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Abstract

We describe the vision, implementation and initial deploy-
ment experience with an App based crowd sourcing system
for the analysis and prediction of the influence of aggre-
gated individual behavior patterns on the spread of infec-
tious diseases. The App builds on InfluenzaNet [19], a well
established European participatory network of self report-
ing web platforms for monitoring Influeza-Like-lInesses (ILI)
and goes starting from the current practice of explicit self
reporting towards the use of sensor derived behavior in-
formation. The App has been cleared with the Regional
Research Ethics Committee (CCER) in Geneva, Switzer-
land and was test deployed through the Google Play Store
in Switzerland during last year’s influenza season. It is cur-
rently being prepared for a broader European deployment.
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Introduction

Crowdsourcing information from user’s smart phone sen-
sors has recently become a popular approach for monitor-
ing various real world phenomena. Examples range from
monitoring crowd motion at public events [11], road con-
ditions [1] to social interactions [10]. Smart phone sensor
data has also been used for monitoring personal health and
health related behaviours. Beyond a variety of commercial
mostly physical activity oriented monitoring applications
varous diagnostic systems have been demonstrated in re-
search. Thus, for example, our group, has previously shown
how a combination of motion sensor data averaged over

a day with mobility pattern analysis and communication
pattern analysis can be used to diagnose depressive and
manic episodes [13]. In this paper we build on such work
and the successful use of participatory monitoring of Flu
through self-reported symptoms to explore the use of crowd
sourcing for detection of epidemic Flu spreading augment-
ing self-reported symptoms using mobile phone sensors.

Epidemiological Models and Data

Models and data characterizing contagious disease and the
mechanisms via which it spreads have greatly enhanced
the ability to 1) further scientific understanding of how dis-
ease spreads, 2) monitor disease (surveillance) and pre-
dict disease. One approach is statistical, collecting data to
estimate incidence, prevalence and enable forecast using
time series models [24]. A complimentary approach is to
model the spread of the disease through individual level
models and approximations thereof, which capture trans-
mission dynamics at different levels of granularity [9, 5,
22]. These models are initialized and parametrized using
biological characteristics of the pathogen and aspects of
human behavior that affect transmission of the pathogens.
The coarsest models are population level compartmental
models that differentiate between individuals according to

their epidemiological state (infectious, susceptible, immune,
symptomatic) but otherwise assume that individuals are
homogeneous and mix at random. On the other end of the
spectrum, the most fine-grained models are agent based
and consider individual level and environmental details that
may affect the spreading process, such as behavior, intrin-
sic characteristics that may affect the immune system and
environmental factors.

The traditional source of data for monitoring and predict-
ing disease incidence with statistical population level mod-
els, is the sentinel system. However, these reports have

a delay and may underestimate prevalence. An alterna-
tive approach which is gaining momentum is participatory
monitoring, whereby participants voluntarily report symp-
toms associated with Influenza-Like-lliness (ILI), and other
epidemiologically relevant participant information. Combin-
ing this data with that obtained using traditional systems
has yielded improved predictions of Flu, given that the data
sources capture different information [24].

Transmission based models are parametrized with data that
characterizes the multi-scale structure of human mobility,
form long range travel to measurements of proximity be-
tween individuals to establish the possibility of direct trans-
mission. Various different proxies for human mobility have
been used to model epidemic spreading [28]. One of the
earliest approaches was to couple population centers using
human traffic flows between them, quantified e.g. by air-
line travel [17, 8, 31, 6] or other commuting data to calibrate
Meta-population models [2, 4]. More fine grained mobility
traces can be inferred from GPS mobile sensors [12].

Proximity and face-to-face contact between individuals is
typically modeled through the abstraction of contact net-
works [21, 18, 9]. There are multiple different approaches
for inferring and measuring these interactions. For example,



Radio Frequency Identification Devices (RFID) yield precise
measurements of proximity [7]. However, Bluetooth sensors
are also a a useful proxy for proximity and and physical con-
tact between individuals [27, 26]. Initially the focus was on
characterizing the heterogeneity in the contact and activ-

ity patterns across different individuals [23, 20]. However,
there is clear evidence that both the number and duration of
contacts have an effect on the transmission of disease [25].
In fact, recent work highlights the importance of tempo-

ral structure of contacts in understanding spreading pro-
cesses [16, 15, 30].

Next Generation Disease Monitoring and Forecasting

It is clear that mobility and contact data used for modeling
disease spread is most useful when it captures multiple
spacial scales, heterogeneity between individuals and has
a fine temporal resolution. Here we report on the design
and early results of the grippeNET App, which is the first
mobile application for participatory Flu monitoring. Starting
from InfluenzaNet [19], a European participatory network
of web platforms for the monitoring of ILI, grippeNET has
developed and implemented a new paradigm of data collec-
tion, augmenting the survey data that users contribute with
data collected through mobile phone sensors. The real-time
data collected has a high temporal and spatial granularity,
is collected over a long period of time and over a large and
widespread population. This provides data well suited to
calibrate transmission models.

Beyond an extension and scaling up of data collection the
innovation of our approach is two-fold. First, we collect sen-
sor information on user mobility, contact and activity pat-
terns in a privacy preserving fashion. We do this by com-
puting epidemiologically relevant characteristics locally

on the phone, transmitting only processed data that does
not reveal coordinates or identities of individuals. This is

of prime importance if the efforts to collect such data for
the social good are to continue without violating individual’s
concerns for privacy. The second innovation of this system
is that the combination of self-reported symptoms with the
data collected form sensors enables the use of a new type
of model. Namely, we can train machine learning models
that use information both on an individual’s characteristic
behavior (and how it compares to the behavior of other indi-
viduals) and also information on how an individual deviates
from their characteristic behavior. Prior investigations on

a small cohort for limited time indicate that characteristics
of individual mobility can be predictive of Flu incidence [3].
These models can improve monitoring and prediction of
infection through estimation of flu transmission at an individ-
ual level. Individualized risk estimates open up the potential
to better inform individuals so that they can voluntarily mod-
ify their behavior and minimize their risk of becoming ill or
transmitting the disease [14].

The grippeNET Platform

The grippeNET App is currently publicly available in the
Google Play Store for monitoring, analyzing and mapping
the spread of influenza (currently in Switzerland, to be ex-
tended EU-wide in future). The App offers the same func-
tionality as the original Swiss web based service but is
more user-friendly, and interactive. Reminders to users are
sent by notifications. The App allows participants to fill in
weekly flu surveys from their smart devices and to add to

a collection of additional data collected through the device
sensors aimed at enhancing the epidemiological studies.

In return, users gain access to timely and comprehensive
insights into the data and the analyses. Thus, users are
not just data providers but also users of the system. In fu-
ture versions, we can provide a forecast for flu based on the
data generated by the users, in combination with the data
collected by the sentinel network, in a weather-forecast-like



Sensor Data (ever 5min):
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Figure 1: List of sensor data collected on the user’s device, the App client’s modular architecture, the machine learning core workflow and a list

of aggregated data sent to the backend.



application.

Ethical and User Oriented Design

One of the key innovations of the grippeNET App is to build
a system where users are motivated to participate in in-
fluenza monitoring, and continue to participate, in con-
tributing their data for the social good. Our approach is

built around engaging users, by giving them back aggre-
gated information they will find interesting and useful while
at the same time protecting their privacy. The grippeNET
App has already served as a platform for studies in the field
of human-computer interaction to examine what factors play
a role in motivating a person to participate [29].

The modular nature of the App’s code can be seen in Fig-
ure 1 and makes it possible to provide extension with mini-
mal effort. As proof of concept, prototypes of a gamification
and an extended statistics module connecting to the Fitbit
API have been implemented to further provide value to the
user and explore possibilities for an extended study. A first
version of the gamification feature has left beta stadium and
was released with the latest version of the App.

Moreover, we designed an extensive research study inte-
grating data collected from the App and the web platform
to continue the traditional monitoring analyses of participa-
tory monitoring systems and also carry our novel predictive
analytics using state of the art machine learning methods.
We submitted the study for approval to the Regional Re-
search Ethics Committee (CCER) in Geneva, Switzerland.
Our approach was to write a privacy policy that follows the
requirements and procedures of informed consent form for
participation in a medical study. Our application was suc-
cessful, and we were granted permission to operate "with-
out reservation" from the committee, with a few optional
recommendations currently being implemented.

Many agile design steps have been iterated, considering
input from software engineers, epidemiologists, data scien-
tists, human-computer-interaction and ethics experts en-
suring sufficient data quality, stability, scalability and privacy
protection.

The system uses state of the art encryption technologies,
hashing, data reduction and aggregation algorithms on any
bit of information before it leaves the user’s device. Fulfilling
all requirements for compatibility to the current InfluenzaNet
system, the grippeNET backend consists of a special server
separating smartphone-collected data from participant’s
personal data inside the InfluenzaNet user profile. The link
is created via a unique ID to which researchers can’t have
access.

Data Collection

Sensor data is always recorded in the background using
battery preserving methods and stored in a local database
on the user’s device. Special algorithms have been devel-
oped and are continuously improved for aggregating and
obfuscating the raw data for privacy protection while still en-
suring sufficient data quality. Figure 1 shows an overview
over the collected data and calculated features by the grip-
peNET App.

To gain location-based features, we are taking usage of the
GPS sensors integrated in most modern smart phones to
sample a location trace which consists of the latitude, longi-
tude and time stamp. The locations are sampled irregularly
due to battery saving and fluctuation in user’s permission or
phone usage and stored in the device’s local database. The
database is not exposed to any 3rd party library or server,
in the interest of privacy protection. We calculate simple
location based features as well as more complex ones, util-
ising the ML core.
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Figure 2: Daily step count over two weeks and hourly step count
from a Tuesday, Saturday and a Sunday of a full time employed
male person, 60 year old.

Data Examples

Figure 2 shows the number of steps calculated by the An-
droid OS based on a device internal IMU (inertial measure-
ment unit) from one person’s phone over the course of two
weeks. The daily step count during the first two weekends
hint at this person seems to be more active on Sundays
than during the rest of the week. Three charts compare a
Tuesday, a Saturday and a Sunday of the same person’s
step count on an hourly interval. It can be seen that the
distribution of step count over one day can vary and might
be used to retrieve not only a proxy for physical activity but
also context information, especially fused with other sensor
data collected by the App.

Battery power level of the mobile device, we think looks like
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Figure 3: Battery power level over two weeks from a device of a

full time employed male individual, 35 years. The grid lines mark

each days 12am time. One charge and discharge time based on a
99% threshold (red, dotted line) can be found below the time axis.

a promising feature containing information about a user’s
behaviour. In Figure 3 it can be seen that using a basic
one-threshold mechanic we might have an idea about the
user’s sleep cycle and daily routine. During the plotted two
weeks, this user did never charge his phone during the day
and his battery has a rest charge between 30% and 60%
in the evening. The discharge times show when the user
starts using his phone away from the charger, eg. when
starting the day. Charge times should everyday be approx-
imately equidistant to the times when the user plugged the
charger into the phone, eg. before going to bed. If we would
interpret the time between charge and discharge times as
sleep time, it would mean that this user sleeps a longer on
weekends than during the week.

In Figure 4 the number of different Bluetooth IDs scanned
every 5min is plotted over one week for two random users.
It is interesting to see that the profile for both looks very dif-
ferent. User A had the Bluetooth transceiver switched off
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Figure 4: Total bluetooth scan device count in 5min intervals over
one week comparing two random people. The grid lines mark
each days 12am time.

most of the time. When activated either very few devices
were seen or a very high amount of devices. Crowds of
people or buildings with a lot of technology or Bluetooth
beacons for localization could lead to such a high number
of devices seen. For user B Bluetooth scans were possi-
ble continuously. It can be seen that the maximum of seen
devices is a lot lower than most of the scans from User A.
There are multiple spikes in the middle of the day during
working days and a relatively flat curve on Sunday. Friday
and Saturday evening more devices have been scanned
then during other evenings. We think that with more so-
phisticated algorithms on the relatively high time resolution
combined with the category of seen devices will lead to
useful features for enriching disease spreading models.

Conclusion

The key lesson learned from the work so far has been the
understanding of the sensing and analysis requirements
and constraints in the triangle between (1) the informa-
tion requirements of relevant epidemiological models (2)

ethical, privacy and user acceptance considerations and
(3) the technical feasibility of extracting (1) under constant
challenge of (3) while observing (2). In the current App ver-
sion we have implemented those collection and analysis
strategies in a modular, easily extendable way. We have
also obtained and examined initial data from a first real life
deployment. The integration of the App with the existing In-
fluenzaNet platform has been crucial to getting practitioners
from the field of epidemiology on board. At the same time
it has been the source of a whole range of practical imple-
mentation issues.
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