
km2 � � � P

kmm

3
777775; ðA7Þ

where
P

kij ∈ R are scalars with the number of edges that
connect a node in layer i to a node in layer j. Finally, the
product of Γ−1 introduces the average degree instead of the
summation, producing the same results as Eq. (8).

APPENDIX B: SIS MODEL ANALYSIS

In this section, we present an extension of the analysis
presented in the main text regarding the SIS model. In the
first subsection, we present comments on the exact model
definition and its relation with the first-order approxima-
tion. Next, we present a derivation of the critical point for
the first-order approximation, and finally, we present the
derivation of the lower and upper bounds for such a model.

1. Model definition: Complementary comments

In probability theory and stochastic processes, it is
common to define random variables with capital letters.
However, this is the same notation usually used for tensors.
In order to avoid confusion, we use bold capital letters for
random variables. For instance, we define the Bernoulli
random variable that defines the state of a node as Sβ~δ,

where it assumes one of two values—zero if the node β~δ
is susceptible or one if it is infected. By definition,
Xβ~δ ¼ hSβ~δi, where h·i is the expectation operator and

Xβ~δ is the probability of the node β~δ being infected.
In this way, without any assumption on the independence

of random variables, the exact equation can be written as

dhSβ~δi
dt

¼ h−μSβ~δ þ ð1 − Sβ~δÞλRα~γ

β~δ
ðλ; ηÞSα~γi; ðB1Þ

where the supra-contact tensor is defined in Eq. (4). This
equation can be interpreted as an exact version of the
epidemic process [13]. However, without any approxima-
tion, the solution of such a problem involves Oð2nmÞ
equations since we have to write the expressions for the
expectation for all the products. The first-order approxima-
tion consists of hSβ~δSα~γi ≈ hSβ~δihSα~γi ¼ Xβ~δXα~γ . Such an
approximation is shown inEq. (3). Interestingly, observe that
Eq. (B1) can bewritten in terms of the covariance, defined as
Cov½Sβ~δ; Sα~γ� ¼ hSβ~δSα~γi − hSβ~δihSα~γi. Consequently, iso-
lating the probability of the product and substituting it in
Eq. (B1), we find, by inspection, that the error is given by
Cov½Sβ~δ; Sα~γ�, which is assumed to be zero. In Ref. [39], the
authors observed this relation and proposed an accuracy
criteria for monoplex networks.

2. Epidemic threshold

An important concept for dynamical systems that present
an absorbing state and an active phase is the critical point.
Considering the SIS process, below this point, the system is
inactive and the disease tends to disappear. On the other
hand, above this point, we have the active phase, where the
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disease is present in a fraction of the population. Assuming
μ > 0 and that the dynamics has reached the steady state,
½dXβ~δ=ðdtÞ� ¼ 0, we can write Eq. (3) as

X∞
β~δ

1 − X∞
β~δ

¼
�
λ

μ

�
Rα~γ

β~δ
X∞
α~γ: ðB2Þ

Expanding the left-hand term following the geometrical
series, where ½X∞

β~δ
=ð1 − X∞

β~δ
Þ� ¼ P∞

k¼1 ðX∞
β~δ
Þk for X∞

β~δ
< 1,

we obtain

�
μ

λ

�X∞
k¼1

ðX∞
β~δ
Þk ¼ Rα~γ

β~δ
ðλ; ηÞX∞

α~γ: ðB3Þ

In addition, similarly to Ref. [13], suppose X∞
β~δ

¼ ϵfβ~δ,

where ϵ is an arbitrary small constant and fβ~δ ≥ 0.
Substituting in Eq. (B3) and dividing by ϵ, we have

Rα~γ

β~δ
ðλ; ηÞfα~γ ¼

�
μ

λ

�
fβ~δ þ ϵ

�
μ

λ

�
ðfβ~δÞ2 þOðϵ2Þ: ðB4Þ

Considering a sufficiently small ϵ > 0, this expression
reduces to the eigentensor equation

Rα~γ

β~δ
ðλ; ηÞfα~γ ¼

�
μ

λ

�
fβ~δ; ðB5Þ

leading to the critical point�
μ

λ

�
c
¼ Λ1; ðB6Þ

where Λ1 is the largest eigenvalue of R, which is the same
as the largest eigenvalue of R in Ref. [28].

3. Upper and lower bounds for the steady state

In order to obtain some bounds for the epidemic
incidence, consider the steady state, where ½dXβ~δ=ðdtÞ� ¼
0. For a monolayer system, those bounds were calculated
in Ref. [13]. We consider a multilayer network without
self-loops and denote the steady state of each node
as X∞

β~δ
. Then, imposing ½dXβ~δ=ðdtÞ� ¼ 0 in Eq. (3), we

have

X∞
β~δ

¼
λRα~γ

β~δ
ðλ; ηÞX∞

α~γ

λRα~γ

β~δ
ðλ; ηÞX∞

α~γ þ μ
¼ 1 −

1

λ
μR

α~γ

β~δ
ðλ; ηÞX∞

α~γ þ 1
:

ðB7Þ
The value of X∞

β~δ
is then obtained by iterating the above

equation from an initial value, until convergence. Upper
and lower bounds can be obtained by considering only the
first iteration of Eq. (B7). For the upper bound, we have

X∞
β~δ

≤ 1 −
1

ðλμÞdβ~δ þ 1
; ðB8Þ

where

dβ~δ ¼ Rα~γ

β~δ
ðλ; ηÞUα~γ

¼ Mα~ξ
β~γE

~γ
~ξ
ð~δ ~δÞuα þ

η

λ
Mξ~γ

ν~δ
Eν
ξðββÞu~γ: ðB9Þ

Noticeably, there are two different contributions to the
upper bound coming from intralayer and interlayer con-
nectivity. Both of them tend to increase the probability of a
node being infected. Furthermore, the higher the degree,
the higher this upper bound. On the other hand, for the
lower bound, let us denote MinfX∞

β~δ
g ¼ Xmin. Then,

substituting Xmin in Eq. (B7), we have

Xmin ≥ 1 −
1

λ
μR

α~γ

β~δ
ðλ; ηÞUα~γXmin þ 1

: ðB10Þ

Denoting Minfdβ~δg ¼ dmin, we obtain

Xmin ≥ 1 −
1

ðλμÞdmin ; ðB11Þ

which can be inserted into Eq. (B7) to give

X∞
β~δ

≥ Xmin ≥ 1 −
1

1þ dβ~δ
dmin ½ðλμÞdmin − 1�

: ðB12Þ

Finally, combining Eqs. (B8) and (B12), the bounds of
Eq. (3) are

1 −
1

1þ dβ~δ
dmin ½ðλμÞdmin − 1�

≤ X∞
β~δ

≤ 1 −
1

ðλμÞdβ~δ þ 1
: ðB13Þ

APPENDIX C: SIR MODEL

Aside from the SIS epidemic model, we can also
consider the SIR model. In contract with the SIS model,
which has just one absorbing state (inactive), the SIR model
has many absorbing states. In fact, considering an infinite
population, we have an infinite number of absorbing states.

1. Model definition

We introduce the recovered and susceptible states, here
denoted by Yβ~δ and Zβ~δ, respectively. Then, using a similar
notation as in the latter section and associating Poisson
processes to nodes and edges, we have the dynamical set of
equations
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dXβ~δ

dt
¼ −μXβ~δ þ Zβ~δλR

α~γ

β~δ
ðλ; ηÞXα~γ;

dYβ~δ

dt
¼ μXβ~δ;

dZβ~δ

dt
¼ −Zβ~δλR

α~γ

β~δ
ðλ; ηÞXα~γ: ðC1Þ

Note that the Poisson process on the nodes correspond to
the recovering mechanism, whereas on the edges they
correspond to the spreading.

2. Epidemic threshold

Since there is no dynamic steady state in the SIR model,
the epidemic threshold has a different interpretation from
that of the SIS model. Above the threshold, the total
number of recovered individuals reaches a finite fraction
of the population, when the dynamics starts with a small
fraction of infected individuals. Formally, the initial
conditions are as follows: Xβ~δð0Þ ¼ ðc=nmÞ, Yβ~δð0Þ ¼ 0,
and Zβ~δð0Þ ¼ 1 − ðc=nmÞ, where c is a small constant,
c ≪ nm. Neglecting higher-order terms, we have

dXβ~δ

dt
¼ −μXβ~δ þ λRα~γ

β~δ
ðλ; ηÞXα~γ: ðC2Þ

After a proper factorization,

dXβ~δ

dt
¼ λ

�
Rα~γ

β~δ
ðλ; ηÞ − μ

λ
δα~γ
β~δ

�
Xα~γ; ðC3Þ

where δα~γ
β~δ

is a tensor analogous to the identity matrix,

whose elements are 1 if the indices are the same. The
epidemic threshold is as in Eq. (6), which is the critical
value for both SIR and SIS dynamics.

APPENDIX D: TWO-LAYER
MULTIPLEX SYSTEMS

In this section, we present some complementary analyses
for the two-layer multiplex case. Here, we focus on some
spectral aspects of such systems, mainly on the eigenvalue
crossing and near-crossing phenomenon, presented in the
first subsection, and additionally on the second suscep-
tibility peak using a finite-size analysis. These results are
presented in the second subsection and are complementary
to Sec. V D in the main text.

1. Spectral aspects

In this section, we focus on the spectral analysis of the
tensorRðλ; ηÞ as a function of the ratio η=λ. First, we present
an analytical approach to the problemof eigenvaluecrossings;
then, we focus on three special cases in increasing order of
complexity. First is the identical case, where both layers are

exactly the same. Thus, there is a high correlation between the
degree in each layer, presented in b. Next we focus on the
nonidentical case, where both layers present the same degree
distribution, but different configurations. The case of two
different layer structures, considering that their leading
eigenvalues are spaced, was presented in the main text.

a. Eigenvalue crossing

Let us analyze the spectra of a simple setup: multiplex
networks composed of l identical layers. Such a class of
networks provides insights about the spectral behavior as a
function of ðη=λÞ. Although they are not very realistic
a priori, there are situations in which this representation is
helpful: For instance, in the context of disease contagion,
one might think of a multistrain disease in which each strain
propagates in a different layer, allowing co-infection of the
host population.
The adjacency tensor can be written as

Rα~γ

β~δ
ðλ; ηÞ ¼ Aα

βδ
~γ
~δ
þ η

λ
δαβK

~γ
~δ
; ðD1Þ

where Aα
β is the rank-2 layer adjacency tensor, K ~δ

~γ is the
adjacency tensor of the network of layers, which is a
complete graph on the multiplex case, and δαβ is the
Kronecker delta. Observe that the sum of two Kronecker
products, Ā ¼ Im ⊗ Aþ ðη=λÞKm ⊗ In, where In is the
identity matrix of size n and Km is the adjacency matrix of
the complete graph with m nodes, is the unfolding of the
adjacency tensor in this case. In this way, the eigenvalue
problem can be written as

Rα~γ

β~δ
fα~γ ¼ Aα

βδ
~γ
~δ
fα~γ þ

η

λ
δαβK

~γ
~δ
fα~γ; ðD2Þ

where the sums of the eigenvalues of A, Λl
i and K, μi

are also eigenvalues of the adjacency tensor; hence,
Rα~γ

β~δ
fα~γ¼½Λl

iþðη=λÞμj�fα~γ , i¼1;2;…;n and j¼1;2;…;m.

Then, �
Λl
i þ

η

λ
μj

�
¼

�
Λl
k þ

η

λ
μs

�
: ðD3Þ

The eigenvalues of the complete graph are μ1 ¼ m − 1
and μi ¼ −1, ∀ i > 1, yielding

η

λ
¼ Λl

k − Λl
i

m
; ðD4Þ

which imposes crossings on the eigenvalues of the adja-
cency tensor for identical layers since ðη=λÞ is a continuous
parameter.

b. Identical layers

Consider a multiplex network made up of two layers
with the same configuration. Each layer of the multiplex is
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a network composed of n ¼ 1000, hki ≈ 6, Λl ¼ 14.34,
with degree distribution PðkÞ ∼ k−2.7. Aside from the intra-
edge configuration, we also impose that interedges connect
a node with its counterpart on the other layer; i.e., every
node has the same intradegree on all layers. Such a
constraint imposes a high correlation between the degrees
in each layer.
Figure 10 shows the spectral behavior of such a

multiplex as a function of the parameter ðη=λÞ. In the
top panel, we present the inverse participation ratio of the
first three eigenvalues, while in the bottom panel, we plot
the first ten eigenvalues. When the ratio ðη=λÞ ¼ 0, the
eigenvalues have multiplicity 2, as can be seen on the left
side of the bottom panel (approximately, since the figure
starts from 10−2). More importantly, those eigenvalues tend

to behave differently: One increases, while the other tends
to decrease. This behavior leads to the eigenvalue crossing
(see Appendix 1 a). The inset of the bottom panel zooms
out on the region where the crossing takes place. Note that
the eigenvalues cross at the same value for which the
inverse participation ratio shows an abrupt change. Indeed,
the jump in the IPRðΛÞ has its roots in the interchange of
the eigenvectors associated with each of the eigenvalues
that are crossing. Moreover, we stress that the abrupt
change observed for IPRðΛÞ is always present in such
scenarios, but it could be either from the lower to the higher
values or vice versa depending on the structure of the
layers.

c. Similar layers

In addition to the identical case, we have also considered
a multiplex network composed of two layers with the same
degree distribution (i.e., the same degree sequence), with
PðkÞ ∼ k−2.7, but different random realizations of the con-
figuration model. Furthermore, the interedges follow the
same rule as before, connecting nodes with their counter-
parts in the other layer, assuring that every node has the same
intradegree in all layers. Each layer of themultiplex network
is composed of n ¼ 1000 and hki ≈ 6. Since each layer is a
different realization of the configurationmodel, both present
a slightly different leading eigenvalue—the firstΛ1

1 ¼ 15.21
and the second Λ2

1 ¼ 14.34.
Figure 11 shows the spectral behavior of such a

multiplex in terms of the largest eigenvalues (in the bottom
panel) and the IPRðΛÞ (in the top panel). Here, in addition
to the global inverse participation ratio, we also present the
contribution of each layer to this measure. Such an analysis
is meaningless in the identical case since the contribution is
the same. As shown in the figure, we observe that for small
values of η=λ, in regard to the first eigenvalue, the system is
localized on the first layer and delocalized on the second.
On the other hand, the picture changes when we focus on
the second eigenvalue, as it is localized in the second layer
but delocalized in the first. For larger values of η=λ, both
layers contribute equally to IPRðΛÞ. Analogously to the
identical case, there is a change in IPRðΛ2Þ, which seems to
be related to the changes in Λ2, as one can see in the bottom
panel and in the inset. Note that for this case, there is no
crossing; i.e., the eigenvalues avoid the crossing—also
referred to as near crossing.

2. Finite-size analysis

In this section, we analyze the behavior of a two-layer
multiplex network at the steady state, considering different
sizes. Such a multiplex was built considering two Erdös-
Rényi networks with a fixed mean degree. As mentioned in
the main text, we chose these networks because their
epidemic thresholds do not vanish at the thermodynamic
limit, which contrasts with the scale-free networks. In this

FIG. 10. Spectral properties of the tensor Rðλ; ηÞ as a function
of the ratio η=λ for a multiplex with two layers with the exact
same degree distribution and connected to its counterpart on the
other layer. In the top panel, we present the inverse participation
ratio of the three larger eigenvalues, while in the bottom panel, we
show the leading eigenvalues. Every curve is composed of 103

log spaced points, in order to have enough resolution.
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way, we have a well-defined critical point that can be
precisely tuned regardless of the network size. Following
the usual convention in the complex network literature, the
first susceptibility peak observed in our experiments can be
classified as a critical point of a phase transition. In such a
point, the dynamics goes from a disease-free state to an
endemic state. However, the second susceptibility peak
cannot be classified as a second-order phase transition since
the disease is already in an endemic state. Although it
cannot be considered as a critical point, before the second
susceptibility peak, most of the events take place in only
one layer (the one with the largest individual eigenvalue),
while after this point, both layers are active and spreading
the disease.

Similarly to the experiments shown in Sec. V D, here we
run the continuous simulation 50 times and perform a
moving average filter over a sampling of the original time
series, resulting in 5 × 104 points. The simulations are run
up to t ¼ 103. Note that for continuous simulations, the
number of points can vary from one run to another. The
steady-state statistics are estimated for t ≥ 950 or, in other
words, the last 50 time units. In contrast with the main text,
here we are interested in comparing results for different
network sizes: n ¼ 2 × 103, 3 × 103, 4 × 103, 5 × 103,
6 × 103, 7 × 103, 8 × 103, 9 × 103, 104, 2 × 104,
3 × 104, 4 × 104, and 5 × 104, and m ¼ 2 in all cases. In
addition, we considered the mean degree as hki ¼ 16 for
the first layer and hki ¼ 12 for the second. We expect that
the second susceptibility peak appears near the epidemic
threshold of the second layer individually, i.e., λ ≈ 0.083.
Figure 12 presents the number of infected nodes in the

steady state on the layer with the lowest individual
eigenvalue as a function of the size of the layers and a
combination of the parameters λ ¼ 0.078, 0.083, 0.085,
0.088 (near the individual critical point of the second layer)
and η ¼ 10−4, 10−3, 10−2, 10−1. In addition, in the insets,
we have the information about the average fraction (left
inset in each panel) and its fluctuations, measured by the
standard deviation (right inset in each panel). The straight
lines in red were obtained by a least-squares regression
method.
We observe an approximately linear behavior of the

number of infected nodes in the second layer as a function
of the number of nodes in such a layer (see the main panels
of Fig. 12). Consequently, the fraction ρ2 also presents a
linear trend (see the left inset in each panel of Fig. 12). In
fact, it presents a flat pattern, i.e., approximately constant.
In addition, the number of infected nodes is always larger
than zero since it is not a disease-free state. Furthermore,
we also observed that the fluctuations tend to be very low
(see the right inset in each panel of Fig. 12). Regarding the
fluctuations, it is noteworthy that, in a phase transition, they
tend to diverge, which does not happen in our analysis, thus
also ruling out a second-order phase transition as far as we
are concerned. We also note that fluctuations are slightly
higher for lower spreading rates, as can be seen by the error
bars for λ ¼ 0.078, which is explained by the delocalization
of our system.
Furthermore, in Fig. 13, we present the comparison of

steady-state fractions. In each panel, we fix a value of λ and
compare different values of η. We emphasize the influence
of η on the final fraction of infected nodes in the second
layer. Note that for η ¼ 10−4 and small networks, the
behavior exhibits a growing trend. This is due to the fact
that for networks with n < 104, the contribution of the first
layer can be effectively neglected. In fact, observe that for
n ≥ 104 the fraction of infected nodes in the second layer
follows a flat pattern [see Figs. 13(c) and 13(d)]. Finally,
in Fig. 14, we present a finite-size analysis of the

FIG. 11. Spectral properties of the tensor Rðλ; ηÞ as a function
of the ratio η=λ for a multiplex with two layers with the same
degree distribution (different random realizations of the configu-
ration model) and connected to its counterpart on the other layer.
In the top panel, we present the inverse participation ratio of the
two larger eigenvalues and the individual-layer contributions,
while in the bottom panel, we show the leading eigenvalues.
Every curve is composed of 103 log spaced points, in order to
have enough resolution.
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susceptibility for different sizes, ranging from n ¼ 3 × 103

to n ¼ 105 and m ¼ 2 layers. Each curve was obtained
using the QS algorithm, with which we simulated 120
points from λ ¼ 10−2 to λ ¼ 10−1. In this experiment, we
fixed the ratio ðη=λÞ ¼ 0.01. Additionally, we also used a
moving average filter with two points for visualization

purposes. In the inset, we show the scaling of the
susceptibility corresponding to the two peaks. The positive
slope for the first peak indicates that it divergences as the
system size goes to infinity, thus evidencing the phase
transition. On the other hand, the curve for the case of the
second peak is flat no matter what the value of the system

FIG. 12. The final number of infected nodes in the second layer (with lowest individual eigenvalue) as a function of the size of the
layers on the main panels. In the insets, we present the fraction of infected nodes (on the left) and the standard deviation in the steady
state (on the right). The parameters used in the simulations are shown in the tile of each panel. They are a combination of the parameters
λ ¼ 0.078, 0.083, 0.085, 0.088 and η ¼ 10−4, 10−3, 10−2, 10−1. Furthermore, the layer sizes are n ¼ 2 × 103, 3 × 103, 4 × 103, 5 × 103,
6 × 103, 7 × 103, 8 × 103, 9 × 103, 104, 2 × 104, 3 × 104, 4 × 104, and 5 × 104, and m ¼ 2 in all cases.
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size is, indicating that in contrast to the behavior observed
for the first peak, in this case there is no divergence in the
thermodynamic limit and the peak does not vanish.

APPENDIX E: THREE-LAYER
INTERCONNECTED SYSTEMS:
COMPLEMENTARY ANALYSIS

In this section, we study the introduction of a third layer,
which increases the complexity of the system, allowing
four different network layer configurations: the line, which
has three different configurations depending on the position
of the layers, and the triangle, which is also a multiplex.
This section is organized as follows: In the first subsection,
we perform the spectral analysis of the adjacency tensor as
a function of the parameter η=λ, showing that as we
increase this parameter, the spectral distribution tends to
the spectra of the network of layers, which is explained by
interlacing theorems. Next, in Appendixes E 2 and E 3,
we show the complementary results of localization and
susceptibility analysis, respectively.

1. Spectral analysis

Since the epidemic process is described through the
supra-adjacency tensor Rðλ; ηÞ, its spectral properties give
us some insights about the whole process, especially about
the critical properties of the systems under analysis.
Moreover, as the structure of the network of layers is
not trivial anymore, we find important differences regard-
ing the spectra of such tensors for the different topologies
of the network of layers.
Figure 15 shows the spectrum of the four configurations of

networks when varying the ratio ðη=λÞ ¼ 1, 10, 100, and
1000. Observe that we do not show the ratio ðη=λÞ ¼ 0 since
it is just the union of the individual-layer spectrum. For
ðη=λÞ ¼ 1, the four configurations arevery similar, especially
the line graphs. In such a case, the interlayer edges are treated
in the samewayas the intralayer ones. In otherwords, they are
ignored, and the network can be interpreted as a monoplex
network. As the spreading ratio increases, the spectrum
tends to be clustered near the values of the eigenvalues of
the network of layers. Such a spectrum was analytically
calculated in Sec. II and shown in Table I in the main text.
Regarding the triangle configuration, the clustering of the

spectrum as η=λ increases is even clear. Triangles present the
lowest eigenvaluewithmultiplicity two. On the extreme case
of ðη=λÞ ≫ 1 (see Fig. 15),wehave 2=3 of thevalues near the
left extreme value, while 1=3 of them are near the leading
eigenvalue. On the other hand, for the line configurations, the
frequencies of the eigenvalue distribution is related to the
position of the central layer. However, in the limiting cases,
such differences are reduced. This pattern is naturally related
to the increase of the spreading ratio:When η=λ increases, so
does the role of the interlayer edges relative to the intralayer
ones. Consequently, the structure of the network of layers

B(a) (b)

(c) (d)

FIG. 13. The final fraction of infected nodes in the layer with
the lowest individual eigenvalue as a function of the size of the
layers. The colors represent different values of η. We show λ ¼
0.078 in panel (a), λ ¼ 0.083 in panel (b), λ ¼ 0.085 in panel (c),
and λ ¼ 0.088 in panel (d). Furthermore, the layer sizes are
n ¼ 2 × 103, 3 × 103, 4 × 103, 5 × 103, 6 × 103, 7 × 103,
8 × 103, 9 × 103, 104, 2 × 104, 3 × 104, 4 × 104, and 5 × 104,
and m ¼ 2 in all cases. Each curve is the result of a parameter η;
from bottom to top, η ¼ 10−4; 10−3; 10−2; 10−1.

FIG. 14. Finite-size analysis of the susceptibility. In the main
panel, we have the susceptibility as a function of λ for different
sizes of two-layer multiplex networks, where the first layer has
hki ¼ 16 and the second hki ¼ 12. In this experiment, we fixed
the ratio ðη=λÞ ¼ 0.01. In the inset, we show the susceptibility of
the two peaks as a function of the layer size, where the blue
symbols refer to the first peaks while the green symbols refer to
the second peak. In addition, the red lines are a linear fitting of
those points. The layer sizes evaluated are n ¼ 3 × 103, 4 × 103,
5 × 103, 6 × 103, 7 × 103, 8 × 103, 9 × 103, 104, 2 × 104,
3 × 104, 4 × 104, 5 × 104, 105.
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imposes itself more strongly on the eigenvalues of the entire
interconnected structure. This comes as a consequence of the
interlacing theorems shown in Sec. III A in the main text.
Our findings can be related to the structural transition

shown in Ref. [40], where the authors evaluated the supra-
Laplacian matrix as a function of the interlayer weights.
Their main result is an abrupt structural transition from a
decoupled regime, where the layers seem to be indepen-
dent, to a coupled regime, where the layers behave as one
single system. Here, we are interested in the supra-
adjacency tensor; however, we found a similar phenom-
enological behavior and a structural change of the system
as a function of the interlayer weights, which in our case are
determined by a dynamical process.

2. Localization in interconnected networks

Complementary to the results presented in Sec. VI, here
we present results for the lines ð2.3þ 2.6þ 2.6Þ and
ð2.6þ 2.3þ 2.6Þ. Similarly, the experiments here are

conducted in terms of the inverse participation ratio, as
was done for the two-layer multiplex case.
Figure 16 shows the tenth largest eigenvalues of the

three-layer multiplex case. The dashed lines represent the
leading eigenvalue of each layer. Note that the leading
eigenvalue of the layer with PðkÞ ∼ k−2.9 is the seventh
largest in the network spectrum when ðη=λÞ ¼ 0. We
observe that there are no crossings in the observed
eigenvalues, which is an expected result since the layers
have different structures. Furthermore, it is important to
remark that all networks of layers evaluated also show
similar qualitative behaviors. The topology of the network
of layers does not lead to qualitative differences in the
dependence of Λi on η=λ for the first ten eigenvalues. We
also notice that, although it is only an approximation,
perturbation theory would be valid roughly up to η

λ ≲ 10.
Figures 8 and 17 show the IPRðΛ1Þ. In the main panel,

we present the individual contribution of each layer, while
in the insets, we have the total IPRðΛ1Þ. As mentioned in

FIG. 15. Distribution of the eigenvalues. In the rows, from top to bottom, we show the interconnected networks of lines
2.3þ 2.6þ 2.9, 2.3þ 2.9þ 2.6, 2.6þ 2.3þ 2.9 and the multiplex. In the columns, from left to right, we varied the ratios ðη=λÞ ¼ 1,
10, 100, and 1000, respectively. All histograms were built with 100 bins.
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the main text, the first eigenvalue is usually enough to analyze
the localization as a first-order approximation. Here, we
observe that the layer with the largest eigenvalue dominates
the dynamics. In addition, note the similarities between the
multiplex and the line configuration ð2.6þ 2.3þ 2.6Þ,where
the nondominant layers behave similarly. This is because for
small values of η=λ, the effect of the extra edge in the network
of layers (closing the triangle) is of order η2, thus the similar
behavior observed comparing panel (b) of Figs. 8 and 17 for
the two configurations. As η=λ grows, the symmetry in the
node-aligned multiplex dominates the eigenvector structure,
and the contributions of all layers are comparable. As we
show next, the different contributions of the layers to the total
IPRðΛ1Þ are at the root of the multiple susceptibility peaks
observed.
Complementing and reinforcing the analysis of

Section VI, comparing the different line configurations
of the network of layers, we observe that the largest
eigenvalue of the whole system, Λ1, has its associated
eigenvector localized in the dominant layer, that is, in the
layer generated using γ ¼ 2.3. Depending on the position
of that layer in the whole system—i.e., central or peripheral
layer—the contribution of the nondominant layers to
IPRðΛ1Þ varies. In particular, when the dominant layer
corresponds to an extreme node of the network of layers,
the contribution of the other two layers will be ordered
according to the distance to the dominant one.
Consequently, when the dominant layer is in the center
of the network of layers, the contributions of the non-
dominant ones are comparable—note that in panel (b) of
Fig. 17, there is no difference in the contribution to
IPRðΛ1Þ for layers generated using γ ¼ 2.6 and γ ¼ 2.9.

3. Multiple susceptibility peaks: Additional results

Figure 18 shows the susceptibility as a function of λ for
different ratios of η=λ. As observed in the main text, we also
have three well-defined peaks in these curves when the
ratio η=λ is small. In addition, similar to the two-layer case,
such peaks tend to become less defined and vanish as the
ratio η=λ increases.
Regarding the third peak, note that it is less defined than

the others because the average number of infected nodes is
larger in this case. Consequently, the susceptibility tends to
be lower since it measures the variance in relation to the
average. The comparison of Figs. 9(b) and 18 shows that

FIG. 16. Evaluation of the eight first eigenvalues of Rðλ; ηÞ for
the multiplex configuration as a function of the ratio η=λ. It is
noteworthy that such a plot is visually equivalent for all the layer
topologies composed of three layers. The dashed lines represent
the individual-layer leading eigenvalues.

(a)

(b)

FIG. 17. Spectral properties of the tensor Rðλ; ηÞ as a function
of the ratio η=λ for a multiplex with two layers with the same
degree distribution (different random realizations of the configu-
ration model) and connected to its counterpart on the other layer.
In the top panel, we present the inverse participation ratio of the
two larger eigenvalues and the individual-layer contributions,
while in the bottom panel, we show the leading eigenvalues.
Every curve is composed of 103 log spaced points, in order to
have enough resolution.
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there is no difference in the position of the susceptibility
peaks. As mentioned in the main text, the only observed
difference is the barrier effect, shown in Fig. 9(a). We also
remark the similarities between the line ð2.6þ 2.3þ 2.6Þ
and the multiplex case, which emphasize the role of
the central node. In that line configuration, the layer with
γ ¼ 2.3 spreads its influence to both layers, since it is
similar to the multiplex case, however with less intra-edges.
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